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Abstract: Recently, the bismuth-based (Bi-based) Z-scheme photocatalysts have been paid great
attention due to their good solar energy utilization capacity, the high separation rate of their
photogenerated hole-electron pairs, and strong redox ability. They are considerably more promising
materials than single semiconductors for alleviating the energy crisis and environmental deterioration
by efficiently utilizing sunlight to motivate various photocatalytic reactions for energy production and
pollutant removal. In this review, the traits and recent research progress of Bi-based semiconductors
and recent achievements in the synthesis methods of Bi-based direct Z-scheme heterojunction
photocatalysts are explored. The recent photocatalytic applications development of Bi-based Z-scheme
heterojunction photocatalysts in environmental pollutants removal and detection, water splitting,
CO2 reduction, and air (NOx) purification are also described concisely. The challenges and future
perspective in the studies of Bi-based Z-scheme heterojunction photocatalysts are discussed and
summarized in the conclusion of this mini review.

Keywords: Z-scheme photocatalysts; bismuth-based semiconductors; environmental remediation;
energy production; photocatalytic applications

1. Introduction

The rapid growth of industry and the population has resulted in the over-consumption,
unreasonable exploitation and utilization of fossil fuel resources. The global energy crisis and
environmental deterioration have become two primary challenges of the 21st century in human
society [1,2]. Therefore, it is necessary to develop renewable energy sources that can replace fossil fuels.
As a powerful and inexhaustible renewable energy source, solar energy is considered as one of the best
methods to mitigate these problems. It can be exploited and utilized for energy production (for example
H2 [3–6], hydrocarbon fuel [7,8] and electric energy [9,10] production) and removal of pollutants (such
as CO2 [11–15], organic contaminants in water [16–21] or air [22–26], emerging micropollutants [27,28])
by using photocatalytic, photovoltaic and other light-conversion technologies [29,30]. As one of the
most promising light conversion technologies, photocatalytic technology only needs the appropriate
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semiconductor photocatalyst and solar energy as energy input. In a typical photocatalytic procedure,
the semiconductor photocatalysts can firstly absorb photons and be excited to generate hole-electron
pairs under light irradiation. After separating and migrating to the surface of the photocatalysts,
the two kinds of photo-generated charge carriers participate in redox reactions to produce free radicals
and realize energy production or pollutant removal. However, the hole and electron can inevitably
recombine in the bulk or on the surface of the photocatalysts, which is a disadvantageous factor [31].
In summary, the capacity of light absorption, the rate of photogenerated charge separation, migration
and recombination are all influences on the photocatalytic process. The dominant factors can determine
the photocatalytic efficiency of a given photocatalyst.

Research on semiconductor photocatalysts has attracted considerable attention since water splitting
and hydrogen production on titanium dioxide (TiO2) were first reported by Fujishima et al. [32]. TiO2 is
one of the most extensive studied semiconductors because of its chemical stability, non-toxicity, low cost,
and good corrosion resistance [33,34]. Nevertheless, due to its wide bandgap (3.2 eV), TiO2 can only
absorb ultraviolet light energy which constitutes about 4–5% of solar energy. The poor solar energy
utilization capacity leads to the low quantum efficiency and the practical application of TiO2 is
greatly limited [35,36]. Considering that visible light energy accounts for about 45% of sunlight
energy [37], subsequently, in order to broaden the light-harvesting range, remarkable efforts have
been devoted to explore visible light-activated semiconductors including CdSe, CdS, SiC, WO3, Fe2O3,
Co3O4, g–C3N4, CdO, Ag2O et al. as photocatalysts, which possess a narrow band gap that is
less than or equal to 3.0 eV. Recently, bismuth-based (Bi-based) semiconductors with advantages of
non-toxicity, low cost and good thermal stability and as new and important visible light-activated
semiconductors have become a research hotspot [20,38–48]. Bi-based semiconductors usually refer to
the Bi3+ containing semiconductors because of the higher stability of Bi3+ than Bi5+. Various Bi-based
semiconductors have been proved as excellent photocatalytic materials such as BiOX (X = Cl, Br,
I) [49–51], BiVO4 [52], Bi2O3 [53], Bi2S3 [54], BiFeO3 [21], Bi2Sn2O7 [55], Bi2MoO6 [56], Bi2WO6 [24],
CuBi2O4 [20], Bi3ClO4 [16], Bi2O2CO3 [23]. The bandgap structure of part of representative Bi-based
semiconductors is summarized in Figure 1 [20,38–48]. As shown in Figure 1, the bandgap of the vast
majority of Bi-based semiconductors is less than 3.0 eV except for BiPO4, BiOCl, Bi2O2CO3 and the like,
which means that most Bi-based semiconductors can be excited by visible light. However, because of the
valence band (VB) potential and the conduction band (CB) potential of Bi-based semiconductors with a
narrow band gap not being positive and negative enough, the photogenerated holes and electrons
do not have sufficient redox ability to drive the specific photocatalytic reactions, for example to
produce free radicals including hydroxyl radical (OH) and superoxide radical (O2

−), which is crucial for
photocatalytic pollutant removal. Moreover, compared with wide-bandgap semiconductors, the excited
electrons recombine with holes more easily and quickly in narrow-bandgap semiconductors. Among
the Bi-based semiconductors shown in Figure 1, only BiPO4 has sufficient redox capacity to produce
both OH and O2

−, whereas BiPO4 has a larger bandgap, which is unfavorable for visible-light energy
utilization. Consequently, two inherent limitations exist. One is that a given Bi-based semiconductor
with a single component cannot have the strong redox ability and the good solar energy utilization
capacity simultaneously. The other is that the recombination of the photogenerated electron-hole pairs
inhibits the photocatalytic performance of a given Bi-based semiconductor with single component.

In recent years, tremendous attempts have been made to improve the visible-light absorption
ability, light-harvesting efficiency, and photogenerated carriers’ separation of Bi-based semiconductors.
Rongan He, Jiaguo Yu, and Wingkei Ho et al. have reviewed the strategies for enhancing the
performance of bulk Bi-based semiconductors including component adjustment, morphology control,
heterojunction construction, and surface modification [57]. Although the component adjustment,
morphology control, and surface modification can improve the photocatalytic performance of bulk
Bi-based semiconductors with a single component to some extent, the first inherent limitation is still
not overcome. However, heterojunction construction, especially Z-scheme heterojunction construction,
is considered a promising strategy to conquer the conflict between good solar energy utilization ability
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and excellent redox capacity for single-component Bi-based semiconductor. From the development
history of the Z-scheme heterojunction, it can be divided into three generations: liquid-phase Z-scheme,
all-solid-state Z-scheme and direct Z-scheme photocatalyst [58]. Among them, the third generation
Z-scheme heterojunction, direct Z-scheme photocatalyst, possesses the largest application range,
the fastest charge-carrier migration rate, and the lowest fabrication cost because, unlike the first two
generations with the help of electron mediator to transfer charge carriers, its charge-carrier migration
driving force is the internal electric field which is formed due to the charge redistribution upon the
contact of semiconductor components. The comprehensive description of the basic principle of the
Z-scheme heterojunction can be found in some published review articles [59,60].Materials 2019, 12, x 3 of 28 

 

 

Figure 1. The bandgap structure of part of representative Bi-based semiconductors. 

In recent years, tremendous attempts have been made to improve the visible-light absorption 
ability, light-harvesting efficiency, and photogenerated carriers’ separation of Bi-based 
semiconductors. Rongan He, Jiaguo Yu, and Wingkei Ho et al. have reviewed the strategies for 
enhancing the performance of bulk Bi-based semiconductors including component adjustment, 
morphology control, heterojunction construction, and surface modification [57]. Although the 
component adjustment, morphology control, and surface modification can improve the 
photocatalytic performance of bulk Bi-based semiconductors with a single component to some extent, 
the first inherent limitation is still not overcome. However, heterojunction construction, especially Z-
scheme heterojunction construction, is considered a promising strategy to conquer the conflict 
between good solar energy utilization ability and excellent redox capacity for single-component Bi-
based semiconductor. From the development history of the Z-scheme heterojunction, it can be 
divided into three generations: liquid-phase Z-scheme, all-solid-state Z-scheme and direct Z-scheme 
photocatalyst [58]. Among them, the third generation Z-scheme heterojunction, direct Z-scheme 
photocatalyst, possesses the largest application range, the fastest charge-carrier migration rate, and 
the lowest fabrication cost because, unlike the first two generations with the help of electron mediator 
to transfer charge carriers, its charge-carrier migration driving force is the internal electric field which 
is formed due to the charge redistribution upon the contact of semiconductor components. The 
comprehensive description of the basic principle of the Z-scheme heterojunction can be found in 
some published review articles [59,60]. 

