
1Scientific Reports |         (2019) 9:11178  | https://doi.org/10.1038/s41598-019-47292-4

www.nature.com/scientificreports

Critical Nodes in River Networks
Shiblu Sarker1, Alexander Veremyev2, Vladimir Boginski2 & Arvind Singh1

River drainage networks are important landscape features that have been studied for several decades 
from a range of geomorphological and hydrological perspectives. However, identifying the most 
vital (critical) nodes on river networks and analyzing their relationships with geomorphic and climatic 
properties have not yet been extensively addressed in the literature. In this study, we use an algorithm 
that determines the set of critical nodes whose removal results in maximum network fragmentation 
and apply it to various topologies of simulated and natural river networks. Specifically, we consider 
simulated river networks obtained from optimal channel network (OCN) approach as well as extracted 
networks from several natural basins across the United States. Our results indicate a power-law 
relationship between the number of connected node pairs in the remaining network and the number 
of removed critical nodes. We also investigate the characteristics of sub-basins resulted from the 
removal of critical nodes and compare them with those of central nodes (in the context of betweenness 
centrality) for both natural basins and OCNs with varying energy exponent γ to understand 
vulnerability and resilience of river networks under potential external disruptions.

River networks depend on external forcings such as climate and tectonics1–12. These dendritic networks serve as 
primary pathways for transport of sediment, water, and other environmental fluxes and provide necessary ecosys-
tems to a variety of ecologic and biotic activities13–19. However, these networks are facing significant threats under 
changing climate and anthropogenic activities. Therefore, the knowledge of the topologic structure and dynamics 
of river networks is crucial for better understanding of their emergence and evolution under change as well for 
prediction and management of environmental fluxes operating upon them1,13–16,20–26.

Branching patterns of river networks have been argued to exhibit complex topology and share similar proper-
ties such as scaling and self-similarity with other complex systems27–30. Recent theoretical and empirical evidences 
suggest that branching complexity is a key to maintaining meta-population stability19 and in driving biodiversity 
patterns18. A common way to quantify network complexity is via graph-theoretical approaches that have been 
used extensively in characterizing networks from diverse fields including but not limited to social networks, trans-
portation networks, communication networks, and networks from computer science and mathematics29,31–35.

Although there are many different approaches for quantifying node importance (see, e.g., Borgatti36), in this 
study we focus on the one which is based on the effect of node removal to the network structure. The correspond-
ing problem is known as the critical node detection problem (see Lalou et al.37 for a more detailed discussion 
on this topic). Specifically, we consider the number of connected pairs of nodes in the remaining network as a 
measure of “integrity” or “connectivity” of river networks and find the set of nodes whose removal minimizes 
this measure. Despite significant research on river network characterization using graph theory7,38–40, to the 
best of our knowledge, there are no previous studies that focus on critical node identification on river network 
topologies.

As a solution approach for finding exact locations of critical nodes, we use the linear integer programming 
problem formulation developed in Veremyev et al.41 due to its simplicity of implementation and effectiveness 
on the considered networks. In addition, since all river networks investigated here are trees, we demonstrate 
that the considered critical node identification problem is equivalent to the problem of finding a group of nodes 
with the highest group betweenness centrality42, which can be interpreted as a quantitative measure of the role of 
a group of nodes as intermediaries in the process monitoring and control of flow in a network43–45. Note that, as 
discussed in more detail below, there is a difference between the related notions of the highest group betweenness 
centrality and a group of nodes where each node has a high “individual” betweenness centrality. Therefore, we 
distinguish the concepts of “critical” and “central” nodes throughout the paper. We investigate the locations of the 
most influential nodes obtained from both critical nodes and central nodes approaches and their role on the gen-
eration of sub-basins via fragmentation of river network topology for various simulated and real river networks. 
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The implications of these results are discussed from a network protection perspective under potential natural or 
man-made disruptions.

