
Research Article
Optimization Method of an Antibreast Cancer Drug Candidate
Based on Machine Learning

Zhibai Huang , Shengji Jiang , and Weiqiang Xiao

East China Institute of Computing Technology, Shanghai, China

Correspondence should be addressed to Zhibai Huang; huangzhibainudt4@nudt.edu.cn

Received 19 July 2022; Revised 17 August 2022; Accepted 22 August 2022; Published 5 September 2022

Academic Editor: Jincheng Wang

Copyright © 2022 Zhibai Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Breast cancer is a common but serious and even lethal disease. Fortunately, compared with other cancers, breast cancer treatments
currently are relatively well developed. The use of specific drugs is typically essential in the majority of breast cancer treatment
strategies. Given the aforementioned factors, it is important to continue researching effective antibreast cancer drug design.
Machine learning-based computer-aided drug design is currently a common practice in both drug industries and academic
institutes. According to the characteristics of breast cancer, we selected multiple candidate compounds; based on the
corresponding molecular descriptors, biological activities, and pharmacokinetic properties, a dataset of inhibition potency and
pharmacokinetic properties paired with multiple features of compounds was constructed. On this basis, the random forest
method was utilized to choose greater-influenced feature embeddings; thus, 224 main operating variables were selected for
further analysis; we then employed the efficient MobileNetV3 deep neural network as the backbone to establish the prediction
models for the inhibition potency and pharmacokinetic properties of the compounds. After data preprocessing, the weights are
obtained by training on the refined dataset. Finally, we define an optimization problem to discover compounds with the best
properties. The problem is solved using the genetic algorithm with the acquired prediction model, and the solution value for
the corresponding operating variables with the best clinical properties in theory is then obtained. Analysis demonstrates that
our approach could be used to aid the screening process of antibreast cancer drug candidates.

1. Introduction

Breast cancer currently ranks among the most prevalent
cancers worldwide [1] and has a high fatality rate. Estrogen
receptors are connected with the development of breast
cancer [2, 3]. Given that the estrogen receptor α subtype
(estrogen receptor alpha (ERα)) is present in roughly 70%
of breast cancer cells [4], it has been widely considered in
the diagnosis of breast cancer [2]. Studies on mice with
ERα gene modifications have demonstrated that ERα does,
in fact, play a crucial role in the development of the uterus
and mammary glands [4, 5]. Consequently, as ERα is consid-
ered a key target for the treatment of breast cancer, sub-
stances that can suppress ERα activity might be proper
candidates for use as therapeutics [2].

For a long time, the gold standard for the endocrine
treatment of several breast cancer types was tamoxifen [6],
a common drug with estrogen-like actions. Since tamoxifen

was found to be effective in treating breast cancer, numerous
studies have been conducted to highlight the significance of
hormone therapy for the disease [7, 8]. In addition to hor-
mone therapy, other medicines for breast cancer include
chemotherapy and immunological therapy [9]. As the
leading drugs for the aforementioned therapies, cyclophos-
phamide, docetaxel, pertuzumab, and trastuzumab are cur-
rently commonly used to treat breast cancer [10–13].

Building an inhibitory potency prediction model can be
used to screen candidate compounds during the conven-
tional drug design process to save time and money [14].
The precise procedure is as follows: first, for a biological tar-
get associated with a disease, gather data on a number of
compounds that affect the target and their biological activity.
Next, build a quantitative structure-activity relationship
(QSAR) model of candidates using a number of molecular
descriptors as independent variables and the biological activ-
ity value of the compound as the dependent variable. Finally,

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 4133663, 13 pages
https://doi.org/10.1155/2022/4133663

https://orcid.org/0000-0002-8883-5269
https://orcid.org/0000-0001-7096-9958
https://orcid.org/0000-0001-9496-9952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4133663


the model is employed to forecast how a molecule might
seem when having sufficient biological activity or to direct
the structural improvement of already existing com-
pounds [15].

In addition to having significant biological activity, a
chemical should also have appropriate pharmacokinetic
and safety qualities in the human body to be employed as
a new medicine. Similar to that, it can be evaluated using
an established QSAR model [16]. There are numerous ways
to create prediction models at the time, whereas methods
based on artificial neural networks have received more
attention from academic communities than other alterna-
tives [15, 17, 18]. Computer-aided drug design techniques
have been applied extensively in many aspects of drug design
after years of development [19, 20]. Deep neural networks
have been extensively used since the dawn of the big data
age, and numerous research in drug design have been con-
ducted [21, 22]. A few researchers have attempted to use
the effective convolutional neural network MobileNetV3
[23] in the field of medicine [24, 25].

In this research, based on the current knowledge, we cre-
ated a dataset of potential antibreast cancer drug candidates,
and then, we refined the dataset by applying the random for-
est algorithm. We explore adopting MobileNetV3 to create a
QSAR model on the refined dataset to construct the qualita-
tive model of pharmacokinetic performance and the quanti-
tative prediction model of inhibitory potency. Finally, a
problem for optimizing the attributes of the chemical is cre-
ated based on the model that was obtained and the genetic
algorithm is utilized to solve the problem.

