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Abstract

Background

Pyruvate kinase widely exists in many parasites and plays an important role in the energy

production for the parasites. Pyruvate kinase might be a potential drug target for killing the

parasites. The aim of the present study was to evaluate the biological characteristics and

roles of T. spiralis pyruvate kinase M (TsPKM) in sugar metabolism, larval molting and

development of T. spiralis.

Methodology/Principal findings

TsPKM has two functional domains of pyruvate kinase and the tertiary structure of TsPKM

is tetramer which has the enzyme active site constituted by 8 amino-acid residues (Arg71,

Asn73, Asp110, Phe241, Lys267, Glu269, Asp293 and Thr325). Recombinant TsPKM

(rTsPKM) was expressed and purified. The rTsPKM had good immunogenicity. RT-PCR

and Western blot showed that TsPKM was transcribed and expressed at various develop-

mental stages in T. spiralis lifecycle. Immunofluorescence test showed that TsPKM was

principally located in the cuticle, muscle, stichosome, intestine and the intrauterine embryos

of female adults. rTsPKM catalyzed the reaction of phosphoenolpyruvate (PEP) and adeno-

sine diphosphate (ADP) to produce pyruvic acid and adenosine triphosphate (ATP). TsPKM

played an important role in the metabolism and energy production of T. spiralis. After silenc-

ing of TsPKM gene by specific dsRNA-TsPKM2, protein expression and enzyme activity of

TsPKM decreased by 50.91 and 26.06%, respectively. After treatment with RNAi, natural

TsPKM enzyme activity, larval molting, sugar metabolism, growth and development of T.

spiralis were significantly reduced.

Conclusions

TsPKM participates in the larval molting, sugar metabolism, growth and development of T.

spiralis and it might be a candidate target of therapeutic drug of trichinellosis.
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Author summary

Pyruvate kinases belong to transferases and can transfer the high-energy phosphate bond

of phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) to produce pyruvic acid

and adenosine triphosphate (ATP). Pyruvate kinases play a significant biological role in

the parasite survival in hosts. Our results revealed that TsPKM was expressed at various T.

spiralis developmental stages, and principally located in the cuticle, stichosome, intestine

and the intrauterine embryos of female adults. rTsPKM catalyzed the reaction of phos-

phoenolpyruvate (PEP) and adenosine diphosphate (ADP) to produce pyruvic acid and

adenosine triphosphate (ATP). TsPKM played an important role in the metabolism and

energy production of T. spiralis. Protein expression and enzyme activity of TsPKM were

decreased by 50.91 and 26.06% respectively through silencing of TsPKM gene using spe-

cific dsRNA-TsPKM2. After treatment with RNAi and inhibitor tannin, natural TsPKM

activity, larval molting, sugar metabolism, growth and development of T. spiralis were

obviously inhibited. Our results showed that TsPKM participates in T. spiralis molting,

sugar metabolism and development, and it might be a candidate target for anti-Trichinella
drugs.

Introduction

Trichinella spiralis is a tissue-parasiting nematode of the genus Trichinella that causes trichi-

nellosis. Trichinellosis is a zoonotic parasitic disease caused by eating raw or semi-raw meat

containing the encapsulated infective muscle larvae (ML), which is widely prevalent all over

the world [1]. From 2009 to 2020, there were 8 outbreaks of human trichinellosis in China,

which consisted of 479 cases and 2 deaths [2]. Pork is the predominant source of T. spiralis
infection in humans. Trichinella infection is not only an important public health problem but

also a tremendous threat to meat food safety [3–5].

After being ingested, the encapsulated ML in infected meat are released from their capsules

under the help of gastric digestive enzymes and activated into intestinal infectious larvae (IIL)

by bile, the IIL invade into enteral epithelium and undergo molting four times to develop into

adult worms (AW) [6,7]. The female AW produce newborn larvae (NBL) that circulates via

the lymph to bloodstream and invade the skeletal muscles to develop into the encapsulated ML

for completing their lifecycle [8]. T. spiralis mainly obtains various energy required for its sur-

vival through glucose metabolism, and generally has a complete citric acid cycle [9]. Hexoki-

nase, phosphofructokinase-1 and pyruvate kinase are the three key enzymes in glycolysis