Results and Discussion
Simulated and natural river networks.  In this study, we generate river networks using optimal channel 
network (OCN) approach. The OCNs recreate several topologic and geometric properties commonly observed in 
real river networks. They have been explored extensively in the past and recent studies from a range of hydrologic 
and geomorphic perspectives7,21,46–49. In general, OCN modeling is based on the local minimization of the topo-
logic energy defined as = ∑ γ

=
−E L qi

N
i i1

1 , where γL qi i  represents the energy dissipated in the ith link of the network, 
and Li and Qi are its length and discharge, respectively30. The energy exponent γ, varies between 0 and 1, charac-
terizes the mechanics of erosional processes and defines branching pattern of the channel network30. For simpli-
fication, the topologic energy was computed assuming the unit distance between two adjacent nodes and a 
uniform precipitation over the entire simulated basin was applied7,38. Here, we generate channel networks for 
different values of γ (from 0.1 to 0.9; representing varying geomorphic processes) keeping the initial random tree 
network the same for each simulation.

The OCN basins were simulated on an arbitrary shape mimicking real basins using an initial square grid of 
size ×N N  nodes, where =N 50 (see, Abed-Elmdoust et al.7). Figure 1 shows simulated OCNs within a defined 
basin boundary obtained under uniform rainfall for γ = .0 3 (Fig. 1a), γ = .0 5 (Fig. 1b), and γ = .0 7 (Fig. 1c). 
Note that the networks shown here corresponded to the iteration with minimum energy ∼ ×( 2 10 )5 .

We also extracted river networks from six different natural basins located in different states across the United 
States (see Table 1 for details). The river networks were computed from 10 m resolution digital elevation mod-
els (DEMs) using same area threshold. The DEMs corresponded to varying hydrologic and geomorphic condi-
tions9,50 (Table 1) and were downloaded from National Elevation dataset website (https://viewer.nationalmap.
gov/basic/).

Centrality and node importance.  Centrality is one of the most fundamental concepts in network analysis 
which is used to quantify the “importance” or “influence” of a node to the network structure. Although various 
centrality measures have been proposed and investigated in many different contexts51,52 including network vul-
nerability analysis53,54, in this paper we focus on one particular centrality measure, betweenness centrality, due 
to its natural interpretation in the context of nodes “controlling” the environmental fluxes (e.g. water, sediments, 
nutrients) through river networks, as well as due to its direct relation to the critical node detection problem 
which we will state formally later. Specifically, we identify the locations of the most central nodes according to the 
betweenness centrality measure and compare them with the locations of the most critical nodes.

Betweenness centrality (BC) is a commonly used topological measure for identifying location and evaluating 
influence of a node on the overall network55. It is a local measure (assigns a score for each node) and is based on 

Figure 1.  Synthetic river networks generated using OCN model within a defined basin boundary and uniform 
rainfall for (a) γ = .0 3, (b) γ = .0 5, and (c) γ = .0 7. The size of the square grid used was 50 × 50. The line 
thickness represents the channel order. The bottom right subplots in each panel show the total energy 
expenditure as a function of number of iteration.

Basins
Drainage 
area (km2)

Total channel 
length (km)

Drainage 
density (1/km)

Maximum 
channel order

Average 
temperature (°F)

Average annual 
precipitation 
(rainfall-inch)

Total number 
of nodes

California 1931.05 387.78 0.201 4 64.1 12.83 76

Florida 4166.05 967.82 0.232 4 68.3 56.52 166

Texas 3365.24 761.14 0.226 4 64.3 40.97 128

Virginia 2215.18 585.17 0.264 4 56 43.11 92

South Dakota 4571.53 1350.91 0.295 5 43 21.76 188

Washington 1439.84 364.205 0.252 3 52.65 37.13 72

Table 1.  Climatic and geomorphic properties of natural basins.
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the number of shortest paths captured by each node traversing through it from the entire network. For a given 
network with nodes N, if n u( )st  is the number of shortest paths from node s to node t that pass-through node u and 
nst is the total number of shortest paths from node s to node t from the entire network, then BC (or influence) 
score (not scaled) of node u can be mathematically expressed as:

∑= .
≠

C u n u
n

( ) ( )
(1)s t u

st

st,

Figure 2 shows a hypothetical network with 12 nodes and illustrates the concept of BC. For example, out of 
∗ − =12 (12 1) 132 shortest paths among all pairs of nodes (note that there is only one shortest path between 

any pair of nodes in this network), the number of shortest paths captured by node u, here =u 7, (i.e., shortest 
paths containing node u) is 100, hence, =C u( ) 100. Notice, in this example, BC score (scaled) of node 7 is 
=100/132; this is an individual or local BC measure for node 7. Most central nodes can be identified on any net-
work based on the individual BC score.

To identify the locations of the most central nodes and their influence (strength) on the network, we com-
puted BC for each node in the entire network for varying energy exponent γ (note that the number of shortest 
paths between any pair of nodes s, t is =n 1st  if a graph is a tree which is the case in our setup). Figure 3 shows, as 
an example, the computed node-wise BC (in particular, undirected BC) using equation (1) for γ = .0 3 (Fig. 3a), 
γ = .0 5 (Fig. 3b), and γ = .0 7 (Fig. 3c). Assuming that we are interested in identifying 10 most central nodes on 
the network, we selected 10 nodes for each γ above a threshold value represented by dashed lines (Fig. 3, top 
panels). Figure 3(d–f) show locations of the 10 most central nodes superimposed on the OCN for γ = .0 3, 0.5, 
and 0.7, respectively. Also note that although we have computed networks and their characteristics for 

0 1 0 9γ = . − . , we only show results for γ = .0 3, 0.5, and 0.7 due to space considerations.

Critical node identification.  Critical node identification (CNI) problem deals with the optimal deletion of 
nodes from a network to maximize the network fragmentation. This can be achieved by minimizing the size of the 
largest remaining connected components or pair-wise connectivity, i.e., the total number of node pairs connected 
by a path41,56,57. The pair-wise connectivity is a network disruption metric which can be used for understanding 
network vulnerability (i.e., optimal response of a network to an external attack) and protection (i.e., network 
defense) purposes. Therefore, critical nodes represent a group (subset) of nodes that are crucial for maintaining 
the integrity of a network37.

In this study we use the graph-theoretic framework and integer programming formulations to identify critical 
nodes on the river network topology (see Methods for details). This framework can be used to detect critical 
nodes on a tree network. Since river networks exhibit tree like structures which can be delineated numerically 
using stream ordering schemes58–62, of interest would be to explore locations of critical nodes on these networks.

Moreover, since the considered river networks are trees, any pair of nodes is connected by exactly one shortest 
path. Hence, a pair of nodes becomes disconnected if a node belonging to the corresponding shortest path is 
removed. Thus, the number of pairs of nodes that can be disconnected by removal of one node u is equal to the 
BC score C(u) of a corresponding node.

Therefore, the detection of critical nodes in our network topology by minimizing the pairwise connectivity 
is equivalent to identifying most influential (central) group of nodes with the highest group betweenness central-
ity42 with same predefined size as number of critical nodes. In particular, the pairwise connectivity is the inverse 
of network fragmentation and the set of critical nodes is equivalent to a group of nodes with maximum group 
betweenness centrality which is a group centrality measure as opposed to individual node measure (i.e. BC).

For a group of nodes ⊆S N  in a given undirected graph G, the group betweenness centrality of S in G can be 
defined as43,44:

∑= .
∈

C S n S
n

( ) ( )
(2)s t N

st

st,

Figure 2.  Schematic example of a tree network to illustrate the concepts of central and critical nodes. Here, size 
of the group is considered to be equal to 1 (|S| = 1) and a, b, and c are the remaining connected components 
(fragmentation) after the removal of node 7. Therefore, in this case, local centrality measure and the group 
measure are the same. However, in the case of group size |S| > 1, the group BC measure is simply fraction of the 
shortest paths captured by at least one of the nodes in that group.
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This group betweenness centrality measure is based on the number of the shortest paths n S( )st  between any 
pair of nodes s t( , ) in a graph G that pass through at least one of the node in a group S, thus relating pairwise con-
nectivity with group betweenness centrality. Therefore, the critical nodes act together as a group capturing the 
highest number of shortest paths between all pairs of nodes in the network.