2. Dataset Construction and Preprocessing

2.1. Dataset Construction. According to prior knowledge and
experience, we selected a total of 1974 compounds, calcu-
lated the corresponding 2-dimensional and 3-dimensional
molecular descriptors by computing software [26], and
subsequently marked their biological activity values and
ADMET properties to complete the construction of the
dataset. We choose IC50, pIC50 as the index for biological
activity, Caco-2 for A (absorption), CYP3A4 for D (distribu-
tion), hERG for M (metabolism), HOB for E (excretion), and
MN for T (toxicity). Specifically, Caco-2 is the permeability
of small intestinal epithelial cells, which can measure the
ability of the compound to be absorbed by the human body.
CYP3A4 is the cytochrome P450 enzyme 3A4 isoform,
which is the main metabolic enzyme in the human body,
which can measure the compound. hERG is the cardiac
safety evaluation of the compound, which can measure the
cardiotoxicity of the compound. HOB is the oral bioavail-
ability of the human body, which can measure the propor-
tion of the drug absorbed into the human blood circulation
after entering the human body. MN is the micronucleus test
and is a method to detect whether a compound is genotoxic.

Based on the dataset (including 1974 compound sam-
ples, each with 1361 molecular descriptor variables, e.g.,
electrotopological state atom type descriptor, ring count
descriptor, WHIM descriptor etc., 2 biological activity data,
and 5 ADMET property data), we then built a quantitative

prediction model for compound biological activity and a
categorical prediction model for ADMET properties.

2.2. Data Preprocessing

2.2.1. Data Cleaning. Due to some problems in the collected
raw data, to ensure the data analysis quality, the raw data
should be cleaned in a certain level. The overall data process-
ing method is as follows:

(1) There is dimensionless normalization of molecular
descriptor data in all samples

(2) For data columns with most of the data being 0,
delete them directly

(3) Only the pIC50 array was selected as the biological
activity label

Considering the large difference in raw values between
different molecular descriptors, to improve the model accu-
racy, we first use the min-max normalization method [27] to
perform dimensionless normalization on the molecular
descriptor data.

On this basis, we double check the normalized samples
and delete most of the data columns with 0 values (dimen-
sionless normalized molecular descriptors) to reduce data
redundancy. Make datasets more compact and efficient
without losing too much information. By excluding some
factors with low impact on biological activity in advance,
the convergence speed of subsequent selection of main fea-
tures should be accelerated.

Finally, we chose pIC50 as the only numerical annota-
tion for biological activity. Since the pIC50 value is distrib-
uted in the ½0, 10� interval, it is more friendly to the deep
network model. Considering that the IC50 and pIC50 can
be equivalently transformed through numerical calculation,
dropping the IC50 label should not ignore valuable informa-
tion. Only pIC50 is selected as the biological activity numer-
ical labeling instead of the IC50 and pIC50 binary label
group; we believe that the sole existence of pIC50 should
make the dataset more “compact,” thus leading to a more
efficient and accurate prediction model.

2.2.2. Selecting Main Features. Considering the large number
of data columns in the dataset, it is necessary to further
compress the number of data columns; we chose to use the
random forest algorithm [28] to select features to further
compress the dataset. The importance of each feature can
be obtained by performing certain operations on the result
of the sample classification. The smaller the result is, the
smaller impact that this feature affects the prediction result.
According to the variable contribution ranking obtained by
random forest algorithm, we select a total of 224 data col-
umns (which are processed molecular descriptors) in order
of contribution, as shown in Figure 1.

Among them, XlogP is the lipid-water partition coeffi-
cient, which reflects the absorption effect of molecules
through the cell membrane. TopoPSA is the topological
polar surface area, reflecting factors such as molecular size
and solubility. From the statistical results of the categories
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to which each variable belongs, it can be seen that the
extracted variables include a certain level of comprehensive
types of compound fingerprints. The variance is relatively
minimal, which suggests that the extracted variables place
a balanced emphasis on each category, according to the dis-
tribution of the number of variables contained in each cate-
gory. The final selected normalized molecular descriptors are
shown in Table 1. After the compressing process, we have
done all data preprocessing for the deep neural network.

3. Compound Property Prediction Model

3.1. Quantitative Prediction Model for Biological Activity

3.1.1. Model Design. Artificial neural networks are currently
employed and widely applied in the field of computer-aided
drug design. The most often used neural network is the BP
(back propagation) neural network, a multivariate feedfor-
ward neural network trained via error back propagation.
Deep neural networks, a version of BP neural networks, have
drawn considerable attention in many fields of academia and
industry. Convolutional neural networks among them have
significant advantages in performance and are especially well
liked in the field of computer vision. However, it is impor-
tant to keep in mind that the majority of the current popular
convolutional neural networks have complex structures,
thus containing a lot of parameters, combined with the neu-
ral network’s data-hungry nature making model training
very challenging. Special consideration should be given
when training these networks on relatively small-amount
biological activity datasets.

On the other hand, it is crucial to properly design the
number of neurons in the hidden layer during the whole net-
work construction process. The workload required to make
the network function will significantly arise if the hidden
layer contains too many neurons, which can quickly result
in an undesired overfitting issue. Conversely, if the hidden
layer contains too few neurons, which will also negatively

affect the network’s quality, thus resulting in poor prediction
accuracy. The total number of neurons in a neural network’s
hidden layer is directly correlated with the difficulty of the
task, the number of neurons in the input and output layers,
and the expected bias settings of those neurons.