The present mini review focuses on recent achievements in a number of synthesis methods of 
Bi-based direct Z-scheme heterojunction photocatalysts and different photocatalytic applications of 
Bi-based Z-scheme heterojunction photocatalysts, such as photocatalytic degradation and 
photoelectrocatalytic detection of environmental pollutants, water splitting, CO2 reduction, and air 
(NOx) purification. Finally, the challenges, prospects, and future directions for Bi-based Z-scheme 
heterojunction photocatalysts are presented. 

2. Synthesis Methods of Bi-Based Direct Z-Scheme Photocatalysts 

Different synthesis methods can obtain Bi-based direct Z-scheme photocatalysts with different 
interfacial properties, geometrical configurations (see Figure 2), morphology, and crystallinity and so 
on, which eventually affect the photocatalytic performance of the prepared Bi-based direct Z-scheme 
photocatalysts. It is widely known that both morphology (size, shape and dimensionality) and 
crystallinity have a substantial influence on the properties of semiconductor oxides and further on 
the photocatalytic performance of the direct Z-scheme photocatalysts that they make up. In order to 
optimize the performance of semiconductor components, a variety of synthesis methods have been 
developed to control the morphology and crystallinity of semiconductor components by adjusting 

Figure 1. The bandgap structure of part of representative Bi-based semiconductors.

The present mini review focuses on recent achievements in a number of synthesis methods of
Bi-based direct Z-scheme heterojunction photocatalysts and different photocatalytic applications
of Bi-based Z-scheme heterojunction photocatalysts, such as photocatalytic degradation and
photoelectrocatalytic detection of environmental pollutants, water splitting, CO2 reduction, and air
(NOx) purification. Finally, the challenges, prospects, and future directions for Bi-based Z-scheme
heterojunction photocatalysts are presented.

2. Synthesis Methods of Bi-Based Direct Z-Scheme Photocatalysts

Different synthesis methods can obtain Bi-based direct Z-scheme photocatalysts with different
interfacial properties, geometrical configurations (see Figure 2), morphology, and crystallinity and so
on, which eventually affect the photocatalytic performance of the prepared Bi-based direct Z-scheme
photocatalysts. It is widely known that both morphology (size, shape and dimensionality) and
crystallinity have a substantial influence on the properties of semiconductor oxides and further on
the photocatalytic performance of the direct Z-scheme photocatalysts that they make up. In order to
optimize the performance of semiconductor components, a variety of synthesis methods have been
developed to control the morphology and crystallinity of semiconductor components by adjusting the
parameters of synthesis methods. For example, Yongfa Zhu et al. [61] prepared a series of Bi2MoO6

with different morphologies (from 2D nanosheet to 1D microrod structures) by adjusting the pH value
of the reactant through a hydrothermal method. Similarly, uniform BiOCl hierarchical microspheres
assembled by nanosheets with tunable thickness were synthesized via a simple solvothermal route [62].
Bi2O3 with different hierarchitectures were reported to be controllably synthesized by modulating
the experimental conditions of the template-free method, such as VO3

− concentration, the reaction
temperature, and the pH values [63].
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However, for a direct Z-scheme photocatalyst, just optimizing the properties of its semiconductor
components is not enough, the interfacial condition among the semiconductor components is crucial,
considering the charge-carrier migration driving force of direct Z-scheme photocatalyst is related
to the contact of semiconductor components. It is noteworthy that the stronger the interaction and
intimate interface among the components of the Z-scheme heterojunction, the higher the efficiency of
charge carrier separation and transfer [64]. Moreover, the geometrical configuration of direct Z-scheme
photocatalyst is also important because it affects the contact mode of semiconductor components in
Bi-based direct Z-scheme photocatalysts. In the surface decorated structure (Figure 2a), the components
of the Bi-based Z-scheme heterojunction are all exposed to the reaction environment and can be excited
by light and participate the redox reactions. However, excess amount of decorated component will
inhibit the light absorption of other components, which can be improved by Janus structure (Figure 2b).
In a core-shell structure (Figure 2c), the core component can be protected from light corrosion or
undesired dissolution. Nevertheless, because of the protection, the core component cannot be excited
by light and participate the redox reactions, which is not of benefit to the charge consumption and
further charge carrier transfer between the core and shell component. Table 1 lists the advantages
and shortcomings of extensively used synthesis methods of Bi-based direct Z-scheme photocatalysts
including hydrothermal and solvothermal method, solid-state synthesis, deposition-precipitation
method, cation exchange method, electrospinning method, self-assembly method, mechanical agitation
method, and ultrasonic chemical method. The interfacial properties and geometrical configurations of
the prepared Z-scheme heterojunction by these synthesis methods are also compared in Table 1 [65–69].



Materials 2020, 13, 5057 5 of 29

Table 1. Comparison of extensively used synthesis methods of direct Z-scheme photocatalysts.

Synthesis Method Advantages Shortcomings
Interfacial Properties of the
Prepared Z-Scheme Hetero-

Junction

Geometrical Configurations of
the Prepared Z-Scheme

Heterojunction

Hydrothermal and
Solvothermal Method

Controllable Size, High
Crystallinity, Low Cost, Simple
Operation, One-Pot Synthesis

without Need of Post Annealing

High Requirements in
Temperature, Pressure and

Corrosion Resistance for
Equipment, Required High

Temperature

Strong Interaction and Intimate
Interface Surface-Decorated Structure

Solid-State Synthesis
High Synthetic Efficiency,
Simple and Solvent-Free

Synthetic Process

High Energy Consumption,
High Cost, Required High

Temperature

Strong Interaction and
Tight-Contact Interface Surface-Decorated Structure

Deposition-
Precipitation Method

Narrow Size Distributions of
Products, Good Thermal

Stability of Products

Poor Reproducibility,
Uncontrollable Deposition

Location and Nucleation Site

Strong Interaction and Intimate
Interface Surface-Decorated Structure

Cation Exchange Method

Relatively Rapid Reaction Rate,
Well-Preserved Initial
Morphology, Size and

Compositional Interfaces,
High-Quality Nanocrystal,

Simple and Flexible Method

Required Post Calcination
Treatment

Strong Interaction,
High-Quality and Atomic-
Precision Contact Interface

Janus, Surface-Decorated or
more Complex Custom

Structure Including
Multicomponent Z-Scheme

Heterojunction Structure

Electro-
Spinning Method

Facile and Simple Method,
Simple Setup, Large Surface

Area of Products

Low Synthetic Efficiency, High
Cost, Required Post-Heating

Treatment

Strong Interaction and Intimate
Interface Surface-Decorated Structure

Self-
Assembly Method

Mild Operation Conditions,
Controllable Morphology and

Size, Highly Ordered and
Dispersive Products

Low Yield, Poor Stability of
Products Moderate Interaction Core-Shell, Surface-Decorated

Structure

Mechanical Agitation Method

Simple Setup, Straightforward
Method, Avoiding the Use of

Complex and Tedious Chemical
and Thermal Treatments

Wide Size Distributions of
Products, Poor Reproducibility,

Uncontrollable Size

No Intimate Interface, Having
Easily Detachable Components

of Heterojunction, Low
Crystallinity

Surface-Decorated Structure

Ultrasonic Chemical Method

Narrow Size Distributions of
Products, Rapid Reaction Rate,

Controllable Morphology
and Size

High Cost, Hard to Scaling Up Strong Interaction and Intimate
Interface

Surface-Decorated or Core-Shell
Structure
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In the tables of Section 3, we summarize the representative examples of the aforementioned
synthesis methods of Bi-based direct Z-scheme photocatalysts from recent related works.

3. Applications of Bi-Based Z-Scheme Photocatalysts

Due to the excellent redox capacity, good solar energy utilization ability, and efficient hole-electron
separation ability, superior photocatalytic performance, Bi-based Z-scheme heterojunctions have been
achieved in a wide range of applications, such as degradation of pollutants [70], water splitting [68],
CO2 reduction [71], detection of environmental pollutants [72], removal of NOx [73], etc. In this
section, various photocatalytic applications of Bi-based Z-scheme photocatalysts are summarized and
briefly presented.