In other words, in the group betweenness centrality maximization formulation, the group S is the set of crit-
ical nodes whose removal fragments the network into a number of connected components that can be inferred 
as sub-basins of the river network G. In the example shown in Fig. 2, a, b and c are the remaining connected 
components due to the deletion of node 7. For a group size of 1, node 7 is the only node whose removal provides 
minimum pairwise connectivity (32 = 6 + 6 + 20 connected node pairs remain within connected components 
a, b and c, respectively) or maximum fragmentation of the network. For this group size, critical node is also the 
most central node with the highest BC score, as the number of shortest paths traversing through node 7 plus the 
number of remaining connected node pairs when node 7 is removed is 132, which is the total number of shortest 
paths among all pairs of nodes. Since, in the case of a tree network, any pair of nodes is connected by one and 
exactly one shortest path as there is no loop in the tree network, in such a case, critical nodes are equivalent to 
group of nodes with highest BC score.

Figure 4(a–c) depicts the locations of critical nodes on the synthetic networks generated by OCN approach for 
γ = .0 3, γ = .0 5, and γ = .0 7 (Fig. 4a–c, respectively) and the associated sub-basins emerged as a result of the 
critical nodes deletion (Fig. 4d–f). The definition of equation (2) also implies that, for | | =S 1, group BC becomes 
individual node BC. In other words, if one looks for a single “most important” node, then the most central node 
in a river network is also the most critical node. However, the location of the critical node is dependent on the 
group size |S|. The example shown in Fig. 5 illustrates the locations of the critical nodes based on the group sizes 
of | | =S 5 (circle) and | | =S 10 (stars) on the same synthetic network. It can be seen that the critical nodes for 
| | =S 5 are not necessarily a subset of critical nodes for | | =S 10. There are 3 critical nodes out of total 5 that are 
common in the group size | | =S 5 and | | =S 10, indicating that the location of the critical nodes is dependent on 
the group size. In this study, we use a user defined group size to minimize pairwise connection of the network 
under node removal. In short, critical nodes for a given group size (e.g. | | =S 5) is not necessarily a subset of crit-
ical nodes for larger group size (e.g. | | =S 10). However, note that, one can constrain an optimization problem 
where a group of identified critical nodes can be fixed in case new critical nodes need to be identified on the net-
work (e.g. for a larger group size).

To investigate the characteristics of sub-basins formed by the removal of critical nodes from the network as 
a function of γ, we analyze the number of fragments (sub-basins) from the modeled channel networks obtained 
using OCN approach for different γ values. These results are shown in Fig. 6 and discussed in the following 
sections.

Figure 3.  Betweenness Centrality (undirected) for (a) γ = .0 3, (b) γ = .0 5, and (c) γ = .0 7. The dashed 
horizontal line in (a–c) shows the threshold level above which 10 most central nodes were selected. Plots (d–f) 
show locations of the 10 most central nodes superimposed on the river network for γ = .0 3, 0.5, and 0.7, 
respectively.

https://doi.org/10.1038/s41598-019-47292-4
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Central nodes vs critical nodes.  Comparing locations of a set of most central nodes with most critical 
nodes on a network (Figs 3 and 4), it can be seen that the central nodes tend to be more clustered (localized) than 
critical nodes. To further understand and compare the characteristics of sub-basins induced by the central nodes 

Figure 4.  Locations of critical nodes on the synthetic networks for (a) γ = .0 3, (b) γ = .0 5, and (c) γ = .0 7. 
The associated sub-basins emerged as a result of the removal of the critical nodes can be seen in figures (d–f) for 
γ = .0 3, 0.5, and 0.7, respectively.