pathway. Pyruvate kinase belongs to transferases, and it can catalyze the reaction of phospho-

enolpyruvate (PEP) and adenosine diphosphate (ADP) to produce pyruvic acid and adenosine

triphosphate (ATP). ATP produced by catalysis provides energy for the organisms. Pyruvic

acid participates in the subsequent aerobic and anaerobic oxidation to provide energy for the

life activities of the organisms. At the same time, it completes the conversion of sugar, fat and

amino acids under the action of acetyl coenzyme A and citric acid cycle [10]. Glycolysis is a

common pathway of anaerobic and aerobic oxidation of sugar, which is from the phosphoryla-

tion of glucose to the final production of Pyruvic acid. All factors that affect glycolysis also

affect the anaerobic and aerobic oxidation of sugar, thus affecting the utilization of glucose, the

synthesis of ATP and the conversion of three nutrients. Therefore, pyruvate kinase plays an

important role in cell metabolism.
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Pyruvate kinase widely exists in some free-living nematode and parasites, such as Caenor-
habditis elegans [11], Schistosoma japonicum [12], cestode [13], Giardia lamblia [14], Plasmo-
dium [15], Toxoplasma gondii [16] and Cryptosporidium [17]. It plays an important role in the

energy production for the parasites and the nutrient conversion, and then affects the growth,

development and reproduction of parasites. Due to the important role of pyruvate kinase in

cell metabolism, the energy of parasites can be exhausted by inhibiting or knocking out the

expression of pyruvate kinase gene, which can lead to parasite death. Therefore, pyruvate

kinase is a potential drug target for killing the parasites.

In this study, a novel T. spiralis pyruvate kinase M (TsPKM, GenBank: KRY30732.1) was

acquired from T. spiralis draft genome [18]. In mammals, pyruvate kinase was divided into

three different subtypes, namely PKL, PKR and PKM (PKM1 and PKM2). PKL is mainly

expressed in liver, kidney and intestine; PKR is expressed in red blood cells, and PKM is prin-

cipally expressed in tissues with high energy metabolism and rapidly proliferating cells [19].

The pyruvate kinase from T. spiralis is assigned to the PKM subtype. The aim of the present

study was to evaluate the biological characteristics and roles of TsPKM in sugar metabolism,

larval molting and development of T. spiralis.

Materials and methods

Ethics statement

This study was performed in the light of National Guidelines for Experimental Animal Welfare

(Minister of Science and Technology, People’s Republic of China, 2006). All animal experi-

ments in the current research were approved by the Life Science Ethics Committee of Zheng-

zhou University (No. SCXK 2020–0004).

Parasites, cells and experimental animals

The species of Trichinella spiralis (ISS534) was collected from a naturally infected domestic pig

in central China [20], and passaged in BALB/c mice in our laboratory. Intestinal epithelium

cells (IECs) were isolated from small intestine of normal fetal mice [21,22]. Female BALB/c

mice aged 4–6 weeks were purchased from Henan Provincial Experimental Animal Center.

Worm collection and protein preparation

The ML were collected by artificially digestion of T. spiralis-infected mouse muscles at 42 days

post infection (dpi) [23]. The IIL were recovered from the intestine of infected mice at 6 hours

post infection (hpi) [24,25]. The AW at 3 and 6 dpi were also collected from infected murine

small intestine [26]. The adult females at 6 dpi were cultured in RPMI-1640 with 10% fetal

bovine serum (FBS; Gibco) at 37˚C in 5% CO2 for 24 h, and the NBL were harvested as previ-

ously described [27]. Worm soluble proteins of various stage worms (ML, IIL, AW and NBL),

excretion and secretion (ES) proteins from ML, IIL and AW were prepared as described previ-

ously [28,29]. Briefly, various T. spiralis stages (ML, IIL and AW) were washed using sterile

saline, cultured in RPMI-1640 medium (5000 worms/ml) at 37˚C, 5% CO2 for 18 h. The cul-

ture medium containing ES proteins was filtered by a 0.22 μm membrane, and concentrated

using an ultrafiltration tube. The concentration of ES proteins was assayed by a Coomassie

brilliant blue G-250 method [26].