3.1. Degradation of Pollutants in Water

With the rapid development of the economy, large-scale industrialization and urbanization
make environmental pollution a very serious problem, which not only hinders the sustainable
development of society, but also threatens the life and safety of human beings [74]. Owing to the
unique structure of a Bi-based Z-scheme photocatalyst, the redox potential of the heterojunction can
be maximized, the solar energy can be almost utilized completely, and the photogenerated electrons
and holes can be separated efficiently. The Bi-based Z-scheme photocatalyst is reported to be a
promising photocatalyst for photocatalytic degradation of various environmental pollutants. Table 2
lists some of the latest and most representative research on degradation of pollutants by Bi-based
Z-scheme photocatalyst. As shown in Table 2, the photocatalytic efficiency usually was expressed
by the degradation rate of pollutants (%) or the kinetic constant k (min−1). It has been shown that
compared with corresponding single Bi-based photocatalyst, the Z-scheme heterojunction greatly
improves the photocatalytic degradation efficiency of pollutants. For example, Liu et al. [75] prepared
Z-scheme Bi3O4Cl/CdS by the simple hydrothermal method. Briefly, CdS nanospheres and Bi3O4Cl
nanosheets were synthesized firstly by the hydrothermal method. Then, with the assist of polyvinyl
pyrrolidone (PVP), Z-scheme Bi3O4Cl/CdS was synthesized by a facile surfactant-free hydrothermal
treatment. The results showed that the CdS nanospheres are successfully and uniformly loaded on the
surface of Bi3O4Cl nanosheets forming a surface-decorated heterostructure and an efficiently intimate
heterojunction interface (see Figure 3a). The heterojunction presents an obviously enhanced absorption
in the visible region compared to pure Bi3O4Cl. The significant improvement of charge transfer and
separation of the composite was proved by photocurrent (see Figure 3b) and electrochemical impedance
spectra (EIS) measurements. Under visible light illumination, Bi3O4Cl/CdS composite displays higher
photocatalytic activity towards the ciprofloxacin (CIP) and tetracycline (TC) degradation than pure
Bi3O4Cl, which is ascribed to the direct Z-scheme mechanism (See Figure 3c). The direct Z-scheme
mechanism was proved by active species trapping experiments and electron spin resonance (ESR)
technology. As shown in Figure 3c, the redox potential of the Z-scheme Bi3O4Cl/CdS heterojunction
can be maximized sufficiently to produce OH (2.40 V vs. NHE (normal hydrogen electrode)) and O2

−

(−0.33 V vs. NHE).
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Table 2. Research progress on Bi-based Z-Scheme photocatalysts applied in photocatalytic degradation.

Photo-
Catalyst Synthesis Method Light Source Catalyst

Dose Pollutants Photocatalytic Efficiency Ref.

Bi2WO6/CuBi2O4
Hydro-

Thermal
300 W Xe Lamp

(λ ≥ 400 nm) 0.5 mg/mL Tetracycline (15 mg/L, 100 mL) 0.0393 min−1

(CuBi2O4 0.0054 min−1)
[70]

BiOI
/g–C3N4

In situ Reduction and
Oxidiza-

tion

60 W LED (Light
Emitting Diode)

Lamp
(λ > 400 nm)

3.33 mg/mL Phenol (100 mg/L, 15 mL) 60% (BiOI 20%) [76]

CdS/BiOI Hydro-
Thermal

300 W Xe Lamp
(λ > 420 nm) 0.2 mg/mL RhB (20 mg/L, 100 mL) 0.03945 min−1 (BiOI 0.00398 min−1) [77]

BiOBr/
Bi2MoO6

Co-Precipitation 300 W Xe Lamp
(λ ≥ 420 nm) 0.2 mg/mL

Cipro-
Floxacin

(10 mg/L 50 mL).
RhB (10−5 mol/L, 50 mL)

84.63% (Bi2MoO6 15.21%);
0.37613 min−1 (Bi2MoO6

0.00689 min−1)
[78]

Bi2O3/g–C3N4

Solid-
State

Synthesis

500 W Xe Lamp
(λ > 400 nm) 1.0 mg/mL MB (1.1 × 10−5 mol/L, 300 mL);

RhB (1.0 × 10−5 mol/L, 300 mL)

0.0253 min−1 (g–C3N4
0.0074 min−1); 0.0101 min−1

(g–C3N4 0.002 min−1)
[79]

Bi2Fe4O9/Bi2WO6
Hydro-

Thermal
300 W Xe lamp

(λ ≥ 420 nm) 0.3 mg/mL RhB (10 mg/L, 100 mL) 0.0380 min−1 (Bi2Fe4O9
0.0015 min−1)

[74]

AgI/Bi5O7I Ion Exchange
350 W Xe lamp

(cut off UV and IR
light)

1.0 mg/mL RhB (10 mg/L, 100 mL) 0.046 min−1

(Bi5O7I 0.012 min−1)
[80]

AgI/Bi2WO6 Precipitation 300 W Xe lamp
(λ ≥ 420 nm) 0.3 mg/mL Tetracycline (20 mg/L, 100 mL) 0.075 min−1

(Bi2WO6 0.014 min−1)
[81]

AgBr/CuBi2O4 Precipitation 300 W Xe lamp
(λ ≥ 420 nm) 0.5 mg/mL Tetracycline (10 mg/L, 100 mL) 0.03551 min−1

(CuBi2O4 0.00238 min−1)
[82]

TCPP/rGO/Bi2WO6 Ultrasonic Chemical 300 W Xe lamp
(λ > 420 nm) 0.3 mg/mL Tetracycline (15 mg/L, 100 mL) 83.60% (Bi2WO6 48.61%) [83]
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Table 2. Cont.

Photo-
Catalyst Synthesis Method Light Source Catalyst

Dose Pollutants Photocatalytic Efficiency Ref.

Ag3PO4/CuBi2O4 Precipitation 300 W Xe lamp
(λ > 420 nm) 0.5 mg/mL Tetracycline (10 mg/L, 100 mL) 0.0201 min−1 (CuBi2O4

0.0072 min−1)
[84]

Porous g–C3N4/BiOI Hydro-
Thermal

50 W 410 nm LED
light arrays 1 mg/mL MB (20 mg/L, 30 mL) 0.0160 min−1

(BiOI 0.0041 min−1)
[85]

CdS/Bi3O4Cl Hydro-
Thermal

250 W Xe lamp
(λ > 420 nm) 0.5 mg/mL

Tetracycline (10 mg/L, 100 mL).
Cipro-Floxacin

(10 mg/L, 100 mL)

0.0643 min−1 (Bi3O4Cl
0.0148 min−1).
0.0151 min−1

(Bi3O4Cl 0.00142 min−1)

[75]

Cu2O/Bi5O7I Glucose
Reduction Reaction 500 W Xe lamp 1 mg/mL RhB (10 mg/L, 100 mL) 0.0233 min−1 (Bi5O7I

0.00736 min−1)
[86]

CuInS2/Bi2WO6
Hydro-

Thermal
300 W Xe lamp

(λ ≥ 420 nm) 0.3 mg/mL Tetracycline Hydrochloride
(10 mg/L, 100 mL)

0.0176 min−1

(Bi2WO6 0.01473 min−1)
[87]

MoO3/Bi2O4
Hydro-

Thermal
100 W LED lamp

(λ = 420 nm) 0.5 mg/mL RhB (10 mg/L, 100 mL) 99.6%
(Bi2O4 73%) [88]

BiOI/Bi2O4 Ultrasonic Chemical 100 W LED lamp 0.5 mg/mL RhB (10 mg/L, 100 mL) 0.090 min−1

(BiOI 0.003 min−1)
[89]

Bi2MoO6/TiO2
Hydro-

Thermal 800 W Xe lamp 0.6 mg/mL 4-Nitrophenol
(50 mg/L, 100 mL)

95.3%
(Bi2MoO6 32.7%) [90]

Bi2WO6
/Porous g–C3N4

Ultrasonic Chemical 500 W Wolfram lamp
(λ ≥ 420 nm) 0.5 mg/mL RhB (10 mg/L, 100 mL) 0.043 min−1

(Bi2WO6 0.013 min−1)
[91]

Bi2WO6/BiOI Hydrothermal 500 W Xe lamp
(λ > 420 nm) 1 mg/mL RhB (10 mg/L, 40 mL) 0.03 min−1

