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Cardiocerebral vascular disease (CCVD) is a common disease with high morbidity, disability, and mortality. Oxidative stress (OS)
is closely related to the progression of CCVD. Abnormal redox regulation leads to OS and overproduction of reactive oxygen
species (ROS), which can cause biomolecular and cellular damage. The Nrf2/antioxidant response element (ARE) signaling
pathway is one of the most important defense systems against exogenous and endogenous OS injury, and Nrf2 is regarded as a
vital pharmacological target. The complexity of the CCVD pathological process and the current difficulties in conducting
clinical trials have hindered the development of therapeutic drugs. Furthermore, little is known about the role of the Nrf2/ARE
signaling pathway in CCVD. Clarifying the role of the Nrf2/ARE signaling pathway in CCVD can provide new ideas for drug
design. This review details the recent advancements in the regulation of the Nrf2/ARE system and its role and activators in
common CCVD development.

1. Introduction

Cardiocerebral vascular disease (CCVD) is a common dis-
ease that seriously threatens human health, especially in
people over 60 years old [1]. Great efforts are being made
to develop effective therapies for the prevention and treat-
ment of CCVD to improve human health. Hyperlipidemia,
hypertension, and increased of blood viscosity are the main
causes of CCVD [2–4]. Although the pathogenesis of CCVD
is complicated and varied, an increasing number of studies
have implicated that oxidative stress (OS) is involved in
CCVD. Once OS produces excessive oxidative intermediates,
such as reactive oxygen species (ROS) and reactive nitrogen
species (RNS), tissue damage and even organ injury follow
[5]. The main endogenous ROS is derived from xanthine oxi-
dase, mitochondria, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, lipoxygenase, uncoupling of
nitric oxide synthase (NOS), and so on [6, 7]. ROS mediate
multiple signaling pathways that promote vascular inflam-
mation in the atherogenic process and causes vascular cell

dysfunction [8–10]. Additionally, OS and excessive produc-
tion of ROS can exacerbate myocardial or neurological
dysfunction in CCVD [11].

The Nrf2/antioxidant response element (ARE) pathway
governs the gene expression of endogenous antioxidant syn-
thesis and ROS-eliminating enzymes and can prevent cellular
damage caused by OS and ROS [12]. Nrf2-driven antioxidant
defense system also regulates a large number of detoxification
and antioxidant enzymes and thus plays an important role in
CCVD [13, 14]. The activation of Nrf2 can ameliorate car-
diac dysfunction and has obvious protective effects on the
heart and blood vessels, thereby preventing and delaying car-
diovascular disease (CVD). Moreover, the activation of Nrf2
has protective and preventive effects on cerebrovascular
damage and neurological dysfunction [15]. Therefore, treat-
ment strategies that are aimed at the Nrf2/ARE signaling
pathway are likely to resolve the impasse in CCVD treatment.

In this review, we focus on the Nrf2/ARE antioxidant
defense system and investigate its crucial role in various
CCVD pathological processes. In addition, the therapeutic
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effects of CCVD realized by activating the Nrf2/ARE sig-
naling pathway reported in the literature are summarized
and discussed.

2. Structural Characteristics and Biological
Features of Keap1/Nrf2

When OS occurs, the Kelch-like ECH-associated protein 1
(Keap1)/Nrf2 signaling pathway is activated and regulates
the expression of multiple antioxidants and detoxification
enzymes to maintain intracellular homeostasis. Antioxidant
enzymes can regulate the redox imbalance of cells and detox-
ifying enzymes can clear carcinogens and toxins.

Under basal conditions, Nrf2 is continuously ubiquiti-
nated and degraded by binding with Keap1/Cul3 ubiquitin
ligase complex [16, 17]. Keap1 is a cysteine-rich, zinc-finger
homodimer that contains 624 amino acids and is mainly dis-
tributed on the cytoplasmic actin cytoskeleton [16]. It is com-
posed of an N-terminal region (NTR), BTB (bric-a-brac,
tramtrack, and broad complex) domain, double glycine
repeat (DGR) domain, intervening region (IVR), and C-
terminal region (CTR) (Figure 1(a)). Keap1 recruits Cul3
through the BTB domain, and the BTBmediates the homodi-
merization of Keap1, which is necessary to sequester Nrf2 in
the cytoplasm [18, 19]. The DGR domain, also known as the
Kelch domain, binds with the Neh2 domain (DLGex and
ETGE motif) of Nrf2. However, the binding is competitively
inhibited by proteins that have ETGE-like motifs such as p62
[20]. IVR is characterized by cysteine-rich residues, which
senses electrophiles and OS. In addition, the BTB-IVR
domain binds to Cul3 and Roc1 to form a Keap1-Nrf2-
Cul3-Roc1 complex, which helps Nrf2 to undergo proteaso-
mal degradation [19]. The Keap1-dependent Nrf2 activation
depends on the redox-sensitive reactive cysteine residues in
Keap1. C273, C151, and C288, the three well-characterized
cysteine residues, are the main cysteine sensors for disrupting
the Keap1-Nrf2 complex [21, 22]. Other Keap1 cysteine res-
idues, including C226, C434, and C613, seem important for
sensing specific electrophiles.

Nrf2 is a transcription factor containing 605 amino acids
that were originally cloned from the human leukemia cell line
K562 and belongs to the cap-n-collar (CNC) family of basic
leucine zippers [23]. It is composed of seven highly conserved
domains named Neh1-Neh7, and each domain possesses a
different function (Figure 1(b)). The Neh1 domain contains
a zipper structure called CNC-bZIP and forms a heterodimer
with small musculoaponeurotic fibrosarcoma (sMaf) respon-
sible for Nrf2 binding to ARE [24]. The N-terminal Neh2
domain is the regulatory domain of Nrf2 for its interaction
with Keap1. The Neh2 has a high affinity binding site to
Keap1 named the ETGE motif and a low affinity site called
DLGex motif, which form the structural basis of the “latch
and hinge” together [25, 26]. Deletion or mutation of the
ETGE or DLG motif will disrupt the Nrf2-Keap1 interaction
and lead to the activation of the Nrf2/ARE pathway [26, 27].
The C-terminal Neh3 domain interacts with chromo-ATPa-
se/helicase DNA-binding protein 6 (CHD6), which is essen-
tial for the transactivation of ARE-dependent genes after
chromatin remodeling [28]. The Neh4 and Neh5 are respon-

sible for the transcriptional activation of Nrf2 by binding
with the coactivator cyclic adenosine monophosphate
(cAMP) response element-binding protein (CREB) and/or
steroid receptor coactivator 3 (SRC3) [29]. The Neh6 domain
plays a role in phosphorylation- and ubiquitination-based
regulation of Nrf2 activity. The DSGIS and DSAPGS mod-
ules of Neh6 interact with glycogen synthase kinase-3β
(GSK-3β) and β-transducin repeat-containing protein (β-
TrCP) to recruit the kinase-associated protein or Roc1 core
E3 ubiquitin ligase to mediate Nrf2 degradation [30]. The
Neh7 domain can suppress Nrf2 by interacting with retinoid
X receptor [31].