Figure 5.  Comparison of critical node locations on a synthetic OCN corresponding to γ = .0 5 for two different 
group sizes (i.e. |S| = 5 and |S| = 10). The critical nodes ID is also presented for visualization purposes. Among 5 
critical nodes (shown as blue circles) in |S| = 5 (bottom left panel), 3 are common in |S| = 10 (bottom right panel), 
however, 2 critical nodes (shown as red boxes) change their locations in the group size represented by |S| = 10.

https://doi.org/10.1038/s41598-019-47292-4
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and critical nodes, we analyze the number of sub-basins versus number of nodes removed. Figure 6 shows the 
fragmentation of the network resulting in sub-basins due to the removal of the most central nodes (Fig. 6a) and 
the most critical nodes (Fig. 6b). Here, 10 most central and most critical nodes are considered for comparison. 
Unlike in Fig. 6a, number of sub-basins follow a linear trend when plotted against the number of critical nodes 
removed for varying γ with an average slope ~2.43 ± 0.26. Moreover, the number of sub-basins (fragmentations) 
induced by critical node deletion is much larger in the case of critical nodes than central nodes. For example, 
excluding γ = .0 8 and γ = .0 9 (Fig. 6a), on average the number of sub-basins generated in the case of central 
nodes is roughly half of that as in the case of critical nodes, as a result of a closer node localization in the case of 
most central nodes.

Figure 7 shows the pairwise connectivity (i.e. number of connected node pairs in the remaining network) of 
the network for different γ values due to removal of the most central nodes (Fig. 7a) and the most critical nodes 
(Fig. 7b). A few observations can be made from Fig. 7. i) The pairwise connectivity (PC) shows higher variability 
as a function of γ for central nodes, whereas it almost remains same for critical nodes. ii) Overall, PC is higher for 
central nodes for larger number of nodes removed compared to critical nodes. iii) While the PC decreases with 
increasing γ for both most central and critical nodes, a clear power-law decay is observed in the case of critical 
nodes with slope parameter approximately ~−0.86 (inset in Fig. 7b). Figures 6 and 7 also suggest that the removal 
of subsequent central nodes on the list of most central nodes captured a lot of the same paths that were already 
served by the removal of previous nodes on the list. On the other hand, the group measure of BC has the ability 
to resolve this issue.

Based on above observations and defining vulnerability as the maximum fragmentation of a network, we 
argue that critical nodes, as opposed to central nodes, provide a more consistent measure to quantify the vulner-
ability of a river network under node disruptions.

Figure 6.  Fragmentation of network resulting in sub-basins due to removal of the (a) most central nodes and 
(b) the most critical nodes. Notice that the removal of critical nodes results in approximately linear slopes 
between the number of sub-basins and number of nodes removed as a function of γ.

Figure 7.  Pairwise connectivity of the network for different γ values due to removal of the most central nodes 
(a) and the most critical nodes (b). Inset in (b) shows the pairwise connectivity for critical nodes on a log-log 
plot, suggesting power-law behavior.

https://doi.org/10.1038/s41598-019-47292-4
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Critical nodes on natural river networks.  Natural river networks were extracted from 10 m resolution 
DEMs from six different regions across the United States (see Fig. 8 and Table 1). The networks were extracted 
based on same threshold flow accumulation value for channel initiation50. Similar to simulated networks, 10 crit-
ical nodes were identified using CNI algorithm discussed above and in Methods and were superimposed on the 
network for visualization purposes (Fig. 8). As can be seen from Fig. 8, the identified critical nodes are scattered 
around the network on the basin. Note that for visual perception purposes, only five critical nodes are shown on 
each network in the figure; however, both pairwise connectivity and number of sub basins were computed based 
on 10 most critical nodes.