(BiOI 0.002 min−1)
[92]

Ag3PO4/Bi2WO6 Precipitation 50 W LED lamp
(λ = 410 nm) 1 mg/mL MB (20 mg/L, 30 mL) 0.61 min−1

(Bi2WO6 0.10 min−1)
[93]

g–C3N4/BiVO4 Hydrothermal 250 W Xe lamp
(λ > 420 nm) 0.2 mg/mL MO (20 mg/L, 50 mL) 0.09672 min−1 (BiVO4

0.01101 min−1)
[94]
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Figure 3. (a) Scanning electron microscope (SEM) image of CdS/Bi3O4Cl-50 heterostructure; (b) the 
transient photocurrent response of the bare CdS, Bi3O4Cl and Z-Scheme CdS/Bi3O4Cl-50 
heterostructure; (c) possible photocatalytic mechanism of Z-scheme CdS/Bi3O4Cl photocatalyst for 
antibiotic treatment under visible light irradiation; CdS/Bi3O4Cl-50: mass ratio of Bi3O4Cl to CdS is 50. 
Reproduced with permission from [75]. Copyright Elsevier, 2018. 
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Figure 3. (a) Scanning electron microscope (SEM) image of CdS/Bi3O4Cl-50 heterostructure; (b) the
transient photocurrent response of the bare CdS, Bi3O4Cl and Z-Scheme CdS/Bi3O4Cl-50 heterostructure;
(c) possible photocatalytic mechanism of Z-scheme CdS/Bi3O4Cl photocatalyst for antibiotic treatment
under visible light irradiation; CdS/Bi3O4Cl-50: mass ratio of Bi3O4Cl to CdS is 50. Reproduced with
permission from [75]. Copyright Elsevier, 2018.

Zeng et al. [83] fabricated ternary Z-scheme heterojunction (meso-tetra (4–carboxyphenyl)
porphyrin (TCPP)/reduced graphene oxide (rGO)/Bi2WO6 (BWO)) via an ultrasonic chemical method.
Firstly, rGO/BWO was prepared by the hydrothermal method. Then, rGO/BWO was added to absolute
ethanol and ultrasonicated for dispersal. TCPP was added to the above suspension and kept in
ultra-sonication then stirred until the solvent was completely volatilized. Finally, the product was
dried to obtain the TCPP/rGO/BWO. During the synthetic process, the carboxylic groups of TCPP
make it combine with the BWO tightly. The introduction of rGO further improves the photocatalytic
performance of the composite because of its π-π structure for efficient contaminants adsorption,
great photo-response property for expanding visible-light response range, and high electron mobility
for promoting charge transfer and separation. The structure of the prepared TCPP/rGO/BWO is a
surface-decorated heterostructure, which was proved by scanning electron microscopy (SEM) results.
The TCPP0.25/rGO/BWO has the best photocatalytic performance for the degradation of tetracycline
(TC) compared with BWO, rGO/BWO, TCPP/BWO, and other TCPP/rGO/BWO composites with
different TCPP contents. The results of trapping experiments and ESR analysis indicated that the
h+ and O2

− are the major contributors for the TC decomposition in the TCPP0.25/rGO/BWO system.
The O2

− can only be produced via reducing O2 by the electrons at the lowest unoccupied molecular
orbital (LUMO) (−0.60 eV) of TCPP which is above the energy level of the O2/·O2

− (−0.33V vs.
NHE). Therefore, a Z-scheme mechanism is proposed to elucidate the charge transfer process in the
TCPP0.25/rGO/BWO system to ensure the efficient charge separation and sufficient redox potential.
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3.2. Water Splitting

Solar-water splitting can convert solar energy into clean, carbon-neutral and storable chemical
energy (hydrogen fuel) without using fossil fuels and causing carbon emissions. Therefore, solar-water
splitting has attracted much attention [95].

The photocatalytic (PC) and photoelectrocatalytic (PEC) methods are two simple, efficient,
low-cost and environmentally benign means for achieving solar-water splitting. As shown in Figure 4a,
during the photocatalytic process, the photocatalysts that are highly dispersed in solution can be
excited by solar light and produce electron-hole pairs which further participate in the redox reactions
to split water to hydrogen (H2) and oxygen (O2). Unlike in the PC system where photocatalysts are
dispersed in the solution, in the PEC system the photocatalysts should be attached on the working
electrode to construct the PEC system and in order to apply an external bias. Although the external
bias is beneficial to promote the charge separation and reaction kinetics and attached photocatalysts are
easy to reuse, the specific surface area and the photocatalytic active sites of attached photocatalysts on
the electrode is far less than dispersed photocatalysts in the solution. In the PEC water splitting system,
at least one photoelectrode should be required for utilizing solar energy. Depending on the type of
photocatalyst on the photoelectrode, PEC water splitting system has different hydrogen production
principles. As displayed in Figure 4b, when the photoelectrode consisting of n-type semiconductor
photocatalyst as photoanode is excited by solar energy, the photogenerated holes will oxidise water
molecule to hydrogen ions and O2, see Equation (1). The photogenerated electrons will transfer
to the counter electrode (cathode) via an external circuit to reduce the hydrogen ions to hydrogen,
see Equation (2) [96]. By contrast, when the photocatalyst is p-type semiconductor and as photocathode,
the H2 and O2 will evolve at the surface of photocathode (see Equation (2)) and anode (see Equation (1)),
respectively (see Figure 4c). The two basic semi-reactions and their overall reaction (Equation (3)) are
as follows:

anode : 2H2O + 4h+
→ O2 + 4H+ (E0

OX = +1.23 V at pH = 7) (1)

cathode : 2H+ + 2e− → H2 (E0
RED = 0 V at pH = 0) (2)

Overall : 2H2O→ 2H2 + O2 (3)
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Figure 4. Schematic diagram of photocatalytic hydrogen production principle of photocatalyst dispersed
in electrolyte (a), schematic diagram of hydrogen production principle in a photoelectrocatalytic system
composed of a n-type semiconductor as photoanode (b), and a p-type semiconductor as photocathode
(c), respectively.

According to the aforementioned semi-reactions, in order to realize overall water splitting,
the selected ideal photocatalyst should satisfy the requirements that the CB edge potential of the
photoelectrode semiconductor should be above the energy level of the H+/H2 (0 V vs. NHE at pH = 0)
and the VB edge potential should be below the energy level of the O2/H2O (1.23 V vs. NHE at
pH = 0) [97]. The Z-scheme heterojunction provides a promising way to overcome the thermodynamic
energy barrier for solar-water splitting by combining a narrow bandgap semiconductor which ensures
the maximized utilization solar energy and one or more paired semiconductors with appropriate energy
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band structure to broaden the redox range of the photocatalyst composite. Bi-based semiconductors are
promising candidates for a Z-scheme heterojunction attributed to their unique energy band structure
and other attractive advantages. Table 3 summarizes the latest development of Bi-based Z-scheme
photocatalysts applied for solar-water splitting. The Bi-based Z-scheme photocatalyst and its synthesis
method, the conditions of the solar-water splitting process, the utilization of co-catalyst, the products
and yields, and apparent quantum yield (AQY) of all the examples are presented in Table 3. From the
data of Table 3, it is seen that Bi-based Z-scheme photocatalysts exhibit promising performance for
solar-water splitting. Most research using Bi-based Z-scheme photocatalysts can obtain good H2

evolution yield. Chou et al. [98] made SnS2 self-growth on the BiPO4 nanosheets to form three
dimensions (3D) flower heterogeneous composite by a multi-step solvothermal method. According to
the radical-trapping experiment results and band structure analysis, a Z-scheme heterojunction was
formed between SnS2 and BiPO4. Under visible light, the formed Z-scheme heterojunction showed the
highest H2 evolution rate of 303 µmol h−1 g−1, which is about 1.43 and 2.01 times higher than that of
pure SnS2 and pure BiPO4, respectively.

Table 3. Research progress of Bi-based Z-Scheme photocatalyst applied in solar-water splitting.

Photo-
Catalyst

Co-
Catalyst

Synthesis
Method

Experimental
Conditions Products and Yields AQY Ref.

