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Abstract: Enzyme therapies are attracting significant attention as thrombolytic drugs during the
current scenario owing to their great affinity, specificity, catalytic activity, and stability. Among various
sources, the application of microbial-derived thrombolytic and fibrinolytic enzymes to prevent and
treat vascular occlusion is promising due to their advantageous cost–benefit ratio and large-scale
production. Thrombotic complications such as stroke, myocardial infarction, pulmonary embolism,
deep venous thrombosis, and peripheral occlusive diseases resulting from blood vessel blockage
are the major cause of poor prognosis and mortality. Given the ability of microbial thrombolytic
enzymes to dissolve blood clots and prevent any adverse effects, their use as a potential thrombolytic
therapy has attracted great interest. A better understanding of the hemostasis and fibrinolytic system
may aid in improving the efficacy and safety of this treatment approach over classical thrombolytic
agents. Here, we concisely discuss the physiological mechanism of thrombus formation, thrombo-,
and fibrinolysis, thrombolytic and fibrinolytic agents isolated from bacteria, fungi, and algae along
with their mode of action and the potential application of microbial enzymes in thrombosis therapy.

Keywords: fibrinogen; fibrin; thrombolytic therapy; microbial enzymes; thrombosis; hemostasis

1. Introduction

Dysregulation of the intrinsic balance between the coagulation cascade and the fibrin-
and thrombolytic pathways can lead to severe outcomes such as myocardial infarction,
stroke, and massive pulmonary embolism caused by fibrin accumulation in the blood
vessel walls, resulting in the formation of hemostatic plug or a clot [1]. Currently, the tissue
plasminogen activator (tPA) or plasminogen activator (PA) is an indispensable clinical tool
in thrombolytic therapy [2]. They are categorized into first, second, and third generation
(Figure 1) [3]. PA are serine proteases that form active plasmin from inactive plasminogen
and mediate fibrin lysis through two modes of action: (i) direct—channels direct action
on plasminogen to catalyze its activation; and (ii) indirect—forms a 1:1 stoichiometric
complex with plasminogen or plasmin followed by activation of the circulating plasmino-
gen molecule. Despite their clinical effectiveness, however, these agents have several
undesirable side effects, including immunogenicity, gastrointestinal bleeding, intracranial
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hemorrhage, and major systemic hemorrhage [4,5]. Consequently, there is an urgent need
for approaches exploring new fibrinolytic agents with better specificity and efficacy.
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There are several known sources of fibrinolytic enzymes, including plants, animals,
and microbes. Among them, microbial-derived fibrinolytic enzymes have gained particu-
lar interest because they possess the following advantages: (i) cost-effective production,
(ii) fewer to no side effects [6], (iii) broad biochemical diversity, (iv) mass-culture feasibility,
and (v) allow genetic manipulation. Hence, various microorganisms have been used for
the isolation of fibrinolytic enzymes, including bacteria, fungi, and algae.

The purpose of this review is to provide an overview of the microbial-derived enzymes
with thrombolytic and fibrinolytic potential and summarize the existing literature on the
microbes proposed to produce enzymes with thrombolytic and fibrinolytic activities.

1.1. Mechanism of Thrombus Formation

Hemostasis is defined as the physiological process of cessation of blood loss by clot
formation at the site of an injury. Fibrin is a major component of blood clots, and is
formed from fibrinogen (large soluble plasma glycoprotein) via proteolysis by thrombin.
The accumulation of fibrin clots results in thrombus formation. A thrombus is a blood
clot formed within the blood vessel [7]. Under physiological conditions, a proteolytic
enzyme—plasmin—hydrolyses the fibrin clot to prevent thrombosis in blood vessels.
During vascular pathophysiology or damage to the vascular system, the process of clot
hydrolysis is disrupted, which may result in thrombosis [8].

Hemostasis and thrombosis are intricate, multifactorial processes. Platelets, in conju-
gation with endothelial cells and coagulation proteins, are the crucial mediator of vascular
hemostasis and thrombosis. Disruption to any of these processes could result in atheroscle-
rotic plaque formation [9–11] (Figure 2, leading to variety of thrombotic diseases including
CVDs (cardiovascular diseases) [12,13], abdominal aortic aneurysms (AAAs) [14,15], pul-
monary embolism (PE) [16], and stroke [17,18].

The process of hemostasis is divided into two stages: (1) primary (involves rapid
platelet activation) and (2) secondary (requires additional coagulation pathways to form
polymeric fibrin) processes (Table 1).

1.2. Fibrinolysis and Thrombolysis

Fibrinolysis is the breakdown of fibrin in the blood clot, and thrombolysis can be
simply defined as the process of thrombus dissolution.

Fibrin is a primary protein component of a blood clot that is formed from fibrinogen
(340 kDa glycoprotein) by thrombin-mediated proteolysis and elimination of N-terminal
fibrinopeptides from the Aα and Bβ chains. A serine protease, plasmin, is an activated
form of inert plasma precursor, plasminogen (PLG). PLG is a 791-AA-long glycoprotein
that circulates in blood plasma as an inactive zymogen. The plasmin is a crucial enzyme in
the dissolution of fibrin clots. There exist two major glycoforms of human plasminogen,
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namely, type I (consists of two molecules of glycosylation) and type II (consists of one
molecule of glycosylation) [8,22]. The binding of circulating PLG to the cell surface or
blood clot acquires an open conformation, which aids in the formation of catalytically
active plasmin by the Arg561-Val562 bond cleavage via a direct PLG activator [23]. Direct
PA includes tissue plasminogen activator (tPA), streptokinase and urokinase or their
variants [3,24]. Plasmin formation leads to fibrin lysis, giving soluble fibrin degradation
products (FDPs) [22,25]. Therefore, the process of fibrinolysis involves two phases: (i) PLG
activation on the surface of the fibrin clot to forms plasmin, which dissolves fibrin—i.e.,
a physiological process; and (ii) amplification of plasmin-induced clot breakdown by
exposing the additional binding sites of degraded fibrin—i.e., pharmacologically mediated
processes such as fibrinolytic and thrombolytics.
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Figure 2. Innate immune cells in deep vein thrombosis (DVT). Adapted with permission from Mukhopadhyay et al.,
copyright © 2019 [11].

Table 1. Overview of hemostasis [19–21].

Primary Hemostasis
(Platelet Plug Formation)

Secondary Hemostasis
(Coagulation Cascade to Form Fibrin Network)

• It is a response to endothelial disruption • It is the phase of strengthening and stabilization of the soft
platelet plug formed at the site of injury.
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Table 1. Cont.