Considering the mentioned problems, we chose the
MobileNetV3 deep convolutional neural network as the
backbone to construct a quantitative prediction model for
the biological activity of compounds. As one of the represen-
tatives of lightweight models, compared to the classic convo-
lutional network VGG16 [29], MobileNetV3 greatly reduces
the number of parameters but is more efficient and easier to
train while ensuring similar performance. The schematic
diagram of the network structure that we use is shown in
Figure 2.

3.1.2. Model Training.We first divide the 1974 group of data
in the dataset into training set data (around 80% in amount),
test set data (around 15% in amount), and validation set
(around 5% in amount) according to the proportions of
80%, 15%, and 5%, respectively. After the division is com-
pleted, 224 main variables in the dataset and pIC50 annota-
tions were constructed as a pair; then, randomly sample 10
data pairs as a batch for model input.

As an important part of model optimization, the loss
function needs to be carefully considered. Considering that
the quantitative prediction problem can be summarized as
a regression problem, we choose MSELoss (mean square
error loss), the most commonly used one in the regression
task, as the loss function.

Deep learning tasks will produce varying results depend-
ing on the optimizers used. We first identified the SGD (sto-
chastic gradient descent) [30] and Adam optimizer (adaptive
moment estimation optimizer) [31] as alternatives based on
the properties of the MobileNetV3 network itself and the
properties of the dataset; we then compared the performance
in the experimental training, and Adam was ultimately
selected as the optimizer.
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Figure 1: Visualization of the top 15 variables of contribution.
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Table 1: The contribution of the top 224 important molecular
descriptors (from low to high).

Descriptor Importance

Smax11 0.00065

MATSp7 0.00065

CIC4 0.000652

MDEC-14 0.000656

S17 0.000659

minHCsats 0.00066

Smin34 0.000661

SHaaCH 0.000664

SIC3 0.000664

SHCsats 0.000681

Smin 0.000681

CrippenLogP 0.000682

maxsOH 0.000684

ATSc1 0.000684

bcutm13 0.000684

phi 0.000686

MATSm3 0.000688

CIC3 0.000688

VSAEstate7 0.000691

SPC-4 0.000695

EstateVSA7 0.000702

Smin8 0.000704

WTPT-5 0.000706

TPSA1 0.000708

naccr 0.00071

MATSm7 0.000712

maxdsN 0.000712

CIC1 0.000713

Smin35 0.000714

ATSe5 0.000716

minHCsatu 0.000725

GATSp3 0.000726

GATSm5 0.000727

ALogp2 0.000729

GATSp7 0.00073

EstateVSA1 0.000737

IDE 0.000741

mindO 0.000744

mChi1 0.000745

SaasC 0.00076

bcute9 0.000761

nAtomLAC 0.000762

maxdssC 0.000771

GATSe7 0.000775

Smax 0.000781

ETA_Epsilon_1 0.000787

MATSv5 0.000789

bcutp5 0.000793

Table 1: Continued.

Descriptor Importance

IC1 0.000796

maxHBint7 0.000797

QCss 0.000823

CIC6 0.000823

ALogP 0.000826

bcutm3 0.00083

SsOH 0.000847

BertzCT 0.000851

EstateVSA4 0.000851

SdssC 0.000855

bcutm2 0.000866

MAXDN 0.000868

PC6 0.000872

MATSm6 0.000891

SHBint5 0.000897

SaaCH 0.0009

MATSp5 0.000901

MRVSA6 0.000904

slogPVSA1 0.000904

MATSm5 0.000922

bcute12 0.000926

J 0.000927

GATSm4 0.000927

MRVSA5 0.000933

MATSm1 0.000934

GATSm8 0.000939

Smin12 0.000946

hmin 0.00095

VC-4 0.000962

MATSe5 0.000963

MATSp4 0.000964

PEOEVSA5 0.000967

minHBd 0.000971

GATSv3 0.000974

bcutm9 0.000979

PEOEVSA8 0.00098

ECCEN 0.000987

MATSm8 0.000988

IC2 0.000995

BCUTp-1l 0.001004

minssCH2 0.001017

QHss 0.001019

Smax16 0.00102

bcutm12 0.001026

ETA_EtaP_F 0.001026

ETA_dEpsilon_D 0.001038

bcute4 0.001038

WTPT-3 0.001042

MAXDP2 0.001042
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Table 1: Continued.