Bioinformatics analysis of TsPKM

The full-length cDNA sequence of TsPKM gene was retrieved from GenBank (GenBank:

KRY30732.1) [30]. The physicochemical properties and biological characteristics were
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analyzed through the online bioinformatics website. Multiple sequence alignment of the

amino acid sequence of pyruvate kinase among different species of the genus Trichinella was

compared by Cluster Omega [31,32]. The GenBank accession numbers of pyruvate kinase

from other Trichinella species and organisms were as follows: Trichinella T8 (KRZ85571.1),

Trichinella T6 (KRX84774.1), T. murrelli (KRX42370.1), T. nativa (OUC39704.1), T. britovi
(KRY55915.1), T. patagoniensis (KRY12085.1), T. nelsoni (KRX15479.1), T. pseudospiralis
(KRX90766.1), T. papuae (KRZ80248.1), T. zimbabwensis (KRZ04871.1), Homo sapiens
(AAA60104.1) and Mus musculus (BAA23642.1). The phylogenetic tree was constructed using

MEGA 7.0 on the basis of the Neighbor-joining (NJ) method as described before [33,34].

Cloning and expression of rTsPKM and preparation of anti-rTsPKM

serum

Total RNA was extracted from the ML using Trizol (Invitrogen, USA), reversely transcribed

into the cDNA and used as a template to amplify the TsPKM gene. BamH I and Pst I (Bold)

were selected as restriction sites to design TsPKM-specific primers (5’-CGCGGATCCATGT

CCGAAAAGCAAAGTCAGAAGA-3’, 5’-AACTGCAGTCATGGTCTTGGAATTAGAGG

TTCG-3’) [35]. The full length TsPKM cDNA sequence was amplified by PCR. The PCR prod-

ucts were cloned into the expression vector pQE-80L with a His-tag at N-terminus (Novagen,

USA), and recombinant pQE-80L/TsPKM was introduced into E. coli BL21 (Novagen). The

expression of rTsPKM was induced at 25˚C for 23 h using 0.2 mM IPTG [36], rTsPKM was

purified by nickel column affinity chromatography (Sangon Biotech, Shanghai, China) [37].

Expression of rTsPKM protein was analyzed by SDS-PAGE and Western blotting as described

before [38].

Ten mice were immunized subcutaneously with 20 μg rTsPKM mixed with complete

Freund’s adjuvant. Boost immunization was administered three times with 20 μg rTsPKM

mixed with incomplete Freund’s adjuvant at a 2-week interval [39]. Two weeks after the last

immunization, tail blood of immunized mice was collected to isolate anti- rTsPKM immune

sera, the IgG antibody titer of anti-rTsPKM serum was measured by ELISA [40,41].

SDS-PAGE and Western blotting analysis

Soluble worm somatic crude and ES proteins of diverse T. spiralis phases, and purified

rTsPKM were separated on 10% SDS-PAGE [24,42]. The proteins were transferred onto nitro-

cellulose (NC) membrane (Millipore, USA) in the semi-dry transfer cell (Bio-Rad, USA) [43].

The membrane was blocked with 5% skimmed milk in Tris-buffered saline containing 0.05%

Tween (TBST) at 37˚C for 2 h, and cut into strips. The strips were probed by various sera

(1:100; anti-rTsPKM serum, infection serum and pre-immune serum) at 37˚C for 2 h. After

washes with TBST, the strips were incubated at 37˚C for 1 h with HRP-anti-mouse IgG conju-

gate (1:10000; Southern Biotech, USA). After being washed again, the strips were colored

using 3, 3’-diaminobenzidine tetrahydrochloride (DAB; Sigma-Aldrich) or an enhanced

chemiluminescent kit (ECL, Solarbio, China) [44,45].

RT-PCR analysis of TsPKM transcription in different T. spiralis phases

Total RNAs from diverse T. spiralis stages (ML, IIL, 3 d AW and NBL) were isolated using Tri-

zol (Invitrogen, USA) [46,47]. RT-PCR was performed to evaluate the TsPKM mRNA expres-

sion in diverse T. spiralis stages as previously described [48]. A T. spiralis housekeeping gene

GAPDH (GenBank: AF452239) was also amplified and used as an internal control [49,50].