Primary Hemostasis
(Platelet Plug Formation)

Secondary Hemostasis
(Coagulation Cascade to Form Fibrin Network)

• Injured endothelium exposes the procoagulant
subendothelial matrix and promptly initiates primary
homeostasis, which comprises of following four sequential
but overlapping phases:

i. Vasoconstriction

- Mediated by endothelin-1
- Damaged endothelium exposes

sub-endothelial collagen, von Willebrand
factor (vWF), releases ATP, and
inflammatory mediators

ii. Platelet adhesion

- Gp Ib-IX receptor on platelets binds to vWF

iii. Platelet activation

- Mediated via thrombin by 2 mechanisms:
(1) Irreversible change in platelets shape from
smooth discs to multi-pseudopodal plugs and
(2) Secretion of cytoplasmic granules

iv. Platelet aggregation

- Gp IIb/IIIa receptors adhere to vWF
and fibrinogen

• It initiates enzymatic activation of coagulation proteins to
strengthen the soft platelet plug via stable fibrin clot
formation, which involves several steps and can be
divided into 3 pathways as follows:

i. Extrinsic pathway

- Initiates with binding of tissue factor (TF) and
factor VII (FVII), activating FVII to factor VIIa
(FVIIa), forming a TF-FVIIa complex

- TF-FVIIa complex activates factor X (FX) to
get FXa, initiating common pathway
described below—(iii)

ii. Intrinsic pathway

- Initiated with activation of FXIIa
- FXIIa activates FXI to FXIa
- FXIa activates FIX to FIXa
- FIXa-factor VIII (FVIIIa) complex

activates FX, initiating common pathway
described below—(iii)

iii. Common pathway

- Factor Xa + Factor Va + calcium on
phospholipid surfaces (prothrombinase
complex) = activation of activating
prothrombin (aka Factor II) to thrombin.

- Thrombin activates FXIIIa
- FXIIIa crosslinks with fibrin forming

stabilized clot

• Limits bleeding instantly • Gradually fibrinolysis will dissolve the stable plug

2. Microbes in Thrombolytic Therapy

Many microbial-derived thrombolytic enzymes have been discovered and charac-
terized. In general, the strains that produce thrombolytic enzymes are screened and
isolated by using sterile skimmed milk agar with subsequent incubation of culture at 37 ◦C
for 24 h; protease-positive isolates form a hydrolytic zone, which is screened by fibrin
plate assay [26–29]. The fibrin plate assay is a precise and sensitive method to quantitate the
extent of fibrin breakdown. Briefly, a fibrin clot covering the bottom of a petri dish is treated
with the fibrinolytically active solutions, and then the relative amounts of fibrin (converted
substrates) are measured by determining the areas of the lysed zones. These enzymes
are produced via solid and liquid state fermentation in a medium enriched with carbon
sources (such as cellulose, dextran, dextrose, fructose, starch, maltose, ribose, sucrose,
galactose, and trehalose) and nitrogen sources (including organic-based (yeast extract,
peptone, gelatin, urea, casein, tryptone, and soya meal) and inorganic salts (ammonium
chloride, sodium dihydrogen phosphate, ammonium sulfate, ferrous sulfate, potassium
nitrate, calcium chloride, ferrous sulfate, and disodium hydrogen phosphate)). Inhibitors
such as ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), phenyl-
methylsulfonyl fluoride (PMSF), and ethylenediaminetetraacetic acid (EDTA); and metal
ions (Cu2+, Co2+, Ca2+, Fe3+, Fe2+, K+, Mg2+, Mn2+, Na+, and Zn2+) are supplemented
in the culture medium to further enhance the production process of thrombolytic en-
zymes [30,31]. One of the physiological advantages of microbial-derived thrombolytic
enzymes is their stability at a wide range of pH values (5–11) and temperatures (30–70 ◦C).
In addition, molecular cloning approaches abet the characterization of genes encoding
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target-specific modes of action with minimal side-effects, facilitating the potent application
of thrombolytic enzymes in warfare for blood clotting disorders, discussed elsewhere in
greater detail [32,33].

To overcome the associated drawbacks of currently available thrombolytic agents,
various preliminary evaluation approaches are used to test the pharmacokinetics and
dynamics of potential drug candidates of microbial origin with respect to their pharmaco-
logical cogency and clinical relevance. Briefly, in vitro and in vivo assays to assess the clot
lysis properties of these agents are performed either by using fibrin as a direct substrate or
by the production of a fibrin clot using thrombin.

The in vitro assays include: (i) Antiaggregatory activity—measures reduction or inhibi-
tion of platelet aggregation [34]; (ii) Anticoagulant and thrombolytic activity—measures ability
to prevent blood clot formation and dissolution of an existing blood clot [35,36]; (iii) Clot
formation and lysis assay (CloFAL)—periodic quantitative measurement of clot lysis, aid in
the clinical evaluation of net hemostatic balance, and bleeding and clotting disorders [37];
(iv) Euglobulin clot lysis assay—rapid and sensitive method of measuring fibrinolysis within
the euglobulin fraction [38]; and (v) Thromboelastography (TEG)—the ability to measure the
viscoelastic properties of the whole blood clot [39].

The in vivo assays include: (i) Carrageenan-induced thrombosis model—helps assessment
of clinically relevant anti-thrombus and thrombolytic agents by demonstrating disap-
pearance of wine-colored thrombus [40]; (ii) D—Dimer test—fibrin derivatives containing
cross-linked D—dimer (XDP) domains help monitor fibrinolysis [41]; (iii) Ferric chloride-
induced thrombosis model—aids in assessing anti-platelet and anticoagulant drugs [42]; and
(iv) Rat groin flap model—an important tool in comparative analysis of various anticoagu-
lants and vasomotor drugs [43]. In addition to promising a better understanding of the
role of the drug candidate in alleviating disease pathophysiology and determining its ther-
apeutic potential, the combination of in vitro and in vivo assays also provides propitious
translational application of microbial-derived novel thrombolytic agents.

2.1. Promising Microbial Producers of Thrombolytic Enzymes

The past decade has witnessed a surge in the discovery of thrombolytic agents from nu-
merous microbes, and this has kindled the development and characterization of microbial-
derived agents with thrombolytic activity and minimal or no side effects. The known
microbial producers of thrombolytic enzymes include bacteria, fungi, and algae.

2.1.1. Bacteria

Bacteria are the first-line sources because bacterial proteins are suitable for oral admin-
istration and facilitate large-scale production. (a) Bacillus sp. are among the most preferred
sources; various strains have been reported to have fibrinolytic activity (Figure 3A). In
addition, several other strains with fibrinolytic properties have been reported, although
their mode of action is yet to be elucidated, such as Bacillus sp. DJ–2 [44], B. subtilis
A26-derived subtilisin BSF1 and BAF1 obtained from B. amyloliquefaciens An6 [45,46], en-
zyme URAK produced by B. cereus NK1 [47], B. cereus GD 55-derived protease [48], B.
cereus IND1 [49] and B. halodurans IND18 [50] are the sources of proteolytic enzymes that
exhibit both thrombolytic activity and PLG activation properties, while a fibrinolytic pro-
tease with absolute clot dissolution ability in a short span of time (within 4 h) in in vitro
conditions was obtained from Bacillus sp. IND12 [51], B. pseudomycoides strain MA02 [52],
and B. cereus RSA1 [53]; (b) Streptomyces sp. are the largest fibrinolytic enzyme-producing
genus. Figure 3B summarizes the fibrinolytic agents derived from different strains of
Streptomyces sp.; (c) other bacterial sp. that have been reported to produce fibrinolytic
enzymes are summarized in Figure 3C. Additionally, a proteolytic enzyme of ~50 kDa
serrapeptase (SP) or serralysin derived from enterobacterium Serratia E–15 [54] was noted
to have fibrinolytic potential [55] along with the ability to distinguish and dissolve only
dead and damaged tissue without harming the living tissue [55], Treponema denticola was
used to produce thrombolytic enzymes [56], proteases of 44 kDa and 64 kDa obtained
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from Shewanella sp. IND20 and Psuedoalteromonas sp. IND11, respectively, showed direct
clot lysis activity as well as PLG activation ability [57,58], Paenibacillus sp. IND8 [59], and
Stenotrophomonas maltophilia Gd2 were shown to possess robust fibrinolytic activity [30].