BiPO4/SnS2 No Hydrothermal

Visible light
irradiation

(λ > 380 nm).
Pure Water

H2: 303 µmol h−1
·g−1 – [98]

Bi/Bi5O7I/Sn3O4 Bi Hydrothermal
300 W Xe Lamp

(λ > 400 nm).
20% CH3OH Solution

H2: 325.9 µmol h−1
·g−1 – [99]

Cu3P/Bi2WO6 No Mechanical
Agitation

Xe lamp (AM
(air mass) 1.5);

0.5 M
Na2HPO4/NaH2PO4

Solution

H2: 4.65 µmol h−1
·g−1

O2: 2.3 µmol h−1
·g−1 – [68]

BiVO4
/Black

phosphorus

5 wt%
Co3O4

Self-Assembly
320 W Xenon Lamp

(λ > 420 nm).
Pure Water

H2: 160 µmol h−1
·g−1

O2: 102 µmol h−1
·g−1

0.89% at
420 nm [100]

Bi2O2.33/Bi2S3 1 wt% Pt Wet Chemistry
500 W Xenon Lamp;
0.1 M Na2S/ Na2SO3

Solution
H2: 62.61 µmol h−1 – [101]

g–C3N4 /BiFeO3 No Solid-State
Synthesis

Three 125 W Medium
Pressure Hg Lamps

(UV).
Pure Water

H2: 160.75 µmol h−1
·g−1

O2: 80.12 µmol h−1
·g−1 – [102]

CdS/BiVO4 2 wt% Pt Solvothermal

300 W Xe Lamp
(λ ≥ 420 nm);

20 vol.% Lactic Acid
Solution

H2: 1153 µmol h−1 – [103]

Bi2S3/MoS2/TiO2 No
Microwave-

Assisted
Hydrothermal

250 W Xe Lamp
(λ ≥ 420 nm);

0.35 M Na2S and 0.25
M Na2SO3 Solution

H2: 2195 µmol h−1
·g−1 – [104]

Cs2O/Bi2O3/ZnO No
Solution

Combustion
Method

Xe Lamp (AM 1.5 G);
Pure Water

H2: 149.5 µmol h−1
·g−1

O2: 73.2 µmol h−1
·g−1

1.68% at
365 nm

0.92% at 420
nm

[105]

ZnIn2S4/RGO/BiVO4 1 wt% Pt Hydrothermal
350 W Xe Lamp

(λ > 420 nm);
5 mol·L−1 HCHO

H2: 1687 µmol h−1
·g−1 22.91% [106]

RGO–Cu2O/Bi2WO6 No Solvothermal Xe Lamp (λ > 420 nm);
Pure Water H2:1.80 µmol h−1

·g−1 – [107]

Cu2O/RGO/BiVO4 – Solvothermal
300 W Xenon Arc

Lamp (λ > 420 nm);
TC Solution

H2: 5.90 µmol h−1
·g−1 – [108]
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Due to the high energy barrier of its four-electron transfer process, the O2-evolution half reaction
in overall solar-water splitting is much more challenging than the H2-evolution half reaction, which
dramatically suppresses the efficiency of the overall solar-water splitting. Usually, most semiconductor
photocatalysts have low activity for O2 evolution [109]. Besides the overall solar-water splitting,
H2-evolution half reaction using a sacrificial agent is another efficient way to harvest and convert
solar energy to H2. The sacrificial agent plays a significant role in the H2-evolution half reaction.
Suitable sacrificial reagents can improve the H2-evolution efficiency remarkably by scavenging the
photogenerated holes to reduce the charge carrier recombination significantly. Zhu et al. investigated the
effect of the different organic compounds on the hydrogen production rate of ZnIn2S4/RGO/BiVO4 [106].
As shown in Figure 5a, in the presence of organic compounds such as formaldehyde, methanol,
formic acid, acetaldehyde and ethanol and so on, the hydrogen production rate has been promoted
to a different extent. Organic compounds including alcohols (for example methanol [99]), aldehydes
(for example formaldehyde [106]), organic acids (for example lactic acid [103]) have been extensively
used as efficient hole scavengers for H2 production in Bi-based Z-scheme photocatalysts systems.
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Figure 5. (a) Effects of different organic compounds on hydrogen production in ZnIn2S4/RGO/BiVO4 
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under visible light irradiation. Reproduced with permission from [103]. Copyright Elsevier, 2017. 

Figure 5. (a) Effects of different organic compounds on hydrogen production in ZnIn2S4/RGO/BiVO4

photocatalyst. Reproduced with permission from [106]. Copyright Elsevier, 2019; (b) Photocatalytic H2

generation rates of different mass ratios CdS/BiVO4 in lactic acid solution with or without 2 wt.% Pt
under visible light irradiation. Reproduced with permission from [103]. Copyright Elsevier, 2017.

Furthermore, owing to the sufficient redox ability of the Bi-based Z-scheme photocatalyst,
even refractory organic pollutants can also be successfully used as hole scavengers to achieve
simultaneous H2 generation and pollutant degradation. Very recently, Liu et al. constructed a
Cu2O/BiVO4 Z-scheme heterojunction by using reduced graphene oxide (rGO) as an adhesive via a
two-step solvothermal method. This Bi-based Z-scheme photocatalyst exhibits excellent photocatalytic
performance on simultaneous tetracycline (TC) degradation and H2 production under visible light
irradiation [108].
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Moreover, the introduction of a suitable co-catalyst can further improve the solar-water splitting
efficiency of a Bi-based Z-scheme photocatalyst. The reason for this improvement may be attributed
to the fact that co-catalysts can efficiently collect photogenerated carriers and catalyze H2 or O2

evolution as well as improve the stability of photocatalysts by suppressing photocorrosion [110].
Usually, noble metals and especially Pt have been extensively used as co-catalyst for solar-water
splitting [111]. For example, Zhou et al. [103] prepared hierarchical CdS/BiVO4 hybrid composed of
CdS nanoparticles decorated on BiVO4 nanowires (NWs) by the solvothermal method. The strongly
chemical interaction between CdS and BiVO4 was confirmed by XPS (X-ray photoelectron spectroscopy)
results. As illustrated in Figure 5b, under visible light irradiation and in a lactic acid electrolyte,
no hydrogen generation was observed on pure BiVO4 even loaded with Pt as co-catalyst, attributed
to the CB edge potential of pure BiVO4 being lower than the energy level of H+/H2. The bare CdS
showed a weak hydrogen production capacity. After forming a CdS/BiVO4 Z-scheme heterojunction,
the hydrogen production capacity was enhanced, whereas the improvement of photocatalytic H2

activity was by orders of magnitude after loading Pt. At an optimized condition, CdS (50 wt.%)
/BiVO4 NWs with loading 2 wt.% Pt exhibited the fastest photocatalytic H2 generation rate which
is 9.30 times of that of CdS (50 wt.%)/BiVO4 NWs without loading Pt co-catalyst. Therefore, due to
their low overpotential for H2 evolution and excellent electron-accepting capacity, using noble metal
as a co-catalyst is an effective method to improve the photocatalytic hydrogen evolution, which is
conducive to the electron generated by the photocatalyst to transfer to the noble metal to catalyze
H2 evolution.

However, the high price and scarcity of noble metals limit their large-scale practical application in
photocatalytic H2 generation as co-catalysts. In recent years, many efforts were devoted to develop
co-catalysts composed of abundant and inexpensive elements to assist Bi-based Z-scheme photocatalyst
for solar-water splitting. Recently, Xu et al. [99] prepared Bi/Bi5O7I/Sn3O4 by hydrothermal method
(See Figure 6a). The band structure of Bi5O7I matches well with that of Sn3O4 to constitute a direct
Z-scheme heterojunction. Metallic Bi which is evenly covered on the surface of Z-scheme Bi5O7I/Sn3O4

photocatalyst and comes from the reduction reaction between Sn3O4 and Bi5O7I during the synthesis
process was demonstrated to be a good substitute for noble metals as co-catalyst to further improve the
H2 generation and extend the light absorption range. The X-ray diffraction (XRD) results (see Figure 6b)
confirmed the presence of Bi metal. As shown in Figure 6b, as increasing the amount of Bi5O7I,
the characteristic peak of Bi gradually appears and increases. The photocatalytic hydrogen production
experiments under visible light irradiation demonstrated that the highest hydrogen evolution of this
Z-scheme catalyst reached 325.9 µmol h−1

·g−1 without any noble metal co-catalyst and exceeded the
rate on pure Sn3O4 by 5 times (See Figure 6c).