Each experiment had three replicates.
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Immunofluorescence test (IFT)

The fresh whole worms of different Trichinella spiralis stages (ML, IIL, 3 d AW and NBL) were

fixed with 4% paraformaldehyde for 30 min and embedded in paraffin and cut into a 2-μm

thick cross-section with a microtome. Expression and worm tissue localization of natural

TsPKM in diverse worm stages were investigated using the IFT technique as reported before

[43,51]. Briefly, the whole worms and cross-sections were first blocked with 5% goat serum at

37˚C for 2 h, and then incubated at 37˚C for 2 h with various sera (1: 10 dilutions of anti-

rTsPKM serum, infection serum and normal serum). After washes with PBS, the worms and

cross-sections were incubated with FITC-conjugated anti-mouse IgG (1:100; Abways, Shang-

hai, China). After washes again, they were observed under fluorescent microscopy (Olympus,

Tokyo, Japan) [52,53].

Enzyme activity analysis of rTsPKM

The enzyme activity of rTsPKM was assayed by using 2,4-dinitrophenylhydrazine method.

The reaction mixture composition and reaction conditions are as follows. rTsPKM (8 μl) was

first added into matrix solution (32 μl; 2.5 mM PEP, 1.25 mM ADP, pH 8.0 Tris-HCl), and

incubated at 37˚C for 10 min. The reaction was terminated with incubation of 80 μl of reaction

stop solution (0.0625 g 2,4-dinitrophenylhydrazine, 25 ml of 10 mol/L HCl, 250 ml distilled

water) at 37˚C for 10 min. Coloration was developed with 8 μl of coloration solution (730.6 mg

EDTA, 100 ml distilled water, 2.5 mol/L NaOH 400 ml). Finally, a microplate reader was used

to measure the absorbance at 510 nm. The in vitro optimum catalytic conditions of rTsPKM

were determined by changing the concentration of rTsPKM, reaction temperature and pH of

buffer solution [54]. In order to verify whether rTsPKM enzymatic activity is metal ion-depen-

dent, seven common auxiliary metal ions (Fe2+, Mn2+, Ca2+, Co2+, Ni2+, Cu2+ and Zn2+) were

added into the reaction system at the same concentration (0.3 mM) to analyze their effect on

rTsPKM activity [49,55]. Previous studies showed that ethyl pyruvate had little side effects on

humans and was easy to penetrate the blood brain barrier [56]. Therefore, ethyl pyruvate was

also used as the enzyme inhibitor of TsPKM in the current study. Different concentrations of

inhibitors (tannin, ethyl pyruvate) and common protease inhibitors 1,10-phenanthroline (1

mM), E64 (5 μM), EDTA (10 mM) and PMSF (1 mM) were added to the reaction system to

determine the effects of different inhibitors on rTsPKM enzyme activity [57]. Under the opti-

mum catalytic conditions of rTsPKM enzyme activity, the corresponding enzyme kinetic

parameters were determined by detecting the reaction of ADP with various concentrations of

PEP, and the reaction of PEP with different concentrations of ADP [28].

Suppression of inhibitors on native TsPKM activity in worm somatic

proteins

Total of 2000 ML were first incubated with at 37˚C for 2 hours with various doses of tannin

(25, 50, 75 and 100 μM) or ethyl pyruvate (10, 20, 30, 40 mM) [56,58]. After being washed with

PBS for 3 times, the larval soluble proteins were prepared [59]. The enzyme activity of native

TsPKM in ML somatic proteins was measured by 2,4-dinitrophenylhydrazine method.

RNA interference (RNAi)

According to the cDNA sequence of TsPKM, three pairs of TsPKM-specific primers contain-

ing T7 promoter and enhancer were designed (5’-GATCACTAATACGACTCACT ATAGG

GATGTCCGAAAAGCAAAGT-3’, 5’-GATCACTAATACGACTCACTATAGGG CGTCA

CCCTCACAGCGCTGTT-3’. 5’-GATCACTAATACGACTCACTATAGGGGATA
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CCAAAGGGCCCGAAAT-3’, 5’-GATCACTAATACGACTCACTATAGGGTTCGATTTT

GGCCACA-3’. 5’-GATCACTAATACGACTCACTATAGGGGTCAATTTGCCAGACT GT-

3’, 5’-GATCACTAATACGACTCACTATAGGGGTCTGCACCGTCCAGTAC-3’) [27,60].