2.1.2. Fungi

The enzymatic properties of fungal sp. are a novel and largely unexplored facet, and
there exists exiguous literature on the fibrinolytic potential of these microorganisms. Fungi
are considered a suitable source of thrombolytic enzymes because of their ability to grow on
solid substrates like agro-industrial waste residues. Different fibrinolytic agents obtained
from fungal species and their mechanism of action are outlined in Figure 4. Further-
more, Cochliobolus lunatus and Penicillium chrysogenum H9 were documented as fibrinolytic
enzyme producers [60,61], metalloprotease with plasmin-like activity was produced by
Fusarium pallidoroseum [62], purified Aspergillus ochraceus 513 was reported to possess both
fibrinolytic and anticoagulant potential [63], Oidiodendron flavum is another fibrinolytic pro-
ducer [64], serine protease isolated from Fusarium BLB were proposed to have fibrinolytic
ability [65], 27.3 kDa fibrinolytic enzyme, CMase, is a metalloprotease produced from Cordy-
ceps militaris [66,67], metalloprotease of 18.2 kDa obtained from a medicinal mushroom,
Schizophyllum commune, was reported to have fibrin lysis activity [68], Aspergillus oryzae
KSK-3-derived serine protease of 30 kDa exhibit thrombolytic potential [69], serine pro-
teases from Bionectria sp. can be the potential treatment for thrombotic diseases [70],
alkaline protease and metalloprotease obtained from Aspergillus strain KH 17 and As-
pergillus brasiliensis AUMC 9735, respectively, were proposed to have robust fibrinolytic
potential [71,72], and protease isolated from Mucor subtilissimus UCP 1262 via two different
approaches—solid-state fermentation and aqueous two-phase system—were reported as a
potential promising agent for the prevention and therapy against thrombosis [73].

2.1.3. Algae

Algae are excellent sources of various biologically active agents with pleiotropic effects
and are rich sources of food, feed, and energy. Few studies have evaluated the potential
applications of algal-derived enzymes in fibrinolytic therapies (summarized in Figure 5),
thus introducing a new era of bioprospecting of enzymes from algae for their role in
thrombolytic activity.
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3. Microbial-Derived Drugs in Thrombolytic Therapy
3.1. Streptokinase

Streptokinase (SK) is the most commonly used first-generation thrombolytic agent. It
is a 47 kDa protein and comprises 414 amino acid (AA) residues and exhibits its maximum
activity at pH ~7.5 [125]. SK is isolated and derived from several strains of β-hemolytic
Streptococci of Lancefield group A, C, and G [126,127]. The Streptococcus equisimilis GCS
strain H46A and group C have been chiefly used for SK production [128]. SK comprises
three structural domains: α, β, and γ at the 1–146, 147–290, and 291–414 AA positions
catenated by two flexible coil regions. SK has a half-life of ~30 min [129,130]. The throm-
bolytic potential of SK was first acknowledged by Johnson and Tillett in 1952, where they
observed that artificially induced intravascular clots within the ear vein of rabbits via
sodium morrhuate were successfully dissolved after intravenous infusion of SK [131].

Moreover, the large-scale purification of human plasminogen achieved by Kline [132]
allowed the direct application of plasmin as a clot buster. However, the major solicitude
associated with direct use of plasmin or SK-mediated plasminogen activation may result in
indiscriminate, systemic plasmin generation and substantial diminution of circulating PLG
and α-2-antiplasmin [133,134], which can lead to a significant reduction in blood clotting
ability, and consequently, a serious risk of hemorrhage. Hence, limiting the application
of plasminogen activators as a therapeutic agent rather than circulating plasmin. Corre-
spondingly, Tillette and Sherry reported accompanying adverse effects of SK, which causes
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pyogenic reactions with symptoms like arthralgia, occasionally nausea, and headache,
etc., ergo, limiting the administration of multiple doses of SK [135]. Nevertheless, con-
tinued efforts have been made to achieve reduced pyrogenic reaction of SK by using
various approaches such as structural and chemical modifications, liposomal entrapment
or encapsulation, and domain fusion (Table 2); the recombinant SK (rSK) thus obtained
possessed less antigenicity compared to wild-type SK [136,137]. Cloning the SK gene in
non-pathogenic microbes permits the production of fortified rSK that eliminates the risk of
infection by potentially pathogenic Streptococci [138].

3.1.1. Action Mechanism

SK functions by hijacking the fibrinolysis cascade, where it stoichiometrically binds to
plasminogen, inducing a conformational change in plasminogen to form an enzymatically
active streptokinase–plasminogen (SK-PLG) complex [139,140]. SK-PLG complex is a
highly specific protease that further cleaves other circulating PLG molecules and is capable
of converting them to active serine protease, plasmin, that can degrade the fibrin clot via
its specific lysine binding site [141,142]. There are several functional regions across SK
domains, including: (i) α domain—the Asp41–His48 region between 1-59 AA residues
regulates binding to PLG [140,143]. It additionally contains single residues (V19F, V35E,
and S44K) for substitution that are crucial for SK-plasmin complex activation [142,144];
(ii) β domain—Lys 256, 257, and Val158–Arg219 region aid in PLG recognition, processing,
and SK-plasmin complex formation [145]; and (iii) γ domain—a coiled region (Leu314-
Ala342) that plays an essential role in stabilization of SK-micro plasmin complex for PLG
activation. SK was the first Food and Drug Administration (FDA)-approved PLG activator
for thrombosis therapy.

3.1.2. A Potential Therapeutic Tool

Several clinical trials have been designed to determine the therapeutic potential and
safety of SK. These trials concluded the increased survival rate in patients receiving SK
during the early onset of myocardial infarction (AMI) [146–148]. Ruegsegger and colleagues
were the first to prove SK-mediated intracoronary clot dissolution [149]. A subsequent
study investigated the protective role of adjuvant intracoronary SK (ICSK) on late-phase
infarct size and left ventricle volumes and functions in the setting of primary percutaneous
coronary intervention (PCI). This study reported that immediate administration of a low
dose of ICSK not only limits the long-term infarct size but also preserves left ventricle
volumes and functions [150]. SK is, therefore, the drug of choice in thrombolytic therapy,
especially in developing countries due to its reduced cost.

3.2. Staphylokinase (SAK)

SAK is a third-generation plasminogen activator obtained from Staphylococcus aureus
GH38 which exerts its anti-thrombin activity by converting passive plasminogen to active
plasmin. SAK is a 136 AA monomer of 15.5 kDa and comprises two equal-sized domains
with flexible dumbbell shapes [95,158]. Structurally, it has been reported that AA at the
26th position (methionine-26) is useful for PLG activation by SAK. Notably, the functional
activity is lost if this AA is replaced with arginine or valine, whereas little or no effect on
functional activity was observed by replacing it with leucine or cysteine [159]. SAK was
precipitated: (i) initially from the supernatant fluid of cultures at pH around 3.3 with 10 mM
HCL; and also (ii) at 75% saturation of (NH4)2SO4 (ammonium sulfate) [160,161]. The half-
life of SAK is ~6 min [162]. Lewis and Sweet evaluated the in vitro fibrinolytic properties of
SAK [163,164]. Correspondingly, Lewis and Kanae observed in vivo thrombolytic activity
of SAK in dogs [165].
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Table 2. Summary of strategies used for SK modifications.