Figure 9a shows the number of sub-basins generated as a function of number of critical nodes removal for 
different natural basins, exhibiting approximately linear relationship with removed critical nodes. However, a 
significant variability is observed between basins, in particular for a larger set of critical nodes removed. Also, 
note a higher fragmentation in case of river network from South Dakota; this may be due to higher drainage 
density (ratio of total channel length to total basin area1,6,30,63) of the South Dakota basin (see Table 1). Figure 9b 
shows the relation between the percentage of PC and number of nodes removed. As seen from Fig. 9b, the frac-
tion of the remaining connected pairs of nodes when critical nodes are removed from real river network also 
exhibits a power-law behavior for all six analyzed basins. The average power-law exponent ( = − .slope 1 02; 
obtained from log-log plots from individual basins by averaging) for the real basins is slightly steeper than 
observed from synthetic basins. This observation of power-law slope of ~−1 and its origin for both synthetic and 
natural basins require further investigation and will be the focus of a future study.

Critical node implications towards ecological and biological contexts.  In this study, we identified 
critical nodes using the notion of connectivity. The reduction in the connectivity of a network is a measure of the 
integrity of the network. Biological and ecological communities in riverine ecosystems often occur in spatially 
structured habitats where connectivity directly plays a key role in their processes. Some previous works suggested 
that the hierarchical and branching structure of river networks can explain the observed traits of the riverine 
biodiversity18 and has been argued to potentially affect the biological diversity and productivity in riverine eco-
systems20. For example, Carrara et al.18 suggested that constrained species dispersal on the dendritic network 
face higher extinction risks and heterogeneous habitats sustain higher levels of among-community biodiversity. 
Based on theoretical observations and long-term dataset, Terui et al.19 found that the branching complexity of 
riverine structure dampens the temporal variability of metapopulations and a loss of such complexity may affect 
resilience of the metapopulation19. They also suggested that scale-invariant characteristics of fractal river net-
works emerged as important stabilizing agent for riverine metapopulation19. Although the flow of water in river 
networks is directional, due to such biodiversity and ecological considerations, undirected group betweenness 
centrality was considered to detect critical nodes on the river network topology. In that sense, critical nodes iden-
tification and their locations have significant potential to understand the stability and persistence of biodiversity 

Figure 8.  DEMs and superimposed river networks for six natural basins used in this study. 5 out of 10 
identified critical nodes are also superimposed on the network for visualization purposes. The resolution of 
collected DEMs was 10 m. The channel order based on the Horton-Strahler59 ordering scheme is shown with 
different colors.

https://doi.org/10.1038/s41598-019-47292-4
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of meta-communities to stochastic watershed disturbances (e.g. floods, fires, droughts, and storms) and maintain 
ecological integrity on the landscapes as well as for quantifying relationships between patchy and heterogeneous 
habitat to network fragmentation across multiple spatial and temporal scales.

Concluding Remarks
Critical nodes are a set of nodes whose deletion result in maximum fragmentation of the network. In this paper, 
using an optimization-based approach, we identified critical nodes on synthetic (obtained from optimal channel 
network model) and natural river networks to understand the vulnerability of river networks under potential 
external disruptions. We compared the identified critical nodes with the most central nodes. We also investigated 
the characteristics of sub-basins induced by the fragmentation due to removal of central and the critical nodes 
from the network for both synthetic and natural river networks through their network disruption metrics (such 
as pairwise connectivity and number of fragmentation). The main results of this study can be summarized as 
follows:

•	 We show that, in comparison to central nodes, critical nodes maximize fragmentation (measured by the 
number of connected node pairs) of a river network.

•	 The number of connected node pairs in the remaining network, i.e. pairwise connectivity, exhibits a strik-
ing power-law relationship with number of critical nodes removed. The central nodes do not show such a 
relationship.

•	 The number of sub-basins induced by the critical nodes removal show a similar linear relationship as a func-
tion of critical nodes removed for different γ values. On the contrary, central nodes curves show a higher 
variability with different γ values. In addition, on average, critical nodes removal results in a larger number of 
sub-basins compared to that in the case of central nodes.

•	 The river networks extracted (based on constant threshold flow accumulation value) from natural basins 
corresponding to different geographic regions, exhibited power-law relationship between pairwise connec-
tivity and number of removed critical nodes with a slope similar to that observed in synthetic river networks. 
For instance, the average power-law slope for the OCNs was ~−0.86 whereas for the natural river basins was 
~−1.02.