3. Nrf2 Signaling Pathway and
Antioxidative Mechanism

Nrf2 is an important transcription factor that plays a crucial
role in cytoprotection against OS and regulated by multiple
signaling pathways.

3.1. Keap1/Nrf2/ARE Signaling Pathway. The Keap1/Nr-
f2/ARE signaling pathway is the most critical pathway to reg-
ulate the Nrf2 and cellular antioxidant stress defense system.
At the homeostatic state, Nrf2 binds with Keap1 and is
degraded through the ubiquitin proteasome pathway
(Figure 2(a)). When subjected to OS and electrophilic, the
key cysteine residues on Keap1 are covalently modified, lead-
ing to a conformational change of Keap1 [32–34], following
the disassociation of Keap1 from the DLG motif, and there-
fore, Nrf2 is activated (Figure 2(b)). Subsequently, the free
Nrf2 enters the nucleus and binds to ARE to initiate the
expression of downstream phase II gene detoxification
enzymes and antioxidant enzymes, such as heme
oxygenase-1 (HO-1), NAD(P)H dehydrogenase, quinone 1
(NQO1), glutathione-S-transferase (GST), superoxide dis-
mutase (SOD), aldehyde dehydrogenase-1,2, UDP-glucuro-
nosyltransferase, glutamate-cysteine ligase, and regulatory
subunits including thioredoxin reductase 1, sulfiredoxin, glu-
tathione reductase (GR), peroxiredoxin (Prx), thioredoxin
(Trx), catalase, and glutathione peroxidase (Table 1).

p62/SQSTM1 is an autophagy adaptor protein that was
initially identified as a tyrosine kinase p56lck-binding pro-
tein. The 349-DPSTGE-354 motif (STGE motif), located in
the Keap1-interacting region (KIR) domain of p62, resembles
the ETGE motif in the Neh2 domain of Nrf2 which binds
with Keap1 and the initial autophagic degradation of Keap1;
subsequently, Nrf2 is released to activate the target genes [20,
35]. OS signaling induces p62-mediated Nrf2 activation by
regulating p62 phosphorylation [36]. For example, the phos-
phorylation of S349 in the STGEmotif can enhance the bind-
ing of Keap1 with p62, thus further activating Nrf2 [36, 37]
(Figure 2(b)).

3.2. Other Mechanisms of Nrf2 Regulation. Nrf2 is a degrada-
tion target of synoviolin (Hrd1) and β-TrCP. The degrada-
tion of Nrf2 by β-TrCP depends on GSK-3β, which
phosphorylates specific serine residues in the Neh6 domain
of Nrf2 to create a degradation domain that is recognized
by the ubiquitin ligase adapter β-TrCP and tagged for
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proteasome degradation by the Cullin1-Rbx1 complex [38].
Hrd1 is an E3 ubiquitin ligase anchored to the endoplasmic
reticulum and reacts with X-Box binding protein 1, which
is associated with the unfolded protein response, causing
the degradation of Nrf2 (the endoplasmic reticulum-
associated degradation) [39, 40]. However, considering that
Keap1 has a strong effect on Nrf2, under acute oxidative
conditions, β-TrCP/Hrd1-mediated Nrf2 degradation may
not affect the activation of Nrf2 upon Keap1 oxidation. Fur-
thermore, Hrd1 is associated with cardiac dysfunction, car-
diac hypertrophy, and the apoptosis of cardiomyocytes
[41]. Therefore, the study of the interaction between Hrd1
and Nrf2 during heart injury may further reveal the patho-
genesis of CVD.

Moreover, protein kinases also play a vital role in regulat-
ing Nrf2. Threonine or serine accounts for approximately
15% of the amino acids in the Nrf2 protein, which are poten-
tial phosphorylation sites for threonine/serine kinases. Phos-
phorylation of specific residues of Nrf2 can increase its
stability and transactivation activity. The typical protein
kinases of phosphatidylinositol 3-kinase (PI3K), extracellular
signal-regulated protein kinase (ERK), protein kinase C
(PKC), and c-Jun N-terminal kinase (JNK) positively regu-
late Nrf2, while p38-MAPK (mitogen-activated protein
kinases) feedback negatively regulates the Nrf2 pathway
[42–44]. The effect of the AKT kinase is associated with mod-
ulation of GSK-3β, which can directly phosphorylate Nrf2
protein at a serine in the DSGIS motif in the Neh6 domain
[30, 45]. In addition, GSK-3β can negatively regulate the

Nrf2 by activating Fyn kinase (cause Nrf2 inactivation and
away from the nucleus) [46] (Figure 2(b)).

MicroRNAs (miRNAs) are regulators that control
protein production by inducing posttranscriptional and/or
translational inhibition [47]. Nrf2 activity is also regulated
by miRNAs at the posttranscriptional level. Specifically,
miR-27a, miR-142-5p, miR-144, miR-153, miR-34a-5p, and
miRNA-199a-5p can affect the level of Nrf2 protein [48–
50]. Additionally, under normal conditions, the Bach1
(BTB and CNC homology 1) and sMaf proteins form a
heterodimer to suppress the activation of Nrf2 [51]
(Figure 2(b)).

4. Cross Talk between Nrf2 and Other
Signaling Pathways

Both Nrf2 and NF-κB are activated in response to OS, but
they produce opposite effects on the body. In general, Nrf2-
induced genes have anti-inflammatory and antioxidant
effects, while NF-κB promotes inflammation and OS. Abun-
dant evidence suggests that these two opposing effects play an
antagonistic or coordinating role in maintaining redox bal-
ance. Specifically, when activated Nrf2 is elevated, down-
stream genes regulated by Nrf2 will create a reducing
environment to limit the activity of NF-κB [52]. Conversely,
inactivation of Nrf2 reduces NF-κB suppression, thereby
exacerbating the inflammatory response [53]. Actually, the
interaction of Nrf2 and NF-κB differs by cell types and tissue
context due to the extensiveness of the genes induced by
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Figure 1: Schematic structure of Nrf2 and Keap1. (a) Domain structure of Keap1. The BTB domain recruits Cul3 and mediates Keap1
homodimerization. The IVR interacts with Cul3 and Roc1. The DGR/Kelch domain binds with Nrf2. C151, C278, and C273 are OS-
sensitive cysteines. (b) Domain structure of Nrf2. The Nrf2 protein consists of 7 domains. Neh1-Neh7: Neh2 binding with Keap1 through
the DLG and ETGE motifs. The binding affinity of the ETGE motif for Keap1 is 200-fold higher than that of the DLG motif. Neh4 and
Neh5 bind with CREB/SRC3, facilitating Nrf2 transcription. Neh7 interacts with the retinoid X receptor to repress Nrf2. Neh6 binds β-
TrCP to promote the ubiquitination and proteasomal degradation of Nrf2. Neh3 interacts with the transcription coactivator CHD6.
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these two transcription factors [53, 54]. Determining the spe-
cific correlation between the Nrf2 and the NF-κB cross talk
networks helps to further clarify the anti-inflammatory
mechanisms of Nrf2 activators in CCVD.