Green fluorescent protein (GFP) was selected as the control, and its primers were as follows:

5’-GATCACTAATACGACTCACTATAGGGTCCTGGTCGAGCTGGACGG-3’, 5’-GATCA

CTAATACGACTCACTATAGGGCGCTTCTCGTTGGGGTCTTTG-3’. The dsRNA-

TsPKM and dsRNA-GFP were transfected into the ML by electroporation (200 V 25 μF 200

O) and cultured in RPMI-1640 for 3 days [61]. Transcription and expression levels of TsPKM

gene in the ML were assessed by qPCR and Western blotting as described previously [62,63].

Effects of RNAi on the in vitro larval glycometabolism

Total 2000 ML were transfected with 60 ng/μl dsRNA-TsPKM2, dsRNA-GFP and PBS, respec-

tively, and cultured for 3 days. Besides, 2000 ML were treated with 100 μM tannin for 2 hours.

Larval ATP contents from different groups were measured by ATP assay kit (Sangon Biotech,

Shanghai, China). Moreover, the glycogen distribution in worm tissues was observed on larval

sections using periodic acid-schiff stain (PAS; Baso, Zhuhai, China) [33,64]. The distribution

of lipid droplets in whole intact ML was examined using oil red O staining [65]. Furthermore,

the larval soluble somatic proteins were prepared, and total sugar and lipid content in larval

soluble proteins was measured by anthrone-sulfuric method and acetylacetone method,

respectively [66,67].

The in vitro larval molting test

The IIL are divided into four stages according to the molting time; include intestinal infective

L1 larvae (IIL1, 0.9 h after infection), L2 larvae (10–14 h), L3 larvae (15–22 h) and L4 larvae

(23–30 h) [62]. To assess the suppressive role of dsRNA-TsPKM and tannin on the larval molt-

ing, the in vitro invasion of mouse intestinal epithelial cells (IEC) was performed as previously

described [42,68]. Briefly, ML was first activated into IIL1 using 5% swine bile at 37˚C for 2 h.

After washes with saline solution, the IIL larvae were treated by dsRNA-TsPKM or tannin,

respectively. After treatment, fifty IIL were added to the semi-solid medium (DMEM+1.75%

agarose) on an IEC monolayer and cultured in 37˚C 5% CO2 for 3 days [69]. Each group had

triplicates. The larval molting was observed and counted under a light microscope [45].

Effects of RNAi on the in vivo larval development and glycometabolism

In order to further verify the TsPKM role in glycometabolism and development in T. spiralis
life cycle, 100 mice were randomly divided into 5 groups (20 animals per group). Each mouse

was orally with 500 ML treated with 60 ng/μl dsRNA-TsPKM2, dsRNA-GFP, PBS, tannin, or

saline. All infected mice were euthanized at 24 h and 3 dpi, 24 h IIL (L4 larvae) and 3 d AW

were recovered and numbered from small intestine of infected mice as reported before [70,71].

The morphology, worm length from various groups of infected mice were observed and mea-

sured under microscopy [72]. Native TsPKM enzyme activity, sugar and lipid content of vari-

ous stage worms from infected mice were also ascertained as before.

Statistical analysis

The data of this study were analyzed by SPSS 21.0 software and shown as arithmetic

mean ± SD (standard deviation). One-way ANOVA and Student’s t test were used to analyze

the difference in relative TsPKM mRNA transcription, protein expression, enzyme activity,

larval glycolipid content, worm burdens and length. The differences of larval molting rate
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among various groups were analyzed using Chi-square test. Statistical difference level was

P< 0.05.

Results

Bioinformatics analysis of TsPKM

The complete cDNA sequence of TsPKM has a full length of 1629 bp and encodes 542 amino

acids. The predicted molecular weight is 58.48 kDa and pI is 7.16. The TsPKM has obvious

hydrophilicity at the N-terminus, and doesn’t have transmembrane region and signal peptide.