Modifications Type Examples Mode of Action References

Structural
Deletion SK60-386 and

SK143-386

Fibrin-specific
activity, lower

immunogenicity
[151]

Substitution Lys59 and Lys386
for glutamine Increases half-life [152]

Chemical
PEGylation cysteine-specific

thiol-mediated
Increases half-life

and stability [125]

Acylation

Human
plasminogen-

bacterial
streptokinase

complex

Enhances
specificity [153]

Delivery
system

Liposomal
entrapment or
encapsulation

PEG or chitosan
nanoparticles,

platelet
directed liposomes

Increases half-life
and stability,

reduced
immunogenicity,

improved clot
penetration
properties

[154–156]

Domain fusion
Chimeric and

conjugated
protein

Fusion with
epidermal growth
factor 4, 5, and 6

domains of human
thrombomodulin

Reduced risk of
re-occlusion and

hemorrhage
[157]

3.2.1. Action Mechanism

Fibrin degradation via SAK involves the following two steps: (i) formation of the
SAK–PLG complex—this hydrolyzes a peptide bond between lysine 10 and 11 of SAK,
which triggers peptide bond lysis between arginine 561 and valine 562 of PLG; (ii) resulting
in the initial conversion of PLG to plasmin. SAK then binds to synthesized plasmin directly
to catalyze the PLG conversion to plasmin [165]. α2-antiplasmin impedes the SAK-PLG or
plasmin complex formation in the absence of fibrin [166,167]. However, the lysine binding
domain of the complex is occupied in the presence of fibrin, preventing its inhibition by
α2-antiplasmin [158,168]. This suggests the fibrin-specific nature of SAK, and that it can
therefore be a potentially potent thrombolytic therapy [158].

3.2.2. A Potential Therapeutic Tool

THR-174 is the optimized form of the SAK sequence variant produced by Thrombo-
Genics NV, Iselin, NJ, USA documented to have augmented efficacy and safety profiles in
the pre-clinical trials (2012. Official Website. http://www.thrombogenics.com—Retrieved
online on 30 January 2021).

Furthermore, the 3-D structure of the protein facilitated the design of PEG (polyethylene
glycol) attachment sites, prolonging plasma half-life and reducing antigenicity [169–174]. A
recent study reported that N-terminal lipid modification of SAK fosters its activity, stability,
and translocation across the blood–brain barrier (BBB), and therefore, holds great promise
in treating diseases like stroke [175].

Studies have shown a key role of activated platelets in thrombosis, secondary clot for-
mation, and blood vessel re-blocking. Following thrombolytic therapy, platelet aggregation
promotes secondary clot formation. The coagulation cascade is activated by the ensuing
clot lysis; in addition, a large amount of thrombin release elicits the platelets activation
and aggregation. The activated platelets consequently inhibit fibrin lysis by tPA (tissue
plasminogen activator) via the release of type I plasminogen activator inhibitor in the

http://www.thrombogenics.com
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blood circulation, causing vessel re-blockage [176]. Interestingly, RGD (arginine, lysine,
and aspartic acid tripeptide)–SAK complex bind to GPIIb/IIIa (glycoprotein membrane
receptor) at the platelet surface, which averts the binding of fibrinogen to this receptor,
thereby precludes the activated platelets accumulation [168]. Moreover, several thrombin
inhibitors combined with recombinant SAK (rSAK) are known to decrease secondary clot
formation [177–182].

3.3. Nattokinase (NK)

A serine protease derived from natto, a Japanese fermented food, was first extracted
by Sumi and college [78] and was termed nattokinase. It is a 275-AA-long single polypep-
tide chain of 27.7 kDa. Nattokinase possesses the inherent ability to boost the endoge-
nous mechanisms to degrade the blood clots and is achieved via following different
ways: (i) oral administration—in vivo studies noted reduced euglobulin clot lysis time
(ECLT), prolonged partial thromboplastin time (PATT), and averted platelet aggregation,
therefore considered to be a direct-acting fibrinolytic enzyme [183,184]; (ii) intraduodenal
administration—existing evidence support the transport of NK across the intestinal tract
where it hydrolyzes the plasma fibrinogen [185]; (iii) efficacy—promotes fibrinolysis by
degrading plasminogen activator inhibitor-1 (PAI-1) and aiding in plasmin formation by
escalating the production of PLG activator [183,186]; and (iv) affinity—lower specificity and
more affinity towards fibrinogen and cross-linked fibrin, respectively [187]. In summary,
use of NK has several advantages, including efficacy in clot lysis and restoration of arterial
blood flow in contrast with plasmin and elastase [188].

Clinical Trials

NK was shown to lower the plasma levels of fibrinogen FVII, and FVIII in two
separate groups of patients undergoing dialysis and with cardiovascular risk factors with-
out influencing blood lipids [189], enhanced fibrinolysis and anticoagulant activity [190],
lower vWF levels [191], and is under Phase II trial to test its therapeutic ability against
atherothrombosis [192].

3.4. Reteplase (Recombinant Plasminogen Activator, r-PA)

Reteplase or r-PA (39 kDa) is produced in E. coli K12 as insoluble inclusion bodies and
is an unglycosylated single-chain deletion variant of tPA. Comprised of 1–3 and 176–527 AA
of tPA, it therefore only contains the catalytic protease domains and kringle 2, and is
deficient in the finger, kringle 1, and epidermal growth factor of t-PA, as signified by the
deletion of the Val4-Glu [193,194]. Since the kringle 1 domain of r-PA is crucial for its rapid
renal clearance, loss of kringle 1 domain aids in extending the half-life (~from 4 to 15 min)
of r-PA [195,196]. Notably, the absence of the fibrin-binding finger domain in r-PA decreases
(~5-fold) its binding affinity towards fibrin [194,197]. Interestingly, patients with acute
myocardial infarction (AMI) administered with a double bolus regimen (10 + 10 M after
30 min) of r-PA showed robust thrombolysis activity [198,199]. Additionally, in The Global
Use of Strategies to Open Occluded Coronary Arteries (GUSTO III) trial, hemorrhagic stroke
frequency and mortality post-30 days were comparable in r-PA and alteplase [200]. r-PA is
commercially available as Retavase® (Centocor, Inc., Malvern, PA, USA) and Rapilysin®

(Roche) for AMI therapy.