In addition to NF-κB, Nrf2 also cross talks with the
Notch signaling pathway. The Notch signaling pathway can
regulate cell proliferation, differentiation, wound healing,
and homeostasis through cell-cell communication [55].
Notch directly induces expression of Nrf2 and its target genes
via the recruitment of the Notch intracellular domain tran-
scriptome to a conserved Rbpjk site in the promoter of
Nrf2 [56]. Therefore, Nrf2 plays an important role in tissue
repair and homeostasis through cross talk with the Notch sig-
naling pathway. For example, ROS can regulate stem cell
homeostasis through Nrf2-dependent Notch signaling [57].
The endothelial progenitor cells could exert therapeutic effect
on acute lung injury via miR-141-3p-Notch-Nrf2 axis [58].
Furthermore, through overlapping transcriptional targets,
Nrf2 cross talks with heat shock factor 1 to exhibit cytopro-
tection [59].

5. Nrf2 Signaling Pathway and CVD

Inflammatory factors and ROS produced by OS play key
roles in the deterioration of CVD. Excessive production of
ROS or RNS promotes the formation of hypertension and
impairs the processing of cardiac calcium, resulting in
arrhythmias and enhancing cardiac remodeling [60]. More-
over, OS is related to the development of cardiac dysfunction
and the pathogenesis of heart failure caused by myocardial
cell apoptosis [61]. The complex network of antioxidant
enzymes and detoxifying enzymes regulated by Nrf2 shows
that Nrf2 is a “golden finger” in preventing CVD damage
[62]. For instance, during cardiac hypertrophy and myocar-
dial ischemia-reperfusion injury (MIRI), the activation of
Nrf2 has been proven to protect cardiomyocytes, thereby
reducing myocardial infarct size [63]. NADPH oxidase-4
can activate the Nrf2 signaling pathway to regulate the redox
of glutathione (GSH) in myocardial cells and protect the
hearts of mice against chronic hypertension [64]. Nrf2 plays
an important role in CVDs by maintaining redox
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homeostasis, such as hypertension, atherosclerosis, myocar-
dial infarction (MI), and heart failure [65]. In addition,
Nrf2 knockout mice provide a convenient model for Nrf2
research into CVDs, and many Nrf2 activators have been
tested, which can greatly advance the research on CVD pre-
vention and therapy.

5.1. Effects of Nrf2 Activation on Hypertension.Hypertension,
known as a silent killer, is the most common chronic disease
worldwide. Despite advanced drug treatment strategies, it
remains a major cause of death worldwide. The relationship
between Nrf2 and the development of hypertension is
unclear, but substantial evidence indicates that Nrf2 activa-
tion can prevent the development of hypertension. For exam-
ple, maternal Nrf2 activation by dimethyl fumarate can
protect male rat adult offspring against hypertension in
adulthood that is triggered by a combination of dexametha-
sone and high-fat diet exposures [66]. In addition, the activa-
tion of Nrf2 has a positive therapeutic effect on cell and organ
damage caused by hypertension. For instance, luteolin, a
natural flavonoid compound, ameliorated sodium fluoride-
induced hypertension and cardiovascular complications by
activating the Kim-1/NF-κB/Nrf2 signaling pathways [67].
A functional bioactive peptide in potato enhances the Nrf2-
induced antioxidant defense system to attenuate renal dam-
age in hypertensive rats [68]. Furthermore, the activation of
Nrf2 also obviously protects the blood vessels challenged by
hypertension. For instance, the overexpression of Sirtuin6
alleviated angiotensin II-induced vascular endothelial cell
apoptosis and OS by promoting the Nrf2/ARE antioxidant
signaling pathway [69]. Similarly, through the Nrf2 and
NF-κB pathways, tilapia by-product oligopeptides had a vas-
cular protective effect on human umbilical vein endothelial
cells in an angiotensin II-induced hypertension endothelial
injury context [70]. In contrast, the absence or mutation of
Nrf2 promotes the development of hypertension. For exam-

ple, deletion of the Nrf2 gene in the rostral ventrolateral
medulla (RVLM) leads to a significant increase in the blood
pressure [71]. Genetic variations decreasing the expression
of Nrf2 may affect the trigger of downstream target genes,
thereby increasing the risk of hypertension and coronary ath-
erosclerosis [72]. In addition, mutations in Nrf2 have been
shown to cause a multisystem disorder [73].

5.2. Effects of Nrf2 Activation on Atherosclerosis. OS and
inflammation lead to endothelial cell damage, smooth muscle
cell proliferation, and cholesterol lipid deposition, causing
atherosclerosis. The absence of Nrf2 in macrophages leads
to increased foam cell formation and exacerbates atheroscle-
rosis [74]. In contrast, the activation of Nrf2 can suppress
inflammation and alleviate atherosclerosis. In the initial stage
of atherosclerosis, epigallocatechin gallate (EGCG), a poly-
phenol rich in green tea, can reduce the production of ROS
and inhibit inflammation and endothelial cell apoptosis by
activating the Nrf2/HO-1 pathway [75]. EGCG also inhibits
the lipid metabolism of macrophage foam cells by activating
the Nrf2/Keap1 pathway to upregulate the ATP-binding
membrane cassette transporter A1 [76]. In addition, Z-ligus-
tilide, a natural benzoquinone derivative in many widely used
Chinese herbal medicines, is an effective Nrf2 activator that
can protect vascular endothelial cells (VECs) against the
high-fat diet-induced atherosclerosis [77]. Resveratrol, a
nonflavonoid polyphenol from grapes, suppresses the
expression of intercellular adhesion molecule-1 through the
transcriptional regulation of the FERM-kinase (a domain of
focal adhesion kinase) and Nrf2 interaction, thereby blocking
monocyte adhesion and delaying the onset of atherosclerosis
[78]. In addition, a novel derivative of resveratrol, trans-
3,5,4′-trimethoxystilbene, can suppress foam cell formation
to protect against atherosclerosis [79]. These findings
demonstrate that the activation of Nrf2 can inhibit athero-
sclerosis. However, some evidence suggests that Nrf2 also

Table 1: Typical downstream target proteins regulated by the Nrf2 signaling pathway.