The amino acid sequences of the TsPKM had an identity of 98.71, 98.71, 98.53, 98.52, 98.34,

98.34 and 97.79% with pyruvate kinase of the 7 encapsulated Trichinella species/genotypes (T.

nativa, T. patagoniensis, T. murrelli, Trichinella T8, T. nelsoni, T. britovi, and Trichinella T6),

and it had an identity of 88.89, 88.21 and 88.21% with pyruvate kinase from 3 non-encapsu-

lated Trichinella species (T. pseudospiralis T. papuae and T. zimbabwensis,) (Fig 1). TsPKM

belonged to transferases. It had two functional domains of pyruvate kinase, and secondary

structure had 25 α-helixes, 32 β-strand, 18 β-turns, and 15 irregular coils. The tertiary structure

analysis of TsPKM showed that the enzyme active site of TsPKM was constituted by 8 amino-

acid residues (Arg71, Asn73, Asp110, Phe241, Lys267, Glu269, Asp293 and Thr325) (Fig 2A).

The enzyme active site of TsPKM was highly conserved in different species of the genus Trichi-
nella and also is the binding site of the metal ions (K+ and Mg2+) and substrate. The phyloge-

netic tree revealed that a monophyletic group of the genus Trichinella was well supported.

Within the genus Trichinella, two clear clades were shown: one was the clade of 8 encapsulated

species/genotypes (T. spiralis, T. nativa, T. patagoniensis, T. murrelli, Trichinella T8, T. nelsoni,

Fig 1. Multi sequence alignment of pyruvate kinase of different species/genes of Trichinella. According to the

analysis of Cluster Omega, the same amino acids are marked in blue and conservative substitution of amino acid

residues are marked in light blue. The pyruvate kinase genes of different species/genotypes of Trichinella have a high

homology. The number at the end of each sequence represents the percentage of identity with TsPKM.

https://doi.org/10.1371/journal.pntd.0010881.g001
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T. britovi, and Trichinella T6), and the other was the clade of three non-encapsulated species

(T. pseudospiralis, T. papuae and T. zimbabwensis) (Fig 2B).

Expression and antigenic identification of rTsPKM

The SDS-PAGE results revealed that the molecular weight (MW) of the fusion protein

expressed by the BL21 bacteria carrying pQE-80L/TsPKM was 58.48 kDa, which was

Fig 2. Tertiary structure prediction of TsPKM and evolutionary tree construction of pyruvate kinase of 13

organisms. A: Tertiary structure prediction of TsPKM. Eight amino-acid residues (Arg, Asn, Asp, Phe, Lys, Glu, Asp

and Thr) constitute the enzyme active site signed as purple. B: TsPKM in the evolutionary tree of Trichinella, human

and mouse. The evolutionary tree of pyruvate kinase of 11 different species/genotypes of the genus Trichinella was

constructed by neighbor-joining (NJ) method. The encapsulated and non-encapsulated Trichinella was localized in

two different evolutionary clades of Trichinella.

https://doi.org/10.1371/journal.pntd.0010881.g002
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consistent with the predicted MW of the TsPKM protein (Fig 3A). In order to evaluate the

humoral immune response induced by rTsPKM immunization, the titer of anti-rTsPKM IgG

at two weeks after final immunization was detected by ELISA. The results showed that the IgG

titer of anti-rTsPKM antibodies reached 1:105 after four immunizations, indicating that

rTsPKM had a good antigenicity. Western blotting analysis showed that rTsPKM was recog-

nized by anti-rTsPKM serum, infection serum and anti-his tag monoclonal antibody (McAb)

(Fig 3B), but not by pre-immune normal serum.

Transcription and expression of TsPKM in diverse T. spiralis stages

RT-PCR results revealed that TsPKM gene was transcribed in all various T. spiralis develop-

mental stage (ML, IIL, 3 d AW and NBL), and the housekeeping gene GAPDH also generated

an expected size (570 bp) in all stages of T. spiralis lifecycle (Fig 4A). On Western blotting anal-

ysis, native TsPKM in somatic crude proteins of various worm phases (ML, IIL, 3 d AW and

NBL) was identified by anti-rTsPKM serum (Fig 4B and 4C), and the native TsPKM in ES pro-

teins of various phases (ML, IIL and 6 d AW) was also detected by anti-rTsPKM serum (Fig

4D and 4E), indicating that TsPKM was transcribed and expressed at various developmental

stages in T. spiralis lifecycle, and it was a somatic and secretory protein.