4. Use of Waste Biomass/by-Products for Thrombolytic/Fibrinolytic
Enzyme Production

There is a constant search for novel and safer fibrinolytic enzymes all over the world
owing to the short life cycle and allergic reactions caused by the tPA and certain fibrinolytic
agents [201]. The microbial fibrinolytic enzymes are quite economical, and have been
studied in insects [202], marine organisms [203], and fermented foods [187,204]. Solid-
state fermentation (SSF) is an efficient method for enzyme production and metabolite
bioconversion. Agro-industrial waste, fishery waste, and wastewater can be used for the
production of fibrinolytic enzymes. A wide variety of agro-wastes, such as groundnut
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husk [205], green gram husk [206], copra waste [207], deproteinized acid cheese whey and
wheat bran [208], and cake of Jatropha curcas seed [201] have been effectively used for the
production of enzymes. The solid substrate provides essential nutrients for both the growth
of microbes and the production of enzymes. Various studies have shown that B. subtilis
can produce a variety of fibrinolytic enzymes [209,210]. Vijayaraghavan and group [50]
extracted fibrinolytic enzymes from Bacillus halodurans using agro-wastes. They observed
wheat bran to be an efficient substrate for the production of fibrinolytic enzymes which
could degrade fibrin clot thus behaving as an effective thrombolytic agent. Wu et al. [211]
developed a cost-effective method to optimize the parameters of fermentation for the
production of fibrinolytic enzymes by Bacillus subtilis WR350. Their results revealed that
sucrose can be used as a low-cost substrate for the production of the fibrinolytic enzyme
in a 100-L fermenter by B. subtilis WR350. Fish wastes also act as good substrates for the
production of fibrinolytic enzymes due to their high nutrient content [212]. Biji et al. [201]
produced fibrinolytic enzymes by Bacillus cereus IND5 using cow dung and cuttlefish waste
in SSF. The purified enzyme obtained had a specific activity of 364.5 U/g proteins, the
molecular weight of 47 kDa, stability at pH 8.0, high activity at 50 ◦C and was shown to
possess fibrinolytic properties. Thus, the mixture of cuttlefish waste and cow dung had
great applications as solid substrates for the production of fibrinolytic enzymes. Hence,
use of waste biomass not only yields cost-effective and efficient fibrinolytic enzymes, but
also reduces the chances of environmental pollution.

5. Conclusions and Future Perspectives

Vascular occlusion remains a major cause of morbidity and mortality worldwide.
Although numerous thrombolytic agents have been identified and characterized from
diverse sources, promising scientific data available from in vitro and in vivo studies have
failed to translate into clinical trials successfully. Therefore, continuous efforts are needed
in the search for more efficacious, safer, and cost-effective thrombolytic drugs. Microbial-
derived thrombolytic agents represent a step towards a potent approach in the prevention
and treatment of vascular diseases such as CVDs, stroke, transient ischemic attack (TIA),
PE, AAAs, venous thromboembolism (VTE), etc. Several thrombolytic enzymes have been
reported to be isolated from microbial sources with therapeutic application in vascular
diseases and have been shown to possess the following advantages over currently available
treatment strategies: (i) extended plasma half-life, (ii) increased fibrin specificity, (iii)
high therapeutic index, (iv) lower allergic response, and (v) reduced risk of bleeding
complications. Therefore, they promise efficacious translational potential. Both PLG
activators and plasmin-like enzymes have been reported to exhibit these advantages. Thus,
thrombolytic and fibrinolytic enzymes isolated from microbial sources would spur novel
therapeutic strategies for advancing the prospects of these microbial-derived enzyme
complexes in the therapeutic armamentarium of drugs.
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Intracoronary Streptokinase Administered Immediately After Primary Percutaneous Coronary Intervention on Long-Term Left
Ventricular Infarct Size, Volumes, and Function. J. Am. Coll. Cardiol. 2009, 54, 1065–1071. [CrossRef]

151. Arabi, R.; Roohvand, F.; Norouzian, D.; Sardari, S.; Aghasadeghi, M.R.; Khanahmad, H.; Memarnejadian, A.; Motevalli, F. A
Comparative Study on the Activity and Antigenicity of Truncated and Full-length Forms of Streptokinase. Pol. J. Microbiol. 2011,
60, 243–251. [CrossRef]

152. Adivitiya; Babbal; Mohanty, S.; Khasa, Y.P. Engineering of deglycosylated and plasmin resistant variants of recombinant
streptokinase in Pichia pastoris. Appl. Microbiol. Biotechnol. 2018, 102, 10561–10577. [CrossRef]

153. Ali, M.R.; Salim Hossain, M.; Islam, M.A.; Saiful Islam Arman, M.; Sarwar Raju, G.; Dasgupta, P.; Noshin, T.F. Aspect of
Thrombolytic Therapy: A Review. Sci. World J. 2014, 2014, 586510. [CrossRef]

154. Vaidya, B.; Agrawal, G.; Vyas, S.P. Platelets directed liposomes for the delivery of streptokinase: Development and characterization.
Eur. J. Pharm. Sci. 2011, 44, 589–594. [CrossRef]

155. Baharifar, H.; Khoobi, M.; Bidgoli, S.A.; Amani, A. Preparation of PEG-grafted chitosan/streptokinase nanoparticles to improve
biological half-life and reduce immunogenicity of the enzyme. Int. J. Biol. Macromol. 2019, 143, 181–189. [CrossRef]

156. Hasanpour, A.; Esmaeili, F.; Hosseini, H.; Amani, A. Use of mPEG-PLGA nanoparticles to improve bioactivity and hemocompati-
bility of streptokinase: In-vitro and in-vivo studies. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 118, 111427. [CrossRef]

157. Maheshwari, N.; Kantipudi, S.; Maheshwari, A.; Arora, K.; Vandana; Kwatra, N.; Sahni, G. Amino-Terminal Fusion of Epidermal
Growth Factor 4,5,6 Domains of Human Thrombomodulin on Streptokinase Confers Anti-Reocclusion Characteristics along with
Plasmin-Mediated Clot Specificity. PLoS ONE 2016, 11, e0150315. [CrossRef]

158. Nedaeinia, R.; Faraji, H.; Javanmard, S.H.; Ferns, G.A.; Ghayour-Mobarhan, M.; Goli, M.; Mashkani, B.; Nedaeinia, M.;
Haghighi, M.H.H.; Ranjbar, M. Bacterial staphylokinase as a promising third-generation drug in the treatment for vascular
occlusion. Mol. Biol. Rep. 2020, 47, 819–841. [CrossRef] [PubMed]

159. Schlott, B.; Hartmann, M.; Gührs, K.-H.; Birch-Hirschfeld, E.; Gase, A.; Vettermann, S.; Collen, D.; Lijnen, H.R. Functional
properties of recombinant staphylokinase variants obtained by site-specific mutagenesis of methionine-26. Biochim. Biophys. Acta
(BBA)-Protein Struct. Mol. Enzym. 1994, 1204, 235–242. [CrossRef]