Antioxidative or cytoprotective proteins Function

HO-1
The rate-limiting enzyme in the process of heme catabolism; it converts

heme to biliverdin.

NQO1
A flavin adenine dinucleotide-binding protein forms homodimers

and reduces quinones to hydroquinones.

γ-Glutamylcysteine synthetase Catalyzes and regulates GSH biosynthesis and posttranslational levels.

Glutathione peroxidase 1
An important peroxidase in the body. It can catalyze GSH into oxidized glutathione (GSSG)

and reduce toxic peroxides to nontoxic hydroxyl compounds.

GSTs
Key enzymes in the GSH-binding reaction. They catalyze the initial steps of the

GSH-binding reaction and are mainly present in the cytosol.

GR An enzyme that uses NADPH to catalyze GSSG into reduced GSH.

SOD
An antioxidant metalloenzyme capable of catalyzing a disproportionation of

superoxide anion radicals to oxygen and hydrogen peroxide.

Trx A protein disulfide reductase that is itself reduced by thioredoxin reductase.

Catalase A highly efficient enzyme that reduces H2O2 to water and oxygen with Fe at the catalytic site.

Glutamate-cysteine ligase
Converts glutamate and cysteine into γ-glutamylcysteine and catalyzes the first

step of glutathione (GSH) biosynthesis.

Prx A class of peroxidase widely present in prokaryotes and eukaryotes that scavenge ROS.
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exacerbate atherosclerosis. For example, Nrf2 promotes ath-
erosclerosis by affecting plasma lipoproteins and cholesterol
transport [80]. Nrf2 knockout has been shown to protect
against atherogenesis in ApoE-deficient mice [81]. In addi-
tion, atherosclerosis is exacerbated significantly by curcumin
(Nrf2 activator) in ApoE-deficient mice through increasing
expression of CD36 [82]. Nrf2 also contributes to cholesterol
crystal-induced inflammasome activation and atherosclero-
sis worsening [83]. These findings implied that the relation-
ship between Nrf2 and the development of atherosclerosis
is complex.

In conclusion, Nrf2 not only inhibit the deterioration of
atherosclerosis by suppressing OS, inflammation, and plaque
deposition [84] but also play a negative role in atherosclero-
sis. This complex relationship between Nrf2 and the devel-
opment of atherosclerosis indicates that the atherogenic
effect of the Nrf2 activator needs to be considered when it
is used clinically.

5.3. Effects of Nrf2 Activation on MI and MIRI.MI can cause
myocardial necrosis because of persistent ischemia and hyp-
oxia induced by blocked coronary arteries. Myocardial dam-
age or cell apoptosis is initially caused by increased ROS
upon ischemia. Nrf2-deficient mice develop heart failure
more quickly after MI and have maladaptive remodeling,
including cardiac hypertrophy and left ventricular dilatation
[85]. This finding indicates a key role of Nrf2 in preventing
the development of MI.

Statins are effective lipid lowering agents with good safety
and have a beneficial effect on patients with MI, and adjuvant
use can enhance the efficacy of the current treatment strategy
[86]. Although the cardioprotective mechanism of statins is
unclear, studies have shown that they can ameliorate heart
function by activating the Nrf2 pathway. For example, after
MI, the rats treated with ulinastatin, a medication for pancre-
atitis, showed upregulated Nrf2, HO-1, and NQO1 and
downregulated NF-κB, thereby slowing the progression of
MI [87]. In addition, atorvastatin can reduce infarct size
and improve left ventricular function [88], and rosuvastatin
(a selective HMG-COA reductase inhibitor) can suppress
atrial tachycardia-induced cellular remodeling [89]. Both
drugs are related to Nrf2 activation. Interestingly, lithium
has been found to be effective for treating MI in rats [90]. It
ameliorated MI through reducing the nerve growth factor
expression via the activation of the Nrf2/HO-1 pathway.
Lithium is a GSK-3β inhibitor, indicating that the mecha-
nism may be related to Fyn-dependent Nrf2 activation.

The therapeutic effect of potential small-molecule
inducers of Nrf2 has been studied on MI mice models. The
stilbenoid pterostilbene complexed with cyclodextrin can pre-
serve left ventricular function of MI rats by increasing the
activity of GST and glutaredoxin (GRx) and the expression
of Nrf2 and p-GSK-3β [91]. Moreover, 3-n-butylphthalide
(NBP), a drug used in the treatment of ischemic stroke, can
inhibit OS and the inflammatory response to reduce myocar-
dial cell death of MI rats through the AKT/Nrf2 signaling
pathway [92]. Andrographolide, a labdane diterpene, can also
protect against adverse cardiac remodeling of MI mice
through enhancing the Nrf2 signaling pathway [93].

Reperfusion after ischemia can restore tissue and organ
function and lead to the damaged structure repair. However,
MIRI-induced OS in turn affects signaling pathways, leading
to apoptosis, endoplasmic reticulum stress, mitochondrial
dysfunction, and changes in cell migration and proliferation
[94, 95], which may lead to further deterioration of MI. The
Nrf2/ARE signaling pathway can resist these changes
through its anti-inflammatory, antioxidant, and cell protec-
tion effects, such as ameliorate mitochondrial dysfunction
[96]. In addition, Nrf2-deficient mice have increased the sen-
sitivity to ischemic injury [97]. It means that mice lacking
Nrf2 are more vulnerable to MIRI.

Ischemic preconditioning and ischemic post-conditioning
are effective methods to protect myocardial tissue against
MIRI [94]. Apart from these, after posttreatment with pinaci-
dil, the expressions of Nrf2, HO-1, NQO1, and SOD1 in rat
are increased, thus significantly reducing the area of MI [98].
Moreover, hyperbaric oxygen preconditioning prevents MIRI
by activating the PI3K/AKT/Nrf2 antioxidant defensive sys-
tem [99]. Many strategies that activate Nrf2 have therapeutic
effects on MIRI. L-Carnitine inhibited the NF-κB pathway
and activated the Nrf2 pathway, thereby generating protective
effects on MIRI [100]. In addition, dihydroquercetin,
GYY4137 (a slow-releasing hydrogen sulfide donor), alpha-
lipoic acid, etc., also generated protective effects on MIRI
through similar mechanisms [101–103]. L-Malate provide
protection against MIRI through the typical Keap1/Nrf2
pathway [104]. Additionally, some total extracts are equally
effective, such as total flavonoids from Clinopodium chinense
(Benth.) O. Ktze which can also limit MIRI and enhance
cellular antioxidant defense capacity by activating the
AKT/Nrf2/HO-1 signaling pathway [105].