Expression and tissue localization of native TsPKM in various T. spiralis
stages

The results of IFT with whole parasites revealed that bright green fluorescence was observed

on the out surface of the cuticle of ML, IIL, 3 d AW and NBL using anti-rTsPKM serum and

infection serum, but not by normal serum (Fig 5). The results of IFT with worm cross-sections

Fig 3. Expression and identification of rTsPKM. A: SDS-PAGE analysis of the rTsPKM. Lane M: Protein marker; Lane 1: lysate of recombinant E. coli
incorporating pQE-80L/TsPKM prior to induction; Lane 2: lysate of recombinant E. coli incorporating pQE-80L/TsPKM after induction; Lane 3: purified

rTsPKM. B. Western blotting analysis of rTsPKM antigenicity. Lane M: Protein marker; Lane 1: lysates of pQE-80L/TsPKM prior to induction were not

recognized by infection serum. Lane 2: lysates of pQE-80L/TsPKM after induction were recognized by infection serum. The purified rTsPKM was recognized

by anti-rTsPKM serum (lane 3), infection serum (lane 4) and anti-His tag McAb (lane 6), but not by normal serum (lane 5).

https://doi.org/10.1371/journal.pntd.0010881.g003
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Fig 4. Transcription and expression of TsPKM in different stages of Trichinella spiralis. A: RT-PCR analysis of

TsPKM transcription in diverse stages. Lane M: DNA marker; Lane 1: ML. Lane 2: 6 h IIL. Lane 3: 3 d AW. Lane 4:

NBL. B: SDS-PAGE analysis of crude proteins of diverse worm stages. Lane M: protein marker. Lane 1: ML soluble

protein. Lane 2: IIL soluble protein. Lane 3: 3 d AW soluble protein. Lane 4: NBL soluble protein. C: Western blot

analysis of crude proteins of diverse worm stages of ML (lane 1), IIL (lane 2), 3 d AW (lane 3) and NBL (lane 4)

identified using anti-rTsPKM serum. D: SDS-PAGE analysis of ES proteins of ML (lane 1), IIL (lane 2) and 6 d AW

(lane 3), Lane M: protein marker. E: Western blot analysis of ES proteins of ML (lane 1), IIL (lane 2) and 6 d AW (lane

3) recognized by anti-rTsPKM serum. The recognized native TsPKM with about 58.5 kDa were indicated with arrows.

https://doi.org/10.1371/journal.pntd.0010881.g004

Fig 5. Expression of TsPKM at the cuticle of various T. spiralis stages by IFT. The whole intact worms were probed

by anti-rTsPKM serum, and immune fluorescence staining was observed at the epicuticle of ML, IIL, NBL and the

intestine of 3 d AW. But pre-immune normal serum did not recognize any worm components of the nematode. Scale

bars: 100 μm.

https://doi.org/10.1371/journal.pntd.0010881.g005
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showed that immunostaining was primarily localized in the cuticle, muscle, stichosome, mid-

gut and intrauterine embryos of the female adults (Fig 6).

Enzymatic activity of rTsPKM

The enzymatic activity of rTsPKM gradually increased with elevating rTsPKM concentration,

and stabilized at a concentration of 10 ng/μl (Fig 7A). The optimum temperature of rTsPKM

for catalyzing the substrate reaction is 37˚C, and the optimum buffer pH is 8.0 (Fig 7B and

7C). Metal ions K+ and Mg2+ enhanced the enzyme activity of rTsPKM whereas Ni2+, Fe2+,

Co2+, Ca2+, Mn2+, Zn2+ and Cu2+ inhibited the enzyme activity of rTsPKM (Fig 7D). Tannin,

ethyl pyruvate, EDTA and 1.10-Phe have obvious inhibitory effects on rTsPKM activity and

tannin has the strongest inhibitory effect on rTsPKM activity (Fig 7E). The inhibitory effect of

EDTA and 1.10-Phe is because the pyruvate kinase enzyme activity is metal dependent. The

suppressive role of tannin (r = 0.933, P< 0.0001) and ethyl pyruvate (r = 0.989, P< 0.0001) on

rTsPKM activity is dose-dependent (Fig 7F and 7G). The reaction conforms to the simple