160. Davidson, F.M. The activation of plasminogen by staphylokinase: Comparison with streptokinase. Biochem. J. 1960, 76, 56–61.
[CrossRef] [PubMed]

http://doi.org/10.1073/pnas.81.11.3557
http://doi.org/10.1074/jbc.M113.477935
http://www.ncbi.nlm.nih.gov/pubmed/23970549
http://doi.org/10.1074/jbc.M114.589077
http://www.ncbi.nlm.nih.gov/pubmed/25138220
http://doi.org/10.1021/cr00045a001
http://doi.org/10.1080/07391102.2018.1472668
http://www.ncbi.nlm.nih.gov/pubmed/29726798
http://doi.org/10.1074/jbc.M400253200
http://doi.org/10.1021/bi400142s
http://www.ncbi.nlm.nih.gov/pubmed/23919427
http://doi.org/10.1074/jbc.M109.005512
http://www.ncbi.nlm.nih.gov/pubmed/19473980
http://doi.org/10.1016/s0140-6736(86)92368-8
http://doi.org/10.1016/0735-1097(88)92635-6
http://doi.org/10.1056/NEJM198511283132204
http://www.ncbi.nlm.nih.gov/pubmed/4058533
http://doi.org/10.1161/01.CIR.19.1.7
http://doi.org/10.1016/j.jacc.2009.04.083
http://doi.org/10.33073/pjm-2011-034
http://doi.org/10.1007/s00253-018-9402-x
http://doi.org/10.1155/2014/586510
http://doi.org/10.1016/j.ejps.2011.10.004
http://doi.org/10.1016/j.ijbiomac.2019.11.157
http://doi.org/10.1016/j.msec.2020.111427
http://doi.org/10.1371/journal.pone.0150315
http://doi.org/10.1007/s11033-019-05167-x
http://www.ncbi.nlm.nih.gov/pubmed/31677034
http://doi.org/10.1016/0167-4838(94)90013-2
http://doi.org/10.1042/bj0760056
http://www.ncbi.nlm.nih.gov/pubmed/13814337


Int. J. Mol. Sci. 2021, 22, 10468 20 of 21

161. Glanville, K.L.A. A simple method of purifying staphylokinase. Biochem. J. 1963, 88, 11–14. [CrossRef] [PubMed]
162. Ross, A.M. New plasminogen activators: A clinical review. Clin. Cardiol. 1999, 22, 165–171. [CrossRef]
163. Bodey, G.P.; Stewart, D. In Vitro Studies of Tobramycin. Antimicrob. Agents Chemother. 1972, 2, 109–113. [CrossRef] [PubMed]
164. Lewis, J.H.; Kerber, C.W.; Wilson, J.H. Effects of fibrinolytic agents and heparin on intravascular clot lysis. Am. J. Physiol. 1964,

207, 1044–1048. [CrossRef] [PubMed]
165. Lewis, J.H.; Shirakawa, M. Effects of fibrinolytic agents and heparin on blood coagulation in dogs. Am. J. Physiol. Content 1964,

207, 1049–1052. [CrossRef]
166. Sakai, M.; Watanuki, M.; Matsuo, O. Mechanism of fibrin-specific fibrinolysis by staphylokinase: Participation of α2-plasmin

inhibitor. Biochem. Biophys. Res. Commun. 1989, 162, 830–837. [CrossRef]
167. Lijnen, H.R.; Van Hoef, B.; Matsuo, O.; Collen, D. On the molecular interactions between plasminogen-staphylokinase, α2-

antiplasmin and fibrin. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1992, 1118, 144–148. [CrossRef]
168. Pulicherla, K.K.; Kumar, A.; Gadupudi, G.S.; Kotra, S.R.; Rao, K.R.S.S. In VitroCharacterization of a Multifunctional Staphy-

lokinase Variant with Reduced Reocclusion, Produced from Salt InducibleE. coliGJ1158. BioMed Res. Int. 2013, 2013, 297305.
[CrossRef] [PubMed]

169. Ram, K.S.; Jb, P.; Kumar, A.; Rao, K.S.; Pulicherla, K. Staphylokinase: A boon in medical sciences. Mintage J. Pharm. Med. Sci. 2013,
2, 28–34.

170. Laroche, Y.; Heymans, S.; Capaert, S.; De Cock, F.; Demarsin, E.; Collen, D. Recombinant staphylokinase variants with reduced
antigenicity due to elimination of B-lymphocyte epitopes. Blood 2000, 96, 1425–1432. [CrossRef]

171. Szemraj, J.; Walkowiak, B.; Kawecka, I.; Janiszewska, G.; Buczko, W.; Bartkowiak, J.; Chabielska, E. A new recombinant
thrombolytic and antithrombotic agent with higher fibrin affinity—A staphylokinase variant. I. In vitro study. J. Thromb. Haemost.
2005, 3, 2156–2165. [CrossRef]

172. Moreadith, R.W.; Collen, D. Clinical development of PEGylated recombinant staphylokinase (PEG–Sak) for bolus thrombolytic
treatment of patients with acute myocardial infarction. Adv. Drug Deliv. Rev. 2003, 55, 1337–1345. [CrossRef]

173. Moons, L.; Vanlinthout, I.; Roelants, I.; Moreadith, R.; Collen, D.; Rapold, H.J. Toxicology Studies with Recombinant Staphy-
lokinase and with SY 161-P5, a Polyethylene Glycol-Derivatized Cysteine-Substitution Mutant. Toxicol. Pathol. 2001, 29,
285–291. [CrossRef]

174. Liu, J.; Wang, Z.; He, J.; Wang, G.; Zhang, R.; Zhao, B. Effect of site-specific PEGylation on the fibrinolytic activity, immunogenicity,
and pharmacokinetics of staphylokinase. Acta Biochim. Biophys. Sin. 2014, 46, 782–791. [CrossRef]

175. Mannully, S.T.; Shanthi, C.; Pulicherla, K.K. Lipid modification of staphylokinase and its implications on stability and activity. Int.
J. Biol. Macromol. 2018, 121, 1037–1045. [CrossRef] [PubMed]

176. Kowalski, M.; Brown, G.; Bieniasz, M.; Oszajca, K.; Chabielska, E.; Pietras, T.; Szemraj, Z.; Makandjou-Ola, E.; Bartkowiak, J.;
Szemraj, J. Cloning and expression of a new recombinant thrombolytic and anthithrombotic agent—A staphylokinase variant.
Acta Biochim. Pol. 2008, 56, 41–53. [CrossRef] [PubMed]

177. Cappello, M.; Li, S.; Chen, X.; Li, C.-B.; Harrison, L.; Narashimhan, S.; Beard, C.B.; Aksoy, S. Tsetse thrombin inhibitor: Bloodmeal-
induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans. Proc. Natl. Acad. Sci. USA 1998, 95,
14290–14295. [CrossRef] [PubMed]

178. Wang, M.; Wang, Y.; Wang, J.; Zou, M.; Liu, S.; Xu, T.; Cai, X.; Wu, C.; Wang, J.; Xu, D. Construction and characterization of a
novel staphylokinase variant with thrombin-inhibitory activity. Biotechnol. Lett. 2009, 31, 1923–1927. [CrossRef]

179. Skrzypczak-Jankun, E.; Carperos, V.E.; Ravichandran, K.; Tulinsky, A.; Westbrook, M.; Maraganore, J.M. Structure of the hirugen
and hirulog 1 complexes of α-thrombin. J. Mol. Biol. 1991, 221, 1379–1393. [CrossRef]

180. van Zyl, W.B.; Pretorius, G.H.; Hartmann, M.; Kotzé, H.F. Production of a Recombinant Antithrombotic and Fibrinolytic Protein,
PLATSAK, in Escherichia coli. Thromb. Res. 1997, 88, 419–426. [CrossRef]

181. Icke, C.; Schlott, B.; Ohlenschläger, O.; Hartmann, M.; Gührs, K.-H.; Glusa, E. Fusion Proteins with Anticoagulant and Fibrinolytic
Properties: Functional Studies and Structural Considerations. Mol. Pharmacol. 2002, 62, 203–209. [CrossRef]

182. Kotra, S.R.; Peravali, J.B.; Yanamadala, S.; Kumar, A.; Rao, K.R.S.S.S.; Pulicherla, K.K. Large scale production of soluble re-
combinant staphylokinase variant from cold shock expression system using IPTG inducible E. coli BL21(DE3). Int. J. Bio-Sci.
Bio-Technol. 2013, 5, 107–116.