Overall, the expression of Nrf2 is downregulated in the
hearts of MI rats, leading to the reduced expression of a series
of antioxidant and detoxifying enzymes regulated by Nrf2.
Nrf2-deficient rats are likely to develop heart failure faster,
resulting in poor cardiac remodeling. Adjuvant use of statins
in the treatment of MI is a good choice. Although reperfusion
can effectively ameliorate damage caused by ischemia, MIRI
needs to be avoided. Postischemic treatment or ischemic pre-
conditioning is essential to avoid the side effects of MIRI.
Many strategies to activate Nrf2 have been proven to resist
MI and MIRI, which means that Nrf2 activators are worth
considering for the treatment of MI and reperfusion.

5.4. Effects of Nrf2 Activation on Heart Failure. Heart failure
is the end of the development stage of heart diseases and gen-
erally is the unfavorable outcome of pathological heart
hypertrophy. The activation of Nrf2 can alleviate pathologi-
cal cardiac hypertrophy [106]. The study has shown that
the effect is related to upregulation of the metabolic enzymes
UGT1A1 and UGT1A9 through Nrf2 binding to the pro-
moter region of UGT1A1 or UGT1A9 [107]. The literature
on Nrf2 in experimental models of heart failure supports its
cardioprotective effect, such as bardoxolone methyl which
can ameliorate MI-mediated chronic heart failure by activat-
ing Nrf2 [108]. Interestingly, overexpression of Nrf2 in the
RVLM attenuated sympathetic excitement in mice with cor-
onary artery ligation-induced chronic heart failure [109]. In
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addition, upregulating the Nrf2 protein in the RVLM of mice
with heart failure reduced the sympathetic function [110].
This finding indicated that the activation of Nrf2 is beneficial
for improving sympathetic excitement in heart failure. In
addition, Nrf2 has been identified as an effective therapeutic
target for angiotensin II-mediated various cardiomyopathies
including cardiac fibrosis, cardiac hypertrophy, and heart
failure [111–113].

Arrhythmia is one of the factors that induce heart failure;
the recent study has revealed that arctigenin (ATG) (an effec-
tive anti-inflammatory drug) pretreatment showed antiar-
rhythmia effect against MIRI in rats which is probably
associated with the Nrf2 signaling pathway [114]. Another
study showed that NBP can also significantly improve car-
diac function (reduced cardiac fibrosis and hypertrophy) by
upregulating the PI3K/AKT/Nrf2 signaling pathway [115].
Zingerone, a phenolic alkanone isolated from ginger, has
been found to be effective in improving heart remodeling
via activation of the eNOS/Nrf2 pathway [116]. Furthermore,
the triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic
acid (CDDO) and its analog DH404, sodium sulfide, and
nitrite also have a certain therapeutic effect on heart hyper-
trophy and failure [117–120].

In general, heart dilatation or pressure overload is the
main cause of heart failure. Nrf2 activator can reduce the
symptoms of heart failure, such as ventricular fibrillation,
ventricular tachycardia, cardiac hypertrophy, and cardiac
fibrosis. In addition, Nrf2 activation can also ameliorate sym-
pathetic excitement.

6. Nrf2 Signaling Pathway and Cerebrovascular
Disease (CD)

CD is brain tissue damage due to disordered intracranial
blood circulation. Cerebral edema and cerebral tissue dam-
age are common severe sequelae of CDs that are associated
with many pathways. Among them, ROS and inflammation
are the key mediators of neurovascular dysfunction brain
and tissue damage [121, 122]. In the early stages of CD,
glutamate-induced excitotoxicity and OS rapidly cause brain
cell death, and in the later stages, the proinflammatory and
proapoptotic mediators exacerbate the deterioration of CD
such as interleukin 1 and cyclooxygenase 2 [123]. The activa-
tion of Nrf2 can effectively resist the process of acute or
prolonged inflammatory and apoptosis by regulating antiox-
idant enzyme, detoxification enzyme, and apoptotic proteins
(such as Bcl-2 and Bax) [124].

6.1. Effects of Nrf2 Activation on Cerebral Hemorrhage.
Cerebral hemorrhage refers to bleeding caused by nontrau-
matic rupture of cerebral parenchymal blood vessels, with a
high mortality rate [125]. Currently, there is no effective
treatment for cerebral hemorrhage. Mounting evidence
shows that the occurrence of OS and the inflammatory
response after cerebral hemorrhage are related to secondary
brain damage and neurological dysfunction. Nrf2-knockout
animals have poorer functional and behavioral outcomes
after subarachnoid hemorrhage (SAH) [126]. In the cerebral
hemorrhage, Nrf2 may protect the astrocytes and neurons

against toxic damage and regulate the expression of anti-
inflammatory markers and antioxidant enzymes [127–129].
The poor prognosis of intracranial hemorrhage (ICH) is
caused by OS-induced secondary brain injury (SBI). For
example, blood components induce overproduction of ROS
and cause cytotoxicity, which in turn causes neuronal dam-
age and neurological deficits [130]. Therefore, the inhibition
of OS and inflammation is essential for reducing SBI after
cerebral hemorrhage.

The activation of Nrf2 can protect the brain by improving
barrier function and reducing edema and inflammation, as
well as alleviating the loss of neurons and neurological defi-
cits. Gastrodin, the main phenolic glycoside extracted from
the plant root, reduced neuronal apoptosis and neurological
deficits resulting from cerebral hemorrhage by regulating
the Keap1/Nrf2/HO-1 pathway [131]. Simvastatin, a
cholesterol-lowering medication, promoted the recovery of
the nervous system and attenuated the OS and inflammatory
damage caused by cerebral hemorrhage through the
Nrf2/ARE signaling pathway [132]. Interestingly, mono-
methyl fumarate, the pharmacologically active metabolite of
dimethyl fumarate, protected rats from ICH via inhibiting
OS and inflammation through activating the microRNA-
139/Nrf2 axis [133]. Administration of isoliquiritigenin (a
flavonoid from the roots of Glycyrrhiza glabra) after ICH
reduced early brain injury and neurological deficits, sup-
pressing ROS and/or NF-κB-mediated NLRP3 inflamma-
some activation by promoting the Nrf2 antioxidant
pathway [129]. Isoliquiritigenin may be a potential candidate
for a new treatment strategy for ICH. In addition, melatonin,
tert-butylhydroquinone, and mononucleotides can produce
neuroprotective effects against cerebral hemorrhage by acti-
vating the Nrf2 signaling pathway [134–136]. For SAH,
Nrf2 has potential protective effects through the promotion
of the antioxidant and anti-inflammatory responses [126].
Mangiferin, a diphenylpyrone flavonoid, and sulforaphane
have been proven to reduce brain damage after ICH. Mangi-
ferin has neuroprotective effects on early brain injury after
SAH [137]. Sulforaphane can inhibit the inflammatory
response and attenuate cerebral vasospasm in rats with
subarachnoid hemorrhage via activating the Nrf2/ARE
pathway [138].