Descriptor Importance

knotpv 0.001043

MDEO-11 0.001043

maxHCsats 0.00105

Chiv5ch 0.001063

GATSe5 0.001072

VPC-5 0.001081

MATSv8 0.00109

maxsF 0.001096

QNmin 0.001109

ETA_BetaP_s 0.001109

Chiv6ch 0.00111

IC3 0.001117

VPC-6 0.001119

VSAEstate2 0.001121

MATSp3 0.001137

slogPVSA2 0.00114

WTPT-4 0.001162

gmin 0.001163

minHBint6 0.001176

minHBint7 0.001195

Smax24 0.001225

MATSp6 0.001229

PEOEVSA1 0.001234

SIC2 0.001237

S34 0.001257

bcute1 0.001278

MATSv3 0.001281

SC-5 0.001283

dchi0 0.00129

SIC1 0.001291

maxHBd 0.001307

PEOEVSA7 0.001342

MDEC-24 0.001345

SCH-7 0.001347

SHBd 0.001349

MATSe8 0.001375

MATSv1 0.001375

SHCsatu 0.001386

Smin15 0.001398

BCUTp-1h 0.00141

GATSm3 0.001461

bcutp12 0.001465

MLFER_BH 0.001485

GATSv1 0.001559

QOmax 0.001589

slogPVSA0 0.001592

bcute10 0.001605

Smin24 0.001609

MATSp1 0.001616

Table 1: Continued.

Descriptor Importance

Chiv3 0.001662

QNmax 0.001663

bcutv4 0.00168

VCH-5 0.001717

VSAEstate4 0.001785

ATSc5 0.001813

C3SP2 0.001831

mindssC 0.001846

ATSc2 0.001859

minHBint10 0.001866

ATSc3 0.001892

MDEC-22 0.001909

MAXDP 0.001935

knotp 0.001942

GATSm1 0.002

GATSp4 0.002026

maxsssCH 0.002031

S25 0.002032

bcutp1 0.002049

ETA_Shape_Y 0.002124

bcutp9 0.002186

XLogP 0.002237

ATSc4 0.002298

maxHBint5 0.002321

maxHBint8 0.002379

minsOH 0.002424

GATSm2 0.002443

SPC-6 0.00248

MATSe3 0.002549

MLFER_S 0.002597

SHBint6 0.002733

ndssC 0.002743

bcutv1 0.002787

VCH-7 0.002879

BCUTc-1l 0.002923

QCmax 0.00298

Scar 0.003191

minssO 0.003312

BCUTc-1h 0.003494

MLFER_A 0.003711

TopoPSA 0.003768

MDEO-12 0.003868

minHBa 0.004054

Smin33 0.004253

SHsOH 0.004402

GATSe8 0.004485

PEOEVSA6 0.00461

Mnc 0.004826

MATSe1 0.004978
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Finally, considering the nature of the Adam optimizer
itself, we adopt the cosine annealing strategy [32] to update
the learning rate to optimize the performance of the model
as much as possible. In selecting the most suitable upper
limit of the hyperparameter learning rate and the number
of epochs, we also performed experimental training on the
actual training set. Ultimately, we came to the conclusion
that the upper limit of the learning rate is 0.0001 and the
number of epochs is 100.

3.2. Qualitative Prediction Model for ADMET Properties. To
simplify the problem, we trained the models separately for
the five properties in ADMET. To further simplify the prob-
lem, we believe that each property has only two possibilities
of “yes” or “no,” which can be expressed by the values 0 and
1. In this way, the problem can be classified as a binary clas-
sification problem; then, we can reuse the divided dataset
given in Section 3.1.2 and merely change the data label to
pharmacokinetic properties.

Since the input data share a certain level of similarity, we
still employ the MobileNetV3 structure as the backbone;
therefore the desired model structure is essentially identical

to the structure described in Figure 2. The only needed
minor change is to adjust the output neuron of the bottom
fully connected layer and add an extra sigmoid activation
function; other designs shall not be repeated here.

To adapt to the binary classification problem, the model
training method also needs to be adjusted. We changed the
loss function to BCELoss (binary cross entropy loss), while
the optimizer, learning rate adjustment strategy, and hyper-
parameter setup remain unchanged. The prediction accu-
racy is obtained based on the comparison between the
predicted outputs and the real labels.

During the training process based on experiments on
real datasets, the issue of data imbalance has been found.
To prevent the trained model from being biased due to data
imbalance, we redundantly expand the data, that is, expand-
ing the samples of a relatively small number to be roughly
equivalent to the other categories.

3.3. Optimization Model for Clinical Properties Based on
Specific Features

3.3.1. Definition of Optimization Problem. We now define an
optimization problem using these six prediction models that
were trained in earlier sections, looking for the ideal circum-
stances for the 224 variable values that were chosen. Note
that we assume that any “acceptable” compound must per-
form “well” at least three of the given ADMET properties;
then, the problem could be defined as follows:

Definition 1. Given the selected molecular descriptor, what
value of the molecular descriptor satisfied can make the
compound have better biological activity for inhibiting
ERα, meanwhile having better ADMET properties (at least
three or better).

3.3.2. Optimization Problem Modeling. First, determine the
decision variables; we follow the selected results in the previ-
ous section; consider the selected 224 molecular descriptors
as decision variables, denoted as follows:

X = x1, x2, x3,⋯, x224f g: ð1Þ

Now, determine the objective function. After analyzing
the problem, we can find that the problem essentially is as
follows: based on the given prediction models, under the
premise that at least three properties of the given five
ADMET properties are “good,” by changing the value of
selected features, the clinical properties (both inhibition
potency and pharmacokinetic performance) are optimized
to guide the production process. The biological activity of
the compound is altered by the chosen feature’s value; it is
worth noting that this process will also alter the compounds’
ADMET properties. Therefore, the relations between each
model should not be ignored. By applying the prediction
models to the input samples, the predicted value of ADMET
properties of each sample can be obtained. Following the
idea in Section 3.2, we take all the values representing good
properties as 1 and the values of bad properties as 0; then,
we get an optimization limit that the pharmacokinetic point

Table 1: Continued.