183. Sumi, H.; Hamada, H.; Nakanishi, K.; Hiratani, H. Enhancement of the Fibrinolytic Activity in Plasma by Oral Administration of
Nattokinases. Acta Haematol. 1990, 84, 139–143. [CrossRef]

184. Park, K.-J.; Kang, J.-I.; Kim, T.-S.; Yeo, I.-H. The Antithrombotic and Fibrinolytic Effect of Natto in Hypercholesterolemia Rats.
Prev. Nutr. Food Sci. 2012, 17, 78–82. [CrossRef] [PubMed]

185. Fujita, M.; Hong, K.; Ito, Y.; Misawa, S.; Takeuchi, N.; Kariya, K.; Nishimuro, S. Transport of Nattokinase across the Rat Intestinal
Tract. Biol. Pharm. Bull. 1995, 18, 1194–1196. [CrossRef] [PubMed]

186. Urano, T.; Ihara, H.; Umemura, K.; Suzuki, Y.; Oike, M.; Akita, S.; Tsukamoto, Y.; Suzuki, I.; Takada, A. The Profibrinolytic
Enzyme Subtilisin NAT Purified from Bacillus subtilis Cleaves and Inactivates Plasminogen Activator Inhibitor Type 1. J. Biol.
Chem. 2001, 276, 24690–24696. [CrossRef]

187. Fujita, M.; Ito, Y.; Hong, K.; Nishimuro, S. Characterization of nattokinase-degraded products from human fibrinogen or
cross-linked fibrin. Fibrinolysis 1995, 9, 157–164. [CrossRef]

http://doi.org/10.1042/bj0880011
http://www.ncbi.nlm.nih.gov/pubmed/16749022
http://doi.org/10.1002/clc.4960220303
http://doi.org/10.1128/AAC.2.3.109
http://www.ncbi.nlm.nih.gov/pubmed/4790551
http://doi.org/10.1152/ajplegacy.1964.207.5.1044
http://www.ncbi.nlm.nih.gov/pubmed/14237447
http://doi.org/10.1152/ajplegacy.1964.207.5.1049
http://doi.org/10.1016/0006-291X(89)92385-1
http://doi.org/10.1016/0167-4838(92)90142-Z
http://doi.org/10.1155/2013/297305
http://www.ncbi.nlm.nih.gov/pubmed/23998121
http://doi.org/10.1182/blood.V96.4.1425
http://doi.org/10.1111/j.1538-7836.2005.01480.x
http://doi.org/10.1016/S0169-409X(03)00113-3
http://doi.org/10.1080/019262301316905237
http://doi.org/10.1093/abbs/gmu068
http://doi.org/10.1016/j.ijbiomac.2018.10.134
http://www.ncbi.nlm.nih.gov/pubmed/30342946
http://doi.org/10.18388/abp.2009_2515
http://www.ncbi.nlm.nih.gov/pubmed/19018330
http://doi.org/10.1073/pnas.95.24.14290
http://www.ncbi.nlm.nih.gov/pubmed/9826693
http://doi.org/10.1007/s10529-009-0094-2
http://doi.org/10.1016/0022-2836(91)90939-4
http://doi.org/10.1016/S0049-3848(97)00277-6
http://doi.org/10.1124/mol.62.2.203
http://doi.org/10.1159/000205051
http://doi.org/10.3746/pnf.2012.17.1.078
http://www.ncbi.nlm.nih.gov/pubmed/24471066
http://doi.org/10.1248/bpb.18.1194
http://www.ncbi.nlm.nih.gov/pubmed/8845803
http://doi.org/10.1074/jbc.M101751200
http://doi.org/10.1016/S0268-9499(95)80005-0


Int. J. Mol. Sci. 2021, 22, 10468 21 of 21

188. Fujita, M.; Hong, K.; Ito, Y.; Fujii, R.; Kariya, K.; Nishimuro, S. Thrombolytic Effect of Nattokinase on a Chemically Induced
Thrombosis Model in Rat. Biol. Pharm. Bull. 1995, 18, 1387–1391. [CrossRef] [PubMed]

189. Hsia, C.-H.; Shen, M.-C.; Lin, J.-S.; Wen, Y.-K.; Hwang, K.-L.; Cham, T.-M.; Yang, N.-C. Nattokinase decreases plasma levels of
fibrinogen, factor VII, and factor VIII in human subjects. Nutr. Res. 2009, 29, 190–196. [CrossRef]

190. Kurosawa, Y.; Nirengi, S.; Homma, T.; Esaki, K.; Ohta, M.; Clark, J.F.; Hamaoka, T. A single-dose of oral nattokinase potentiates
thrombolysis and anti-coagulation profiles. Sci. Rep. 2015, 5, 11601. [CrossRef]

191. Jensen, G.S.; Lenninger, M.; Ero, M.P.; Benson, K.F. Consumption of nattokinase is associated with reduced blood pressure and
von Willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter
North American clinical trial. Integr. Blood Press. Control. 2016, 9, 95–104. [CrossRef]

192. Weng, Y.; Yao, J.; Sparks, S.; Wang, K.Y. Nattokinase: An Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease.
Int. J. Mol. Sci. 2017, 18, 523. [CrossRef]

193. Domsalla, A.; Görick, C.; Melzig, M.F. Proteolytic activity in latex of the genus Euphorbia—A chemotaxonomic marker? Pharmazie
2010, 65, 227–230. [CrossRef] [PubMed]

194. Kohnert, U.; Rudolph, R.; Verheijen, J.H.; Jacoline, E.; Weening-Verhoeff, D.; Stern, A.; Opitz, U.; Martin, U.; Lill, H.; Prinz, H.; et al.
Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022.
Protein Eng. Des. Sel. 1992, 5, 93–100. [CrossRef]

195. Martin, U.; Von Möllendorff, E.; Akpan, W.; Kientsch-Engel, R.; Kaufmann, B.; Neugebauer, G. Pharmacokinetic and Hemostatic
Properties of the Recombinant Plasminogen Activator BM 06.022 in Healthy Volunteers. Thromb. Haemost. 1991, 66, 569–574.
[CrossRef] [PubMed]

196. Flemmig, M.; Melzig, M.F. Serine-proteases as plasminogen activators in terms of fibrinolysis. J. Pharm. Pharmacol. 2012, 64,
1025–1039. [CrossRef] [PubMed]

197. Martin, U.; Von Möllendorff, E.; Akpan, W.; Kientsch-Engel, R.; Kaufmann, B.; Neugebauer, G. Dose-ranging study of the novel re-
combinant plasminogen activator BM 06.022 in healthy volunteers. Clin. Pharmacol. Ther. 1991, 50, 429–436. [CrossRef] [PubMed]

198. Smalling, R.W.; Bode, C.; Kalbfleisch, J.; Sen, S.; Limbourg, P.; Forycki, F.; Habib, G.; Feldman, R.; Hohnloser, S.; Seals, A. More
Rapid, Complete, and Stable Coronary Thrombolysis With Bolus Administration of Reteplase Compared With Alteplase Infusion
in Acute Myocardial Infarction. Circulation 1995, 91, 2725–2732. [CrossRef] [PubMed]