In conclusion, the adverse effects of early cerebral hemor-
rhage and a series of SBIs are related to the release of toxins
from cells, triggering inflammation and OS and causing the
death of nerve cells. Many studies have shown that Nrf2 acti-
vators have obvious therapeutic effects on cerebral hemor-
rhage, which is mainly reflected in the protection of various
brain cells.

6.2. Effects of Nrf2 Activation on Cerebral Infarction (CI) and
Cerebral Ischemia/Reperfusion Injury (CI/RI). CI is caused
by insufficient blood supply to the brain and ischemic
necrosis caused by ischemia and hypoxia or softening of
the brain tissue, which can lead to neurological deficits.
OS is one of the main causes of neuronal cell damage
and death. After CI, the activation of the Nrf2/HO-1 path-
way can improve redox imbalance to protect the brain
from CI injury [139].
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Currently, urinary kallidinogenase (a glycoprotein com-
posed of 238 amino acids) is widely used in the treatment
of CI. Recent experiments have shown that it can inhibit neu-
ronal apoptosis and protect rats against CI by activating the
Nrf2/ARE pathway [140]. Another tissue kallikrein can
protect the brain against ischemic stroke by inhibiting the
TLR4/NF-κB signaling pathway and activating the Nrf2 sig-
naling pathway in rats [141]. There are also some reports
about traditional Chinese medicine treatment strategies for
CI. For example, the salvianolate lyophilized injection, the
danshen aqueous extraction, was an ideal drug for the treat-
ment of ischemic and hypoxic injury in rats with middle
cerebral artery occlusion and type 1 diabetes, and the mech-
anism involved the activation of the Nrf2/HO-1 signaling
pathway [142]. The Huang-Lian-Jie-Du decoction is a
Chinese medicine prescription that has been proven to play
a protective role in the rat model of ischemic stroke via the
activation of Nrf2 [143]. Andrographolide, the main
ingredient of the Chinese medicine Andrographis paniculata,
can significantly suppress free radical formation, blood-brain
barrier disruption, and CI through activating the
p38/Nrf2/HO-1 signaling pathway [144]. Interestingly,
immune cells and bonemarrowmononuclear cells (BMMCs)
have been investigated as possible treatments for CI. The
research has shown that it can reduce OS, apoptosis, and
inflammatory responses through the PI3K/AKT/Nrf2 signal-
ing pathway, by which they promote the secretion of nerve
and vascular cytokines, improving the neurological function
and reducing the infarct scope [145].

CI causes rapid and irreversible neuronal damage in the
ischemic core. If the flow is restored timely, then the sur-
rounding congested brain tissue can be rescued. However,
ROS and other free radicals are also rapidly generated during
reperfusion and may aggravate CI injury [146]. The Nrf2-
regulated antioxidant defense system can promote blood flow
recovery to protect brain and nerve tissue during reperfusion
[147]. In addition, the activation of Nrf2 also protected astro-
cytes, thereby protecting neurons from CI/RI [148].

Chlorogenic acid, the major polyphenolic compound in
coffee, has a neuroprotective effect against cerebral ische-
mia/reperfusion (CI/R) rats by activating the Nrf2 pathway
and inducing NQO1 and HO-1 expression [149]. Further-
more, lyciumamide A from wolfberry can prevent CI/RI by
activating the PKC/Nrf2/HO-1 signaling pathway, thereby
ameliorating oxidative damage and attenuating neuronal
apoptosis [150]. A novel biscoumarin compound, known as
COM 3, can increase the survival of neurons experiencing
oxygen and glucose deprivation and reduce brain infarct vol-
umes in mice with aMCAO by changing the conformation of
Keap1 and activating the Nrf2 pathway, which balances
endogenous redox activity and restores mitochondrial func-
tion [151]. The extract of Ginkgo biloba has a good effect
on the treatment of stroke, and recent research shows that
ginkgolides and bilobalide have obvious antioxidant effects
on CI/RI by activating the AKT/Nrf2 pathway in vitro and
in vivo [152]. Schizandrin A (extract of Schisandra fruit) pro-
tects against CI/RI by regulating the AMPK/Nrf2 pathway
[153]. In addition, uric acid, total flavonoids extracted from
Abelmoschus esculentus L and fucoxanthin also can effec-

tively alleviate CI/RI by activating the Nrf2/HO-1 signaling
pathway [154–156].

Overall, the activation of Nrf2 can improve the poor
prognosis of CI by reducing the infarct size and conferring
protection effects on the nerves. CI/R is an effective treatment
for CI. However, CI/RI is a nonnegligible factor in the treat-
ment of CI, which severely limits the rehabilitation of
patients. Accumulated studies have shown that the Nrf2-
induced antioxidant defense system is also effective for treat-
ing CI/RI. From this perspective, the activation of Nrf2 might
be a good choice for the prevention of CI/RI and improve-
ment of the poor prognosis of CI.

7. Comparison of Nrf2 Activation in CCVD

Both CVD and CD are vascular system diseases, so the role of
Nrf2 in CCVD is highly similar. VECs are an integral part of
the heart and vasculature and play an important role in
angiogenesis, hemostasis, and regulation of vascular tone
[157]. Overproduction of ROS and redox imbalance are the
main causes of endothelial dysfunction. Nrf2 activation can
not only improve endothelial dysfunction in CCVD by
reducing OS and inflammation and increasing nitric oxide
bioavailability but also protect VECs by regulating the
expression of antioxidant enzymes and detoxification
enzymes [158]. Vascular smooth muscle cells (VSMCs) are
the main structural components of the vessel wall and play
a pivotal role in regulating the remodeling processes of the
vessel wall. When CCVD occurs, under the stimulation of
OS and inflammatory cytokines, in addition to the conver-
sion to a calcified phenotype, the proliferation and migration
of VSMCs will also be enhanced [159, 160], which may lead
to intimal hyperplasia and vascular calcification. Nrf2 activa-
tion which inhibits the proliferation, migration, and calcifica-
tion of VSMCs has been reported by many studies [161–163],
which can ameliorate pathological changes in vascular. In
addition, the activation of Nrf2 can also inhibit the formation
of foam cells, including macrophages and VSMCs [164, 165],
which can inhibit the production of fat streaks and are very
important for maintaining vascular function (Figure 3(a)).