Great processes have been made to construct double Z-scheme heterojunction structures to make
full use of solar energy to apply in water splitting. Drmosh et al. [104] prepared Bi2S3/MoS2/TiO2

(MBT) by a facile microwave-assisted hydrothermal method. The double Z-scheme heterojunction
structure was constructed due to the matched band structure among Bi2S3 nanorods, MoS2 nanometer
sheets and TiO2 nanotubes. As exhibited in Figure 6d, photogenerated electrons in the CB of
TiO2 can recombine with photogenerated holes in the VB of MoS2, and photogenerated electrons
in the CB of MoS2 can recombine with photogenerated holes in the VB of Bi2S3, preserving
the photogenerated electrons and holes with the strongest reduction and oxidization power.
The constructed direct double Z-scheme heterojunction extends the light-harvesting capability, couples
the respective advantages of each component, and efficiently separates photogenerated electron-hole
pairs. The optimized Bi2S3/MoS2/TiO2 nanocomposites presented a high photocatalytic H2-production
rate of 2195 µmol h−1

·g−1 under the sunlight irradiation, even in the absence of any noble-metal
cocatalyst (See Figure 6e).
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3.3. CO2 Reduction

Nowadays, excessive carbon dioxide (CO2) emission is a key reason for global warming. Proposing
environmentally friendly and efficient strategies to dramatically reduce atmospheric CO2 is essential
and urgent. Photocatalysis seems a propitious and appealing strategy because it can directly make
use of inexhaustible solar energy to convert CO2 in the atmosphere into hydrocarbons such as CH4,
HCOOH, CO, CH2O and CH3O (Equations (4)–(9)) [33,112], alleviating the greenhouse effect and
energy crisis simultaneously. The product species of photocatalytic CO2 reduction depend on the
relationship between the CB edge potential of the photocatalyst and the reduction potentials of the
desired CO2 reduced product. Since CO2 is well known as one of the most thermodynamically stable
chemical species [113,114], to satisfy thermodynamic requirements, the more negative the CB edge
potential of the photocatalyst, the higher the possibility to drive the CO2 reduction process. On the
other hand, the photocatalytic CO2 reduction system ultimately needs the use of water as the electron
source (Equation (10)); a semiconductor photocatalyst has to satisfy band edge potentials that straddle
both the water oxidation and CO2 reduction potentials.

CO2 + 8H+ + 8e− → CH4 + 2H2O E0 = −0.24 V vs NHE at pH = 7 (4)

CO2 + 6H+ + 6e− → CH3OH + H2O E0 = −0.38 V vs NHE at pH = 7 (5)

CO2 + 4H+ + 4e− → HCHO + H2O E0 = −0.48 V vs NHE at pH = 7 (6)

CO2 + 2H+ + 2e− → CO + H2O E0 = −0.53 V vs NHE at pH = 7 (7)

CO2 + 2H+ + 2e− → HCOOH E0 = −0.61 V vs NHE at pH = 7 (8)

CO2 + e− → ·CO−2 E0 = −1.90 V vs NHE at pH = 7 (9)

H2O + 2h+
→ 2H+ + 1/2O2 E0 = +0.82 V vs NHE at pH = 7 (10)

The photocatalytic CO2 reduction reaction usually includes four main steps as follows: (1) CO2

adsorption process on the active sites of photocatalyst; (2) absorption of sufficient incident photon
energy by the photocatalyst to generate electron-hole pairs; (3) charge separation and migration to
the surface of the photocatalyst; (4) surface reactions for CO2 reduction and products desorption.
In order to efficiently photocatalytically reduce CO2, the photocatalyst should possess all the features
to successfully achieve each above step: including strong CO2 selective adsorption capacity, broad light
response range, high charge separation efficiency, and sufficiently strong redox activity. Due to the
aforementioned last three virtues, Z-scheme photocatalytic systems have been extensively investigated
and applied for CO2 reduction in recent years. Based on the prominent photocatalytic activity nature
of bismuth semiconductor, the representative progresses of Bi-based Z-scheme photocatalytic systems
for the application of CO2 reduction are summarized in Table 4.
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Table 4. The research progress of Bi-based Z-scheme photocatalyst in CO2 reduction.

Photo-
Catalyst

Co-
Catalyst Synthesis Method Conditions Products and Yields Ref.

CdS/BiVO4 No Deposition
300 W Xenon Arc Lamp (λ > 400 nm).

20 mg Photocatalyst in 180 mL Stainless Steel Reactor with Quartz Window;
Filled with CO2 (0.3 MPa).

CH4: 1.75 µmol h−1
·g−1

CO: 0.39 µmol h−1
·g−1 [115]

BiOI/g–C3N4 No Deposition
300 W Xenon Arc Lamp (λ > 400 nm);

0.1 g Photocatalyst in 180 mL Stainless Steel Cylindrical Vessel with Quartz Window;
Introducing CO2 and H2O Vapor by Bubbling Approach.

CH4: 1.76 µmol h−1
·g−1

CO: 22.21 µmol h−1
·g−1

H2: 2.06 µmol h−1
·g−1

O2: 10.81 µmol h−1
·g−1

[116]

Bi2WO6/TiO2 No Electrostatic Self-
Assembly

300 W Xenon Arc Lamp (780 nm > λ > 320 nm);
20 mg Photocatalyst in 25 mL Quartz Reactor;
CO2 was Evacuated by a Mechanical Pump.

CH4: 10.8 µmol h−1
·g−1

CO: 25.8 µmol h−1
·g−1 [117]

g–C3N4/
Bi2O2[BO2(OH)] No Solid-State

Synthesis

300 W Xe Lamp;
20 mg Photocatalyst;

1.7 g Na2CO3 Treated with 15 mL H2SO4 (0.1 mol/L) to in situ Generate CO2.
CO: 6.09 µmol h−1 [118]

Bi2WO6/g–C3N4 No Hydrothermal
300 W Xenon Arc Lamp (λ > 420 nm);

100 mg Catalyst in 500 mL Reactor;
Introducing CO2 and H2O Vapor by Bubbling Approach.

CO: 5.19 µmol h−1
·g−1 [119]

Bi4TaO8Cl
/W18O49

No Solvothermal
180 mW/cm2 Solar Light (λ < 780 nm);

0.02 g Photocatalyst and 2 mL H2O in Reactor; Filled with CO2. The Reactor was
Heated to 393 K.

CO: 23.42 µmol h−1
·g−1 [120]

Bi2O2CO3/Bi/
Bi2WO6

Bi Solvothermal
300 W Xe Lamp;

0.1 g Photocatalyst and 100 mL H2O in Reactor;
CO2 was Inflated into the Reactor (80 kPa).

CH4: 2.54 µmol h−1
·g−1

CO: 0.82 µmol h−1
·g−1 [71]

g–C3N4/BiOBr Au Water Bath
300 W High Pressure Xenon Lamp.

0.1 g Samples were Uniformly Dispersed onto a Glass Sheet put in 350 mL Reactor;
1.3 g NaHCO3 reacted with 5 mL H2SO4 (4M) to in situ Generate CO2.

CH4: 0.92 µmol h−1
·g−1

CO: 6.67 µmol h−1
·g−1 [121]

Bi2WO6
/RGO

/g–C3N4

No Hydrothermal
300 W Xe Arc Lamp with a UV cut-off Filter of 420 nm; 50 mg of the Catalyst was

Uniformly Distributed in the Photoreactor (250 mL);
A Water Bubbler to generate a Mixture of CO2 and Water Vapor.

CO: 15.96 µmol h−1
·g−1

CH4: 2.51 µmol h−1
·g−1 [122]

g–C3N4/Bi4O5I2 No Complex Precursor
Method

300 W High Pressure Xenon Lamp (λ > 400 nm);
0.1 g Samples were Uniformly dispersed onto a Glass Sheet, put in 350 mL Reactor;

NaHCO3 reacted with 5 mL H2SO4 (4M) to achieve 1 atm CO2.
CO: 45.6 µmol h−1

·g−1 [123]

BiVO4/C/Cu2O No SILAR

300 W Xe Lamp (λ > 420 nm);
A 1 cm2 Specimen of the Sample was placed at 50 mL Reactor which charged with

5 mL of H2O;
The Reactor was purged with CO2.