199. Bode, C.; Smalling, R.W.; Berg, G.; Burnett, C.; Lorch, G.; Kalbfleisch, J.M.; Chernoff, R.; Christie, L.G.; Feldman, R.L.;
Seals, A.A.; et al. Randomized Comparison of Coronary Thrombolysis Achieved With Double-Bolus Reteplase (Recombinant
Plasminogen Activator) and Front-Loaded, Accelerated Alteplase (Recombinant Tissue Plasminogen Activator) in Patients With
Acute Myocardial Infarction. Circulation 1996, 94, 891–898. [CrossRef] [PubMed]

200. GUST-III Investigators. A comparison of reteplase with alteplase for acute myocardial infarction. The Global Use of Strategies to
Open Occluded Coronary Arteries (GUSTO III) Investigators. N. Engl. J. Med. 1997, 337, 1118–1123. [CrossRef]

201. Biji, G.D.; Arun, A.; Muthulakshmi, E.; Vijayaraghavan, P.; Arasu, M.V.; Al-Dhabi, N.A. Bio-prospecting of cuttle fish waste
and cow dung for the production of fibrinolytic enzyme from Bacillus cereus IND5 in solid state fermentation. 3 Biotech 2016,
6, 231. [CrossRef]

202. Ahn, M.Y.; Hahn, B.S.; Ryu, K.S.; Kim, J.W.; Kim, I.; Kim, Y.S. Purification and characterization of a serine protease with fibri
nolytic activity from the dung beetles, Catharsius molossus. Thromb. Res. 2003, 112, 339–347. [CrossRef]

203. Sumi, H.; Nakajima, N.; Mihara, H. Fibrinolysis relating substances in marine creatures. Comp. Biochem. Physiol. Part B Comp.
Biochem. 1992, 102, 163–167. [CrossRef]

204. Sugimoto, S.; Fujii, T.; Morimiya, T.; Johdo, O.; Nakamura, T. The Fibrinolytic Activity of a Novel Protease Derived from a
Tempeh Producing Fungus, Fusarium sp. BLB. Biosci. Biotechnol. Biochem. 2007, 71, 2184–2189. [CrossRef] [PubMed]

205. Salihu, A.; Sallau, A.B.; Adamu, A.; Kudu, F.A.; Tajo, M.M.; Bala, T.F.; Yashim, W.D. Utilization of Groundnut Husk as a Solid
Substrate for Cellulase Production by Aspergillus niger Using Response Surface Methodology. Waste Biomass-Valorization 2013, 5,
585–593. [CrossRef]

206. Prakasham, R.S.; Rao, C.S.; Sarma, P.N. Green gram husk—an inexpensive substrate for alkaline protease production by Bacillus
sp. in solid-state fermentation. Bioresour Technol. 2006, 97, 1449–1454. [CrossRef]

207. Dilipkumar, M.; Rajasimman, M.; Rajamohan, N. Enhanced inulinase production by Streptomyces sp. in solid state fermenta-tion
through statistical designs. 3 Biotech 2013, 3, 509–515. [CrossRef]

208. Raol, G.G.; Raol, B.V.; Prajapati, V.S.; Bhavsar, N.H. Utilization of agro-industrial waste for β-galactosidase production under
solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate. 3 Biotech 2015, 5, 411–421. [CrossRef] [PubMed]

209. Chang, C.T.; Fan, M.H.; Kuo, F.C.; Sung, H.Y. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J. Agric.
Food Chem. 2000, 48, 3210–3216. [CrossRef]

210. Yao, Z.; Kim, J.H. Gene Cloning, Expression, and Properties of a Fibrinolytic Enzyme Secreted by Bacillus pumilus BS15 Isolated
from Gul (Oyster) Jeotgal. Biotechnol. Bioprocess Eng. 2018, 23, 293–301. [CrossRef]

211. Wu, R.; Chen, G.; Pan, S.; Zeng, J.; Liang, Z. Cost-effective fibrinolytic enzyme production by Bacillus subtilis WR350 using
medium supplemented with corn steep powder and sucrose. Sci. Rep. 2019, 9, 6824. [CrossRef]

212. Ghaly, A.; Vegneshwaran vasudevan, R.; Brooks, M.; Budge, S.; Dave, D. Fish Processing Wastes as a Potential Source of Proteins,
Amino Acids and Oils: A Critical Review. J. Microb. Biochem. Technol. 2013, 2, 107–129.

http://doi.org/10.1248/bpb.18.1387
http://www.ncbi.nlm.nih.gov/pubmed/8593442
http://doi.org/10.1016/j.nutres.2009.01.009
http://doi.org/10.1038/srep11601
http://doi.org/10.2147/IBPC.S99553
http://doi.org/10.3390/ijms18030523
http://doi.org/10.1691/ph.2010.9709
http://www.ncbi.nlm.nih.gov/pubmed/20383946
http://doi.org/10.1093/protein/5.1.93
http://doi.org/10.1055/s-0038-1646461
http://www.ncbi.nlm.nih.gov/pubmed/1725068
http://doi.org/10.1111/j.2042-7158.2012.01457.x
http://www.ncbi.nlm.nih.gov/pubmed/22775207
http://doi.org/10.1038/clpt.1991.160
http://www.ncbi.nlm.nih.gov/pubmed/1914379
http://doi.org/10.1161/01.CIR.91.11.2725
http://www.ncbi.nlm.nih.gov/pubmed/7758177
http://doi.org/10.1161/01.CIR.94.5.891
http://www.ncbi.nlm.nih.gov/pubmed/8790022
http://doi.org/10.1056/NEJM199710163371603
http://doi.org/10.1007/s13205-016-0553-0
http://doi.org/10.1016/j.thromres.2004.01.005
http://doi.org/10.1016/0305-0491(92)90290-8
http://doi.org/10.1271/bbb.70153
http://www.ncbi.nlm.nih.gov/pubmed/17827689
http://doi.org/10.1007/s12649-013-9268-1
http://doi.org/10.1016/j.biortech.2005.07.015
http://doi.org/10.1007/s13205-012-0112-2
http://doi.org/10.1007/s13205-014-0236-7
http://www.ncbi.nlm.nih.gov/pubmed/28324562
http://doi.org/10.1021/jf000020k
http://doi.org/10.1007/s12257-018-0029-7
http://doi.org/10.1038/s41598-019-43371-8

	Introduction 
	Mechanism of Thrombus Formation 
	Fibrinolysis and Thrombolysis 

	Microbes in Thrombolytic Therapy 
	Promising Microbial Producers of Thrombolytic Enzymes 
	Bacteria 
	Fungi 
	Algae 


	Microbial-Derived Drugs in Thrombolytic Therapy 
	Streptokinase 
	Action Mechanism 
	A Potential Therapeutic Tool 

	Staphylokinase (SAK) 
	Action Mechanism 
	A Potential Therapeutic Tool 

	Nattokinase (NK) 
	Reteplase (Recombinant Plasminogen Activator, r-PA) 

	Use of Waste Biomass/by-Products for Thrombolytic/Fibrinolytic Enzyme Production 
	Conclusions and Future Perspectives 
	References