Descriptor Importance

LDI 0.005205

MDEC-33 0.005471

GATSe1 0.005843

bcute2 0.005866

VC-5 0.006197

nC 0.0064

nHBAcc 0.006408

LogP2 0.006781

SHBint10 0.006873

Hy 0.007517

kappam3 0.007695

VSAEstate1 0.007799

QNss 0.009891

minsssN 0.01014

LogP 0.011371

maxssO 0.011647

ATSp4.1 0.013044

QHmax 0.014923

C1SP2 0.01631

minHBint5 0.017225

ATSv5 0.017404

Smax35 0.018515

minHsOH 0.025883

maxHsOH 0.028849

LipoaffinityIndex 0.031403

QOmin 0.041317

Qmin 0.043254

MDEC-23 0.049635

ATSp5.1 0.143226

6 Computational and Mathematical Methods in Medicine



(the sum of ADMET property marks) has a maximum value
of 5. According to Definition 1, the ADMET marks of an
“acceptable” compound should not be less than 3; then, the
modified output function of the qualitative prediction model
is derived, denoted original output as ϕðXÞ; then, denote our
desired function as ΦðXÞ, defined as follows:

Φ Xð Þ =
0, 0 ≤ 〠

ADMETproperties
ϕ Xð Þ < 3,

〠
ADMETproperties

ϕ Xð Þ, 3 ≤ 〠
ADMETproperties

ϕ Xð Þ ≤ 5:

8>>><
>>>:

ð2Þ

In addition to the ADMET properties, we need to con-
sider the pIC50 value of the compound as well. The goal of
this output function is to obtain the highest activity value
under the premise of satisfying “acceptable” ADMET prop-
erties; combined with the definition of pIC50, the modified
quantitative prediction model output function is given. We
denoted it as ΨðXÞ and the original one as ψðXÞ, define as
follows:

Ψ Xð Þ =
0, 10 < ψ Xð Þ,
0, ψ Xð Þ < 0,

ψ Xð Þ, 0 ≤ ψ Xð Þ ≤ 10:

8>><
>>: ð3Þ

Input
source Reshape

layer

224 ⨯ 1 ⨯ 10 2242 
⨯ 1 ⨯ 10 2242 

⨯ 1 ⨯ 10 1 ⨯ 10

MobileNetV3

Output
layer

Predictions

Figure 2: The schematic diagram for the model built.

Start

Initialize chromosomal
genes

Initialize the population

Obtain the first
generation population

Calculate fitness by
fitness function

No

YesPopulation algebra>
number of iterations

Generate the next
generation

Output the best variable
value

End

Select

Cross

Mutation

Figure 3: Flowchart of genetic algorithm.
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Intuitively, the optimization problem should be a multi-
objective nonlinear programming problem. To simplify the
solution process, we transform it into a single-objective
nonlinear programming problem to solve. Considering the
optimization problem, it is desired that the compound’s
ADMET properties are as good as possible and the biological
activity is as high as possible, that is, to find a set of selected
feature values X0 to maximize the sum of ΦðX0Þ and ΨðX0Þ.
In this way, we are able to extract the objective function of
the optimization problem, which is defined as follows:

F Xð Þ =Ψ Xð Þ +Φ Xð Þ: ð4Þ

Finally, determine the constraints: for this optimization
problem, since the proposed 224 decision variables (dimen-
sionless normalized molecular descriptors) have a certain
range of actual values, there is constraint 1 as follows:

0 ≤ xi ≤ 1, i = 1, 2, 3,⋯, 224: ð5Þ

Now, take into account the biological activity limitation.
Considering the predicted pIC50 value, according to the
definition of pIC50, it can be seen that there is a constraint
on the value of ψðXÞ and we hope that the optimized biolog-
ical activity value is not lower than the maximum value in
the dataset for building the prediction model, so there is a
constraint 2 as follows:

10 ≥ pIC50t arg et ≥ pIC50source ≥ 0: ð6Þ

Combine constraints with the target function; in sum-
mary, the problem can be defined as follows:

Max F Xð Þ

s:t:
0 ≤ xi ≤ 1, i = 1, 2, 3,⋯, 224,

10 ≥ pIC50target ≥ pIC50source ≥ 0:

( ð7Þ

3.3.3. Optimization Problem Solving. We now address the
optimization problem raised in Section 3.3.2. It can be said
that the optimization problem is a single-objective nonlinear
optimization problem given the complicated link between
molecular descriptors and biological activity. Intelligent
optimization algorithms, such the genetic algorithm [33],
ant colony algorithm [34], and particle swarm optimization
[35], can be used to solve this type of problem’s model to
acquire the optimal set of variables. We employ the genetic
algorithm to address the optimization problem since it can
frequently produce better optimization results more quickly
than some traditional optimization methods when solving
complex combinatorial optimization problems. Figure 3
depicts a typical genetic algorithm optimization procedure.