CO: 3.01 µmol h−1
·g−1 [124]
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The CO2 adsorption process can be improved by using the photocatalyst with large surface area.
Modulating the morphology is an efficient way to obtain the photocatalyst with large surface area.
Jung’s group reported Z-scheme BiVO4/carbon-coated Cu2O (BVO/C/Cu2O) nanowire arrays (NWAs)
with a three-dimensional (3D) structure for efficient photoconversion of CO2 to CO and CH4 [124].
The highest CO formation rate on this BVO/C/Cu2O NWAs reached 3.01 µmol h−1

·g−1, which is
about 9.4 and 4.7 times on Cu2O mesh and Cu2O NWAs, respectively. The dramatically enhanced
photocatalytic activity was ascribed to the construction of a Z-scheme on a 3D NWAs structure.
Enlarged surface area and enhanced charge-carrier transfer of 3D NWAs structure was evidenced by
the electrochemical surface area method and photocurrent experiment results, respectively. Owing to
the large surface area, enhanced charge-transport property, and light scattering or reflecting effect
of the 3D NWAs structure, the combination of unique 3D morphology with a Z-scheme charge
flow is not only beneficial for the efficient charge separation and transfer [125], but also favorable
for facilitating the light absorption and CO2 adsorption by providing ample active sites [126,127].
Moreover, the thermodynamic feasibility of the photocatalytic reduction of CO2 and water oxidation
on this BVO/C/Cu2O NWAs was verified by the band edge configuration via ultraviolet photoelectron
spectroscopy. The Z-scheme charge-transfer mechanism was confirmed by investigating the energy
level of the photoinduced hole via a photoluminescence (PL) experiment using coumarin as a probe
molecule in water.

Apart from morphology modulation of the photocatalyst, introducing a co-catalyst in the Bi-based
Z-scheme system to improve the photocatalytic CO2 reduction process is another efficient way.
Recently, Jo and coworkers [122] constructed a Z-scheme Bi2WO6/rGO/g–C3N4 (BWO/rGO/CN) for
photocatalytic CO2 reduction. Therein, rGO with excellent conductivity and large specific area was
used as a co-catalyst for the Z-scheme photocatalyst to not only facilitate charge-carrier migration
in Z-scheme mode, but also benefit the CO2 adsorption and electron capture by establishing the
unique π-π conjugation interaction and providing abundant active sites and further promoting the CO2

photoreduction. In addition, attributed to forming large intimate interfaces, the 2D/2D/2D configuration
of BWO/rGO/CN possesses strong light absorption in the visible region and strong electron shuttling at
the interfaces hindering the direct recombination of charge carriers. As a consequence, the optimized
Z-scheme BWO/rGO/CN displayed a remarkable photocatalytic performance for not only CO2 reduction
but also water splitting. The AQY of 0.75% at 400 nm was higher than the other state-of-the art CO2

photoreduction catalyst system.
Moreover, integrating other techniques with photocatalytic CO2 reduction over a direct Z-scheme

system will obtain unexpected results. The recently reported photothermal synergic enhancement
of photocatalytic CO2 reduction performance of a direct Z-scheme Bi4TaO8Cl/W18O49 (BiW) system
is an interesting example of the integration of the photocatalytic process with external heating [120].
The direct Z-scheme heterojunction was successfully fabricated by growing W18O49 nanostructures
on the surface of a Bi4TaO8Cl nanosheet (See Figure 7a). The well matched energy band of these two
semiconductors makes the constructed Z-scheme heterojunction a promising photocatalyst for CO2

reduction and H2O oxidation under visible light. Under photothermal conditions, the CO yield of the
optimal BiW was increased surprisingly by 87 times over photocatalytic conditions (see Figure 7b).
Interestingly, after light irradiation, long-lasting catalytic reduction of CO2 in the dark was observed.
The possible reasons for these experimental results are that external heating enhances the Z-scheme
behavior of the BiW heterostructure by helping electrons at electron traps detrap to the surface of
photocatalyst to increase the efficiency of electron utilization and promote the CO2 reduction reaction,
at the same time, decreasing the activation energy of lattice oxygen to promote oxidation reactions at
the other reaction sites. The photoexcited electrons stored at the oxygen vacancy defects of W18O49 can
be released and excited to the conduction band of Bi4TaO8Cl by heating to reduce CO2 and produce
considerable CO in the dark after light irradiation (See Figure 7c). The design of this photothermal
catalyst provides a novel and promising method for using solar energy to catalyze the reduction of
CO2 to fuels.
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Figure 7. (a) The preparation process diagram of Bi4TaO8Cl/W18O49 heterojunction; (b) the amount of
CO generated over different samples in the process of CO2 reduction under photocatalysis (PC, 298 K)
and photothermocatalysis (PTC, 393 K); BiW-L, BiW-M, BiW-H mean the samples synthesized by adding
the low, middle, and high content of WCl6 in the synthesis solution, respectively. (c) photothermal
catalysis schematic diagram of Bi4TaO8Cl/W18O49 heterojunction. Reproduced with permission
from [120]. Copyright Elsevier, 2020.

From Table 4, the main product of CO2 photoreduction in most Bi-based Z-scheme systems are CO
and CH4. By comparing all the reaction equations of products from CO2 reduction (Equations (4)–(9)),
the redox potential E0 of CO2/CH4 (−0.24 V vs. NHE) is the least negative value, which means the
reaction of producing CH4 is one in which a reaction occurs most easily from a thermodynamic
viewpoint. The CO formation through simple two-electron reduction process of CO2 is easier to achieve
than the other products’ generation through a multiple-electron reduction process of CO2. In order
to photoreduce CO2 to obtain more carbonaceous products via more difficult multi-electron-transfer
pathways, further exploration is still needed such as with the help of a noble metal cocatalyst.
Meanwhile, water usually serves as an electron donor during CO2 photoreduction process. In ideal
conditions, H2O should be oxidized into protons and O2 (Equation (10)). However, the generated
protons actually can further react with photoexcited electrons to produce H2 (Equation (11)). At the same
time, O2 also can react with photoexcited electrons (Equation (12)). These reactions form competitive
relationship with CO2 photoreduction (Equations (4)–(9)), which makes the electron-transfer process
of CO2 photoreduction more complicate [128,129]. Therefore, to understand in depth and illuminate
the actual and complicated mechanism of photocatalytic CO2 reduction is also crucial.

2H+ + 2e− → H2 E0 = −0.42 V vs NHE at pH = 7 (11)

O2 + e− → ·O−2 E0 = −0.33 V vs NHE at pH = 7 (12)



Materials 2020, 13, 5057 19 of 29

3.4. Removal of Gas Phase Pollutants and Other Applications

In recent years, the emission of nitrogen oxides (NOx) from human activities into the atmosphere
has become one of the major environmental problems because the great harm of NOx to human
health, climate, and agriculture [130]. In addition, NOx mainly composed of NO and NO2

can produce secondary aerosols and cause more serious environmental problems, such as acid
rain, haze, photochemical smog, PM 2.5 (fine particulate matter with less than 2.5 µm diameter),
and ozone accumulation, etc. [131,132]. Among various methods for NOx removal, such as physical
adsorption [133], biofiltration [134], and thermal catalytic reduction [135], photocatalysis, as a green
chemical method, is considered to be a promising strategy due to its high efficiency and low cost. It has
been reported that Bi-based Z-scheme heterojunction systems exhibit high photocatalytic activity for
pollutant removal including NOx removal because of the abundant active radicals with strong redox
ability in these systems.

Zhu et al. [136] prepared a two-dimensional/two-dimensional (2D/2D) direct Z-scheme
photocatalyst Bi2O2CO3/Bi4O5Br2 (BOC/BOB) by a simple one-pot hydrothermal method. The X-band
electron spin resonance (ESR) spectra of O2

− and OH radicals and the Fermi level calculations strongly
substantiated the direct Z-scheme charge separation mechanism of 2D/2D BOC/BOB. Under simulated
solar light illumination, the optimizing BOC/BOB exhibited a significantly higher photocatalytic activity
(53.2%) for NOx removal than that of single-phase BOC (20.4%) and BOB (37.9%). Such improved
photocatalytic activity was mainly attributed to the enhanced charge carriers’ separation efficiency
and strong redox activity of remaining photogenerated charge carriers of a direct Z-scheme mode at
the BOC/BOB interface. As revealed by the results of trapping experiments and ESR tests, both O2

−

and·OH were the major active species for photocatalytic NOx removal. Similarly, direct Z-scheme
Bi2MoO6/ZnIn2S4 composite semiconductor photocatalysts were successfully constructed by a facile
wet impregnation method and applied for the oxidative removal of NO with H2O2 solution injected
and under visible light [73]. The optimal Bi2MoO6/ZnIn2S4 exhibited superior photocatalytic activity
for NO removal, and the removal efficiency reached 84.94% in 80 min, attributed to the low rate of
recombination of photogenerated charge carriers in the direct Z-scheme charge transfer mode.