The role of Nrf2 also shows some differences in CCVD.
Nrf2 activation can protect neurons from OS and inflamma-
tory damage through various pathways. Microglia are profes-
sional phagocytes with immune function in the brain and
play a key role in maintaining normal brain function [166],
but their activation is considered to be the main cause of
inflammatory damage in CI [167]. When CD occurs (such
as CI), microglia are activated and release inflammatory cyto-
kines, resulting in the inflammatory response and exacerbat-
ing brain tissue damage [168, 169]. Nrf2 activation can
inhibit the activation of microglia and promote its polariza-
tion to the M2 phenotype [170, 171]. In addition, erythrocyte
lysis produces heme in CCVD, which is considered to be a
neurotoxin and results in brain edema and tissue damage.
The PPARγ-Nrf2 signaling pathway can activate the endoge-
nous scavenging pathway, thereby promoting the removal of
hematoma by microglia and ameliorating the hematoma
symptoms of CI [172]. The activation of Nrf2 can also activate
the expression of HO-1 to further accelerate the clearance of
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heme. As for CVD (such as MI), Nrf2 activation can not only
protect cardiomyocytes through anti-inflammatory and anti-
oxidant effects but also promote proinflammatory M1 macro-
phage polarization to the M2 phenotype, thereby ameliorating
myocardial infarction injury [173]. Moreover, after MI, the
timely removal of apoptotic cells is very important to restore
tissue function. Nrf2 activation can enhance phagocytosis of
macrophages, thereby promoting the recovery of cardiac func-
tion [174] (Figure 3(b)).

8. Clinical Prospects of Targeting Nrf2 for
Preventing CCVD

8.1. The Preclinical Studies of Nrf2 Activator. Currently,
many strategies have been applied for the treatment of
CCVD by activating Nrf2 in the preclinical studies, which
have been summarized in Table 2. Apart from commonly
synthesized small molecule compounds and natural
products, some novel treatments, such as elemental metals
(zinc and lithium), miRNAs, cytokines, and BMMCs, are
increasing.

Regarding the therapeutic effect on metal elements, lith-
ium is commonly used in drugs for treating depression,
Alzheimer’s, and other neurological diseases [175]. Zinc is
an essential trace element in the human body and plays an
extremely crucial role in human growth and development.
Zinc supplementation can protect against MIRI in rats, and
lithium supplementation can significantly reduce the area

of MI and protect against the adverse symptoms of MI [90,
176]. However, a determination of the therapeutic effect of
zinc and lithium ion on CCVD requires more clinical data.
If they are effective, then it might be a very convenient and
economic treatment for patients with CCVD, as an appropri-
ate zinc and lithium can be internalized through diet. Inhibi-
tion of miRNAs is reported to have a protective effect on
CCVD by activating Nrf2. For example, the inhibition of
miR-148b-3p protected neurons against OGD/R-induced
apoptosis and ROS production by enhancing Sestrin2/Nrf2
antioxidant signaling [177]. Inhibition of miR-153 amelio-
rated ischemia reperfusion-induced cardiomyocyte apoptosis
by regulating the Nrf2/HO-1 signaling pathway in rats [178].
Interestingly, dietary compounds have the potential to con-
trol atherosclerosis by targeting miR-155 to activate the
Nrf2 pathway [179]. miRNAs are expected to become a
new target for CCVD treatment. Recombinant cytokine
drugs usually have high activity and may lead to break-
throughs in CCVD treatment. But the use of recombinant
cytokine drugs is based on a series of interleukins and
interferons with few current applications [180]. Epidermal
growth factor can reduce the infarct size and myocardial
apoptosis via activating Nrf2 [181]. Fibroblast growth
factor 19 and ciliary neurotrophic factor have a good pro-
tection effect on myocardial cells by activation of the Nrf2
signaling pathway [182, 183]. These findings make the
application of recombinant cytokine drugs on CCVD a
possibility in the future.
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Figure 3: The comparison of Nrf2 activation in CCVD. (a) Nrf2 activation can protect VECs, inhibit the proliferation and migration of
VSMCs, and suppress foam cell formation. OxLDL: oxidized low density lipoprotein. (b) In CI, Nrf2 activation can inhibit the activation
of microglia and promote its polarization to the M2 phenotype, activate microglia uptake heme and protect neurons, and protect neurons.
In MI, Nrf2 activation can promote proinflammatory M1 macrophage polarization to the M2 phenotype, enhance phagocytosis of
macrophages, and protect cardiomyocytes.
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Table 2: The effects of Nrf2 activators on different CCVD.

Related disease Agent Effects

Hypertension

Dimethyl fumarate [66] Downregulated the renin-angiotensin system

Luteolin [67] Improved NO bioavailability, reduced blood pressure

Potato bioactive peptide [68] Reduced renal damage

Tilapia by-product oligopeptide [70] Reduced endothelial damage

Atherosclerosis

Epigallocatechin gallate [75] Prevent NF-κB activation

Z-Ligustilide [77] Reduced atherosclerotic plaques

Trans-3,5,4′-trimethoxystilbene [79] Reduced foam cell formation, atherosclerotic plaque

MI

Ulinastatin [87] Reduced the infarct area

Lithium [90] Against ventricular arrhythmias

PTS-HPβCD complex [91] Improved systolic function and adverse cardiac remodeling

NBP [92] Inhibited myocardial apoptosis

Andrographolide [93] Attenuated cardiac fibrosis

MIRI

Atorvastatin [88] Reduced MI area

Pinacidil [98] Preserved heart function and myocardial ultrastructure

Dihydroquercetin [101] Alleviated cardiac dysfunction

GYY4137 [102] Reduced infarct size and cardiomyocyte apoptosis

α-Lipoic acid [103] Attenuated cardiac dysfunction

TFCC [105] Prevented myocardial damage

Arctigenin [114] Reduced infarct area and improved arrhythmia

CNTF [183] Attenuated death in myocardial cells

Heart failure/cardiac
remodeling

Bardoxolone methyl [108] Attenuated myocardial inflammation

NBP [115]
Improved ventricular function and prevents ventricular

remodeling

Zingerone [116] Suppressed cardiac hypertrophy, fibrosis, and inflammation

Sodium sulfide [119] Improved left ventricular function and cardiac hypertrophy

DH404 [118] Inhibited cardiac remodeling, dysfunction

Nitrite [120] Ameliorated myocardial dysfunction

Cerebral hemorrhage

RS9 [130]
Decreased brain edema, neuronal damage area, and

neurological deficits

Simvastatin [132]
Alleviated inflammatory injury, promoted neurological

recovery

Monomethyl fumarate [133] Improved neurological deficit

Isoliquiritigenin [129]
Alleviated neurological deficits, histological damage,

and blood-brain barrier disruption

Nicotinamide mononucleotide [136] Promoted the recovery of neurological function

tert-Butylhydroquinone [135] Reduced oxidative brain damage

Melatonin [134] Ameliorated early brain injury

Mangiferin [137] Ameliorated their neurological deficits and brain edema

Sulforaphane [138]
Attenuated vasospasm, ameliorated behavioral functions

disrupted

CI

Urinary kallidinogenase [140] Reduced neurological deficit and the area of CI

Tissue kallikrein [141] Improved neurological deficits and reduced the infarct size