The primary chromosomes of some members of the
population are first constructed by performing binary cod-
ing on the sample operating variable’s initial value, and the
chromosomes of the remaining individuals are randomly
generated within the value range of the operating variable.
To determine the fitness of each chromosome in the popula-
tion and to calculate the corresponding selection probability
matrix, the binary-coded chromosomes are first decoded to
the actual values of the altered variables before being input
into the ADMET property prediction model and the biolog-
ical activity prediction model. Chromosomes with higher fit-
ness are more likely to be selected during evolution. Roulette
selection is used in the selection strategy. Chromosomes
interact with one another and mutate to create new chromo-
somes. Finally, if a combination of operational variables
satisfies all requirements for biological activity and pharma-
cokinetic features, record the combination and optimize the
following sample; if not, keep iterating until the ideal operat-
ing circumstances are discovered.

We built the solver in Python language to lessen the
implementation’s complexity. When using a genetic algo-
rithm, simulating more complex “populations” takes longer
and takes more effort. After simulation training and testing,
we find the proper parameters for the solver. We randomly
created the initial population and fixed the number to
2000, taking into account the difficulty of solving and the
accuracy requirements. The number of iterations is limited

Table 2: Quantitative prediction accuracy of biological activity.

Biological activity MSE MAPE MAE

pIC50 1.5720 0.1624 0.9880
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Figure 4: Performance of the quantitative prediction model.

Table 3: Qualitative prediction accuracy of biological activity.

ADMET Accuracy Precision Recall F1 score

Caco-2 0.8830 0.8158 0.3735 0.5124

CYP3A4 0.8230 0.8286 0.7436 0.7838

hERG 0.7660 0.7091 0.5147 0.6142

HOB 0.7979 0.5263 0.1333 0.2127

MN 0.9149 0.9444 0.7907 0.8608
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Table 4: The predicted values for best-performance candidate’s
operating variables.

Descriptor Normalized Real

ALogP 0.796372 22.52675

ALogp2 0.565526 301.9008

nC 0.911078 80.17483

ATSc1 0.49451 2.244443

ATSc2 0.939863 2.221841

ATSc3 0.15546 0.141572

ATSc4 0.452555 1.233483

ATSc5 0.454323 1.587603

BCUTc-1l 0.086871 0.020243

BCUTc-1h 0.197627 0.09002

BCUTp-1l 0.348526 1.416559

BCUTp-1h 0.30613 2.687486

C1SP2 0.842156 16.84312

C3SP2 0.44475 5.337003

SCH-7 0.570198 1.226224

VCH-5 0.136673 0.066583

VCH-7 0.284164 0.471843

SC-5 0.90026 2.358201

VC-4 0.678221 0.33911

VC-5 0.476908 0.706329

SPC-4 0.223485 4.435693

SPC-6 0.734395 25.70635

VPC-5 0.126582 1.515056

VPC-6 0.017549 0.319702

CrippenLogP 0.908239 23.01173

ECCEN 0.868879 13130.5

ndssC 0.095972 2.687217

SHBd 0.814323 14.78969

SHBint5 0.536753 51.89493

SHBint6 0.493409 88.24471

SHBint10 0.622465 71.61779

SHsOH 0.680758 1.868451

SHaaCH 0.943556 9.03814

SHCsats 0.361675 16.73021

SHCsatu 0.005772 0.112306

SaaCH 0.522805 20.98883

SdssC 0.131028 4.567775

SaasC 0.472381 10.71859

SsOH 0.945776 62.06689

minHBd 0.004693 0.004157

minHBa 0.381193 6.144505

minHBint5 0.414706 5.288915

minHBint6 0.647892 5.650089

minHBint7 0.123079 1.481101

minHBint10 0.785248 9.487377

minHsOH 0.825143 0.730969

minHCsats 0.59855 0.663469

minHCsatu 0.105526 0.118007

Table 4: Continued.

Descriptor Normalized Real

minssCH2 0.889895 2.358533

mindssC 0.268325 1.054303

minsssN 0.735504 2.011435

minsOH 0.967622 11.35247

mindO 0.231127 3.32619

minssO 0.222965 1.499747

maxHBd 0.573001 0.488639

maxHBint5 0.502949 5.811736

maxHBint7 0.117421 1.2678

maxHBint8 0.185541 1.72333

maxHsOH 0.609498 0.519763

maxHCsats 0.973025 1.252399

maxsssCH 0.255134 0.249398

maxdssC 0.322333 0.754448

maxdsN 0.148611 0.763495

maxsOH 0.982069 12.24723

maxssO 0.754777 5.077492

maxsF 0.375781 5.816332

hmin 0.202651 0.19802

gmin 0.196719 1.518661

LipoaffinityIndex 0.351299 9.693234

MAXDN 0.916639 5.952869

MAXDP 0.688238 4.738658

MAXDP2 0.41876 2.882345

ETA_Epsilon_1 0.744645 0.275913

ETA_dEpsilon_D 0.389612 0.062396

ETA_Shape_Y 0.912192 0.399887

ETA_BetaP_s 0.60827 0.118229

ETA_EtaP_F 0.156509 0.243636

nHBAcc 0.763162 50.36871

nAtomLAC 0.886048 15.94887

MDEC-14 0.861766 4.024826

MDEC-22 0.385049 13.60019

MDEC-23 0.253417 13.6896

MDEC-24 0.187219 2.285725

MDEC-33 0.722608 35.96141

MDEO-11 0.339665 1.592459

MDEO-12 0.690197 2.438236

MLFER_A 0.884812 7.618233

MLFER_BH 0.682306 15.75445

MLFER_S 0.983677 20.57753

TopoPSA 0.810281 968.5693

WTPT-3 0.939527 169.2643

WTPT-4 0.836226 42.47587

WTPT-5 0.580833 73.03263

XLogP 0.921274 16.46778

kappam3 0.591715 38.51945

phi 0.069879 4.911113

LDI 0.839175 0.266858
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Table 4: Continued.