Volatile organic compounds (VOCs), such as alcohols, aldehydes, ketones, alkenes, and aromatic
compounds, are known to cause enormous harm to human health [137]. However, highly effective
VOC elimination still remains a challenge. Photocatalytic degradation is found to be an attractive
and promising technique for the abatement of VOC because of its mild operation conditions (room
temperature and atmospheric pressure), highly effective and thorough degradation, and good solar
energy utilization capacity. Photocatalyst is one of the keys of this technique. Z-scheme photocatalysts
with high specific surface area have been accepted as rational photocatalysts for photocatalytic
degradation of VOCs. For example, it was shown that direct Z-scheme BiVO4/g-C3N4 with
coral-like structure achieved efficient mineralization of toluene under visible light illumination [138].
Brunauer–Emmett–Teller (BET) measurement provided evidence for the high specific surface area
of the coral-like structure which provides more active sites for the photocatalytic oxidization
toluene. According to the results of the ESR and terephthalic acid photoluminescence (TA-PL),
the enhanced photocatalytic performance of BiVO4/g–C3N4 was attributed to a direct Z-scheme
migration. The degradation rate constant of the optimal BiVO4/g–C3N4 for toluene degradation
reached 0.138 h−1.

As a newly developed sensing technique, photoelectrochemical (PEC) sensors have attracted
tremendous attention. Such PEC sensors combine the advantages of optical detection and
electrochemical detection and improve their inherent defects at the same time. Owing to a detached
excitation system and detection system, the PEC has high sensitivity, rapid measurement speed,
and a low background signal. Additionally, in comparison to optical detection methods with costly
optical imaging system and complicated image analysis software, the cost of PEC with a simple
electrochemical detection system is much lower. From the sensing mechanism of PEC, the semiconductor
as photoelectrode which is excited by light to generate hole-electron pairs and further produce
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photocurrent signal with the separation and migration of charge carriers is the core component of PEC.
However, fast recombination of photogenerated electrons and holes as one of the inherent limitations
of semiconductors is a big challenge for PEC sensors. The Z-scheme charge-carrier migration mode is
beneficial to the charge separation and migration as well as improving the photoelectric conversion
and signal generation efficiency of PEC. For instance, a Z-scheme iodine doped BiOCl/nitrogen-doped
graphene quantum dots (I–BiOCl/N–GQDs) heterojunction was prepared by a one-pot precipitation
method at room temperature [139]. Such a Z-scheme I–BiOCl/N–GQDs heterojunction was used as a
photoelectrode to construct a “signal-off” cathodic PEC sensor for the selective detection of chlorpyrifos.
The optimal I–BiOCl/N–GQDs composite exhibited the highest photocurrent signal (See Figure 8a)
indicating excellent spatial separation efficiency of charge carriers which was evidenced by PL and
EIS results. The Z-scheme charge carrier transfer pathway and the enhanced light harvesting can be
used to explain the improved PEC performance. Figure 8b displays the PEC detection mechanism of
chlorpyrifos. As shown in Figure 8b, in the presence of chlorpyrifos in the solution, the S and N atoms
of chlorpyrifos will bind with the Bi(III) to form the bismuth-chlorpyrifos complex on the surface of
I–BiOCl/N–GQDs, which will decrease the photocurrent signal because of the steric hindrance effect to
achieve detection of chlorpyrifos. As shown in Figure 8c,d, this PEC sensor presented a wide linear
detection range (0.3–80 ng·mL−1), considerably low detection limit (0.01 ng·mL−1), and good selectivity
toward chlorpyrifos. Nevertheless, there is a lack of evidence for verifying the Z-scheme charge carrier
transfer pathways in this work.
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Figure 8. (a) Transient photocurrent of different photocatalysts (a: BiOCl, b: BiOI, c: I–BiOCl, d–f:
I–BiOCl/N–GQDs-x (x: the volume of nitrogen-doped graphene quantum dots (N–GQDs), x = 0.5, 1.0,
1.5)); (b) schematic diagram of the “signal-off” cathodic PEC sensor constructed by I–BiOCl/N–GQDs
for selective detection of chlorpyrifos; (c) Photocurrent response of I–BiOCl/N–GQDs-0.5 in the
presence of 0 ng·mL−1, 0.3 ng·mL−1, 0.5 ng·mL−1, 4 ng·mL−1, 10 ng·mL−1, 20 ng·mL−1, 30 ng·mL−1,
40 ng·mL−1, 50 ng·mL−1, 60 ng·mL−1, 70 ng·mL−1, 80 ng·mL−1 chlorpyrifos (from a to l); Insert is the
corresponding linear relationship between the log Cchlorpyrifos and photocurrent. (d) PEC response
of I–BiOCl/N–GQDs-0.5 to chlorpyrifos and other foreign impurities. Reprinted with permission
from [139]. Copyright ACS, 2018.
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4. Conclusions and Perspectives

As one of the most promising light-conversion technologies, photocatalysis can ease the
problem of energy and environmental pollution in the future by using appropriate semiconductor as
photocatalysts and solar energy as energy input to drive photocatalytic reactions. Photocatalysts are
a crucial factor which determine the performance of this technique. Bi-based semiconductors with
advantages of non-toxicity, low cost and good thermal stability and as a new and important visible
light-activated semiconductor have attracted great attention and become a research hotspot. Recently,
great progress has been made in improving the visible-light absorption ability, light-harvesting
efficiency, and photogenerated carriers’ separation of Bi-based semiconductors. However, for a
single-component Bi-based semiconductor, it is hard to simultaneously satisfy strong redox ability for a
specific photocatalytic reaction and the good solar energy utilization capacity. Z-scheme heterojunction
construction is considered a promising strategy to conquer this conflict via combining a narrow bandgap
semiconductor and one or more paired semiconductor with appropriate energy band structure to
broad the light response range and enhance the redox ability of photocatalyst composite. Bi-based
Z-scheme photocatalysts exhibit good performance in various photocatalytic applications involving
energy production, for example, water splitting, environmental remediation such as CO2 reduction,
NOx removal, pollutants degradation, as well as pollutant detection, for example, construction of
PEC sensors.

However, the study of the Bi-based Z-scheme heterojunction is still in its infancy and has
many challenges and problems: (1) selecting two or more semiconductors with good matched band
structure is the prerequisite for the successful preparation of direct Z-scheme photocatalysts. Moreover,
the selected semiconductor components should satisfy the requirement that one of two contacted
semiconductors should have higher CB, VB position and Ef than the other, whereas whether the
constructed photocatalyst follows the direct Z-scheme mechanism or not can be validated by the
experimental methods performing expensive instruments. Therefore, the combination theoretical
calculation and simulation with experimental characterizations may be a cost-effective strategy
to comprehensively understanding the mechanism of Z-scheme and successfully construct direct
Z-sheme photocatalysts. (2) Optimizing and controlling the contact interface between the selected
semiconductor components of a direct Z-scheme photocatalyst is necessary for high efficiency of
charge carrier separation and transfer which is beneficial to enhance the photocatalytic performance
of prepared direct Z-scheme photocatalysts. (3) For specific photocatalytic applications, introducing
suitable, abundant, and inexpensive co-catalysts into the Bi-based Z-scheme semiconductor will further
improve the efficiency of photocatalytic applications. In addition, modulating the morphology of
the Bi-based Z-scheme semiconductor to obtain high specific surface area is another way to enhance
the efficiency of photocatalytic applications owing to this providing more active sites for the reactive
matters. (4) In practical applications, it is also necessary to consider the recovery of Bi-based Z-scheme
photocatalysts. In most applications, the photocatalyst is dispersed in the solution in the form of
powders, which makes recovery work after application very complicated. Thus, constructing Bi-based
Z-scheme photocatalysts with magnetic or self-floating properties is a new direction.

Owing to the potential of the Bi-based Z-scheme photocatalyst, it would be promising to realize
its industrialization after resolving these challenges.
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