Salvianolate lyophilized injection
[142]

Increased the number of brain microvasculature in ipsilateral

Huang-Lian-Jie-Du decoction [143] Reduced neuron structure damage, neuronal loss

Andrographolide [144] Suppressed blood-brain barrier disruption, and brain infarction

BMMCs [145] Improved the neurological function and reduced the infarct scope
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8.2. The Usage and Clinical Trials of the Nrf2 Activator. The
clinical trials and applications of the Nrf2 activators in the
treatment of CCVD and other diseases are summarized in
Table 3. Among them, NBP has been approved by China
for the treatment of CI in 2002 [184]. It can fully treat CI clin-
ically, significantly reduce the loss of nerve function after
infarction, and improve the patient’s ability to live. Dimethyl
fumarate has been approved by the US FDA in 2013 to treat
adult relapsing multiple sclerosis [185]. Andrographolide is
an effective anti-inflammatory drug and clinically used for
tonsillitis, pharyngitis, bronchitis, etc. [186]. Nrf2-related
activators have been clinically tested on diabetes, kidney dis-
ease, pulmonary hypertension, bronchitis, etc., which proves
their great potential as therapeutic drugs. Many studies have
shown that the activation of Nrf2 can delay the deterioration
of CCVD and improve the poor prognosis of CCVD, but
there are very few clinical trials of the Nrf2 activator on
CCVD. Therefore, the strategy of activating Nrf2 to treat
CCVD is worthy of further research and development, which
may break the current treatment dilemma of CCVD.

9. Discussion

To date, many studies have reported the impact of the Nrf2
signaling pathway on the development of CCVD [13, 126].
In CVD, the activation of Nrf2 can protect vascular tissue
from OS damage and significantly attenuate cardiac arrhyth-
mia, cardiac hypertrophy, and myocardial fibrosis. For CDs,
the activation of Nrf2 can significantly alleviate cerebral
nerve damage and cerebral hematoma. Therefore, reasonable
regulation of Nrf2 is beneficial for the treatment and preven-
tion of CCVD as well as improvement of its poor prognosis.
A series of treatment strategies activating Nrf2 are expected
to break the current deadlock in CCVD treatment.

However, most of experimental data were obtained by
using Nrf2-knockout animals and under extreme conditions.
In addition, experimental animals and humans have very dif-
ferent physiological indicators and disease tolerance, which
may lead to incorrect conclusions. For example, mice and
humans regulate bile acid and cholesterol metabolism differ-
ently [187], and human atherosclerotic plaques are more

Table 2: Continued.

Related disease Agent Effects

CI/RI

Chlorogenic acid [149] Reduced brain damage, enhanced learning, and spatial memory

Lyciumamide A [150] Ameliorated oxidative damage and neuronal apoptosis

COM 3 [151] Improved the neuronal mitochondrial energy metabolism

Schizandrin A [153] Improved the neurological score and reduced infarct volume

Uric acid [154] Decreased the infarct volume and neurological deficit

AFF [155] Reduced neurologic deficits, infarct area, and histologic changes

Table 3: Clinical trials of Nrf2 activators.

Name Registration no. Target disease Status Study period

Sulforaphane

NCT02614742 SAH Phase 2 Apr. 2016-Mar. 2019

NCT02801448 Type 2 diabetes Phase 2 Sept. 2015-Jun. 2020

NCT02970682 Breast neoplasm Phase 2 Oct. 2016-Jan. 2019

Bardoxolone methyl

NCT03068130 Pulmonary hypertension Phase 3 Apr. 2017-Dec. 2021

NCT00811889 Chronic kidney disease/type 2 diabetes Phase 2 Apr. 2009-May 2010

NCT00664027 Diabetic nephropathy Phase 2 Apr. 2008-May 2009

Tecfidera NCT00451451 Multiple sclerosis Launched Jun. 2007-Aug. 2011

Epigallocatechin gallate

NCT02015312 Cardiac amyloid light-chain amyloidosis Phase 2 Apr. 2013-Oct. 2017

NCT01923597 Diabetic nephropathy/hypertension Phase 2 Nov. 2013-Mar. 2015

NCT02731495 Traumatic brain injury Phase 2/3 Mar. 2015-Nov. 2015

Dimethyl fumarate

NCT02461069 Multiple sclerosis Phase 4 May. 2015-Jan. 2018

NCT02784834 Chronic lymphocytic leukemia Phase 1 Jun. 2016-Feb. 2019

NCT02546440 Cutaneous T cell lymphoma Phase 2 Sept. 2015-Sept. 2020

NBP
NCT00724724 Stroke Phase 4 Aug. 2008-Jun. 2011

NCT02149875 Acute ischemic stroke Phase 1/2 Jan. 2010-May 2010

Andrographolide
NCT03132623 Acute bronchitis Phase 4 Dec. 2016-Dec. 2017

NCT02644590 Diabetes mellitus/type 1 hypertension Phase 1 Feb. 2016-Sept. 2016
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likely to rupture than those of mice [188]. These differences
may lead to changes in the role of Nrf2 in human CCVD. It
is believed that the regulatory mechanism of Nrf2 in CCVD
will be more accurate and clearer in the future; the clinical
treatment strategies will be more effective.

In this paper, we reviewed and discussed recent advance-
ments in the regulatory mechanism of the Nrf2/ARE path-
way and its role in CCVD. As Nrf2 can widely regulate the
expression of various antioxidant enzymes and detoxifying
enzymes in the body, thereby promoting anti-inflammatory
and antioxidant responses, it has potential protective effects
on various adverse symptoms of CCVD. Finally, various
treatment strategies through Nrf2 fully demonstrate that
Nrf2 is a nonnegligible target for use in CCVD treatment.
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