Descriptor Normalized Real

Mnc 0.401081 0.122731

QNss 0.717554 3.800167

QCss 0.401335 0.675045

QHss 0.816212 1.412047

Qmin 0.458487 0.197608

QOmin 0.902885 0.557983

QNmin 0.399317 0.186082

QOmax 0.2189 0.111201

QNmax 0.733215 0.462658

QCmax 0.219663 0.114005

QHmax 0.309301 0.08877

mChi1 0.70787 0.059461

knotp 0.463493 3.682452

Chiv3 0.504351 12.68139

dchi0 0.531787 14.54385

Chiv5ch 0.373625 0.159538

Chiv6ch 0.813352 0.252139

knotpv 0.332321 1.601785

naccr 0.252895 8.092637

PC6 0.68057 207.574

S17 0.617016 13.29916

S25 0.41233 3.873014

S34 0.471534 30.94445

Smax11 0.012002 0.028529

Smax16 0.270107 0.819234

Smax24 0.166683 0.618393

Smax35 0.118755 0.798862

Smin8 0.95032 2.519298

Smin12 0.345704 1.386271

Smin15 0.094406 0.351002

Smin24 0.795928 2.952893

Smin33 0.561019 6.58187

Smin34 0.555043 7.947103

Smin35 0.727286 4.891723

Scar 0.881448 89.12223

Smax 0.089706 1.067416

Smin 0.953752 6.591381

GATSm1 0.812402 1.001692

GATSm2 0.634299 0.793508

GATSm3 0.120694 0.223285

GATSm4 0.510951 0.973362

GATSm5 0.049626 0.135925

GATSm8 0.100571 0.559475

GATSv1 0.961747 0.951168

GATSv3 0.282006 0.472642

GATSe1 0.927808 0.905541

GATSe5 0.599223 1.181668

GATSe7 0.23859 1.199867

GATSe8 0.078374 0.43999

Table 4: Continued.

Descriptor Normalized Real

GATSp3 0.437899 0.708521

GATSp4 0.924518 1.591095

GATSp7 0.980757 4.932225

TPSA1 0.606654 694.4674

slogPVSA0 0.062831 13.0085

slogPVSA1 0.216952 76.48269

slogPVSA2 0.700064 67.12981

MRVSA5 0.64033 57.65721

MRVSA6 0.374169 51.50251

PEOEVSA1 0.302775 42.13574

PEOEVSA5 0.643223 105.9755

PEOEVSA6 0.965518 159.7043

PEOEVSA7 0.010657 0.809047

PEOEVSA8 0.929568 51.26194

EstateVSA1 0.420173 90.7544

EstateVSA4 0.150524 17.979

EstateVSA7 0.617028 85.38316

VSAEstate1 0.916056 260.2258

VSAEstate2 0.469295 61.3763

VSAEstate4 0.182115 5.816037

VSAEstate7 0.434015 9.820449

MATSm1 0.259205 0.199588

MATSm3 0.55142 0.600496

MATSm5 0.41914 0.43381

MATSm6 0.11384 0.224834

MATSm7 0.309463 0.536608

MATSm8 0.835615 8.049475

MATSv1 0.691362 0.486719

MATSv3 0.421519 0.464936

MATSv5 0.803173 1.224839

MATSv8 0.974739 10.77086

MATSe1 0.044383 0.029914

MATSe3 0.858027 0.967855

MATSe5 0.820808 0.897964

MATSe8 0.84285 8.119175

MATSp1 0.618676 0.638474

MATSp3 0.031658 0.035141

MATSp4 0.995234 1.393328

MATSp5 0.310054 0.464771

MATSp6 0.950285 1.76563

MATSp7 0.401141 0.920218

ATSv5 0.422807 1.369895

ATSe5 0.526873 1.836152

ATSp4.1 0.970895 2.954435

ATSp5.1 0.441556 1.408123

J 0.517201 2.905116

BertzCT 0.331505 0.429631

IDE 0.017944 0.054297

LogP 0.809566 20.63664
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to 500. As for the chromosomes, the number is set to 224,
the length of each chromosome is set to 20 bits, the cross-
over rate is set to 0.6, and the mutation rate is set to 0.1.
Record the value of the operand variable that maximizes
the objective function, and return it.

4. Experimental Results and Discussions

4.1. Analysis of the Biological Activity Prediction Model.
Once the network has been trained, the prediction can be
made by simply feeding the network the values of the main
variables. The validation set was imported into the model
after establishing the quantitative neural network-based pre-
diction model of biological activity. The predicted outcomes
were compared with their real labels, which are displayed in
Table 2.