Our results reveal the potential for identifying critical nodes and their influence on basins and sub-basins 
characteristics under varying geomorphic, climatic, and anthropogenic activities.

Methods
Critical node detection framework.  In this study, based on the graph-theoretic approach, we use linear 
integer programming formulation to detect exact locations of critical nodes on the river network topology, i.e., 
the nodes, whose removal minimizes the number of connected node pairs in the remaining graph. Specifically, 
we consider a slight variation of compact formulation techniques described in Veremyev et al.41. The presented 
framework allows to find exact optimal solutions on sparse graphs using the existing state-of-the art optimization 
solvers and standard computational power (desktop computer or laptop) within a reasonable time. We use Python 
2.7 with Gurobi 7.5.264 as an optimization solver to implement and solve the corresponding linear integer pro-
grams. Below we formally present general idea behind this formulation and the corresponding integer program 
in more details.

A river network is assumed to be represented by a simple undirected graph =G V E( , ) with a set of nodes V 
and edges E. The edge connecting node ∈i V  and ∈j V  is represented by a pair ∈i j E( , ) . Let 

Figure 9.  (a) Number of sub-basins emerged and (b) pairwise connectivity (%) as a function of number of 
critical nodes removed for different natural basins. The inset in (b) shows pairwise connectivity on a log-log 
scale. The numerical values represent the average slope fitted to linear regression lines in (a) and to the power-
law relationships shown in inset in (b).
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= ∈N i j i j E( ) { : ( , ) )} denote the neighbourhood of node i. Assume that up to K (=|S|) nodes in this graph are 
deleted as critical nodes. For any node ∈i V , we define the indicator variable vi as

=



 .

v i1, if node is deleted as a critical node,
0, otherwise (3)i

Then, for each pair of nodes i, ∈j V  ≠i j( ), we define the indicator variable uij as

=





∈
.

u i j V1, if nodes , are connected by a path in the remaining graph,
0, otherwise (4)

ij

The objective function, which quantifies the number of connected node pairs in the remaining graph, and the 
limit on the number of removed nodes can be expressed as ∑ ∈ ui j V ij,  and ∑ ≤∈ v Ki V i , respectively.

Then, the problem formulation can be written in the following simple form:

∑
∈

uminimize
(5a)i j V

ij
,

≥ − − ∀ ∈u v v i j E
subject to

1 , ( , ) , (5b)ij i j

≥ − ∀ ∉ ∈u u v i j E k N i, ( , ) , ( ), (5c)ij kj i

∑ ≤
∈

v K,
(5d)i V

i

∈ ∀ ∈ .v u i j V, {0, 1}, , (5e)i ij

The key idea behind this formulation is to recursively model connectivity variables using constraints (5b) and 
(5c). Note that this formulation is slightly different from the one developed in Veremyev et al.41 and omits some 
constraints. Those constraints are not required due to the minimization nature of the problem and such formu-
lation allows to relax variables uij to be nonnegative, as shown by Pavlikov65. In addition, for larger networks, we 
use more compact formulation which does not consider nodes with degree 1 (see Veremyev et al.41 and Pavlikov65 
for more details).

As a final remark, we note that since all river networks analyzed here are trees and the considered critical 
node detection problem has been shown to be polynomial-time solvable on trees66, it can be solved using the 
polynomial-time algorithm, in contrast to the general case of graphs where this problem is NP-hard. However, we 
use the approach that is applicable to all types of graphs (rather than the specialized polynomial-time algorithm 
designed for trees) due to its simplicity of implementation and a very short computational time for all consid-
ered network instances. In addition, we point out that there are some other studies in the critical node detection 
area employing integer programming or other techniques which can be used to identify critical nodes in river 
networks65,67–70. However, they are either more complex or require some preprocessing procedures. For more 
information on critical node detection problems and solution techniques, we refer the reader to the recent survey 
by Lalou et al.37.
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