The change curve of the predicted value and its corre-
sponding actual value are similar in Figure 4, which shows
that the model has a decent prediction result and is able to
accurately reflect the biological activity in theory. The mean
square error of the model is 1.572, which is within the

acceptable range when choosing MSE to measure the predic-
tion accuracy.

4.2. Analysis of the ADMET Property Prediction Model.
Compare the predicted results with the actual results by
importing the validation set into the trained ADMET prop-
erty prediction model. The following table display the find-
ings (Table 3).

The verification results for all five attributes are accept-
able as considering the aforementioned tables, while the
results for HOB are a little inferior. Nevertheless, the accu-
racy rate is still quite good. The prediction accuracy of
HOB is the lowest result in terms of these five attributes,
and this fact might be caused by data imbalance, since the
neural network-based models tend to develop a preference
on biased data. However, our model’s average prediction
accuracy is close to 85%, which is quite a satisfactory
performance.

4.3. Analysis of the Clinical Property Optimizing Model. By
resolving the optimization problem, the optimal fitness value
of 13 is discovered and the relevant actual values for the
molecular descriptors are resolved. Table 4 shows the values
of the first 224 molecular descriptors in detail.

It can be found that due to the inconsistency of the
definitions among the descriptors, the value difference is
relatively large but it seems to not affect the results at last.
Consider Figure 5, since the dataset that we created has a
maximum fitness value of 12.86 while an optimal fitness
value of 13 that could be attained by solving the problem;
this fact proves that, by applying our method to existing
chemical data, it might be possible to find a candidate which
has better properties.

5. Conclusion

Breast cancer, as a common and influential disease, requires
the development of new drugs to continuously improve the
treatment methods. How to efficiently select possible drug

Table 4: Continued.

Descriptor Normalized Real

LogP2 0.935064 170.3864

Hy 0.258499 0.832883

CIC1 0.531694 2.274054

CIC3 0.195279 0.597359

CIC4 0.947302 2.624027

CIC6 0.315254 0.833533

SIC1 0.534191 0.238783

SIC2 0.548336 0.223173

SIC3 0.93592 0.379048

IC1 0.62343 1.283018

IC2 0.961285 2.260943

IC3 0.605757 1.788194

bcutm13 0.686797 0.80836

bcutm12 0.096662 0.106618

bcutm9 0.662882 0.380495

bcutm3 0.045307 0.169084

bcutm2 0.449717 3.285183

bcutv4 0.772798 0.863988

bcutv1 0.57612 0.338759

bcute12 0.330634 0.366674

bcute10 0.721806 0.510317

bcute9 0.529904 0.349736

bcute4 0.370874 0.411299

bcute2 0.741989 0.470421

bcute1 0.128208 0.061027

bcutp12 0.873497 0.828075

bcutp9 0.541204 0.357195

bcutp5 0.669777 0.953092

bcutp1 0.884249 0.579183
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Figure 5: The figure of best fitness trending.
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candidates to reduce the cost of drug development has a cer-
tain research value. In our work, we consider the use of
machine learning methods to assist in the selection of com-
pounds. We first used the known knowledge and computer
compound molecular descriptor calculation software to con-
struct a dataset and then used the random forest algorithm
to screen the features and simplify the dataset; then, based
on the MobileNetV3 structural deep convolutional network,
the biological activity and pharmacokinetics were constructed.

The invention of novel medications is necessary for the
ongoing development of effective treatments for breast can-
cer, a common and notable disease. There may be some
research value in how to effectively choose potential medica-
tion candidates to lower the cost of drug development. In
our study, we take into account the application of machine
learning techniques to aid in compound selection. First, a
dataset was created by combining already known inhibition
potency knowledge and the compound molecular descriptors
generated by modern calculation software. Next, features were
screened out and the dataset was made simpler using the ran-
dom forest algorithm. Finally, the MobileNetV3 structural
deep convolutional network was introduced to construct the
biological activity and pharmacokinetics. A genetic algorithm
solver is utilized to solve an optimization problem based on
the obtained prediction model to predict the best value for
the chosen molecular descriptors. The analysis from the
perspective of the entire drug design process, rather than con-
structing or modifying each child model, reflects the proposed
model’s innovation and applicability the most. The internal
connection and progressive relationship of each model are
emphasized in many places throughout this paper. We believe
that our four-step method of influencing variable screening,
biological activity prediction modeling, pharmacokinetic
properties modeling, and clinical property optimization can
successfully model and optimize the properties of drugs
through various machine learning technologies and serve as
a useful guide for drug manufacturers. According to the afore-
mentioned analysis, our method not only offers a significant
practical industrial application value but also some academic
innovation and research value.

In the future, our research direction will mainly focus on
giving weight to the properties of ADMET. For example, for
the properties of hERG, we do not want the drug to be
highly toxic to the human body, so for toxic compounds,
we will appropriately reduce its evaluation, that is, the calcu-
lated adaptation value. Other properties are the same, and
we expect to obtain antibreast cancer drugs with better effi-
cacy and less harm to the human body through this method.

Data Availability

The datasets used during the current study are available
from the corresponding author upon reasonable request.
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