Michaelise-Menten kinetics (Fig 7H). The kinetic parameter Vmax of PEP is 0.9469 mM/min

Fig 6. Immunolocalization of TsPKM in worm cross-sections of diverse T. spiralis stages by IFT with anti-

rTsPKM serum. Green fluorescence staining was observed at cuticle, muscle, midgut, stichosome, and female

intrauterine embryos. No immunostaining in worm cross-sections was observed by normal serum as a negative

control. Scale-bars: 100 μm.

https://doi.org/10.1371/journal.pntd.0010881.g006
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and the Km value is 1.51 mM (Fig 7I). The kinetic parameter Vmax of ADP is 1.84 mM/min

and the Km value is 3.33 mM (Fig 7J).

Suppression of inhibitors on native TsPKM activity in worm somatic

proteins

After the ML were treated with various doses of tannin (25, 50, 75 and 100 μM), enzymatic

activity of native TsPKM in ML proteins was reduced by 12.82, 20.45, 51.77 and 65.65%

respectively, compared to the saline group without incubation using inhibitors (F = 279.731,

P< 0.0001) (Fig 8A). When ethyl pyruvate (10, 20, 30 and 40 mM) was used, native TsPKM

enzymatic activity in ML proteins was reduced by 4.76, 14.64, 23.52 and 37.68%, respectively

(F = 205.586, P< 0.0001) (Fig 8B). The native TsPKM activity in ML protein was notable neg-

ative correlation with the doses of tannin (r = -0.978, P< 0.01) and ethyl pyruvate (r = -0.986,

P< 0.01). When the low doses of inhibitors were used, tannin had better inhibitory effect on

native TsPKM activity than ethyl pyruvate. Therefore, tannin was used in the subsequent

experiments.

Reduction of TsPKM expression and activity after silencing TsPKM gene

After being transfected with 60 ng/μl three dsRNA-TsPKM1, 2, 3 and cultured for 3 days, lar-

val survival of dsRNA-TsPKM1, 2, 3, dsRNA-GFP and PBS group were 93.44, 91.19, 92.63,

92.31 and 93.40%, respectively (χ2 = 0.969, P> 0.05), demonstrating that electroporation had

no obvious effect on larval survival. Moreover, dsRNA-TsPKM2 had the strongest suppressive

effect on TsPKM transcription and expression among the three kinds of dsRNA (F = 12.190,

Fig 7. Enzyme activity analysis of rTsPKM. rTsPKM was incubated with 2.5 mm PEP and 1.25mm ADP for 10 min

under various conditions. The optimal catalytic conditions of rTsPKM were assessed with various rTsPKM

concentrations (1–12 ng/μl), temperatures (20–70˚C) and buffer solution with different pH (4–10). A: The optimum

catalytic concentration of rTsPKM is 10 ng/μl. B: The optimum catalytic temperature of rTsPKM is 37˚C. C: The

optimum catalytic pH of rTsPKM is 8.0. D: Effects of different metal ions on rTsPKM activity. K+ and Mg2+ have

obvious enhancement role on rTsPKM activity. E: Effects of different inhibitors on rTsPKM activity. F and G: The

suppressive role of tannin (F) and ethyl pyruvate (G) on rTsPKM activity is dose-dependent. H: Standard curve of

sodium pyruvate. I: Michaelis–Menten curve and Lineweaver–Burk of PEP at pH 8.0 and 37˚C. J: Michaelis–Menten

curve and Lineweaver–Burk of ADP at pH 8.0 and 37˚C.

https://doi.org/10.1371/journal.pntd.0010881.g007

Fig 8. Suppression of tannin (A) and ethyl pyruvate (B) on native TsPKM enzymatic activity in T. spiralis muscle larval somatic proteins. �P< 0.0001

relative to the saline control group.

https://doi.org/10.1371/journal.pntd.0010881.g008

PLOS NEGLECTED TROPICAL DISEASES Pyruvate kinase participates in T. spiralis glycometabolism and development

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010881 October 31, 2022 13 / 28

https://doi.org/10.1371/journal.pntd.0010881.g007
https://doi.org/10.1371/journal.pntd.0010881.g008
https://doi.org/10.1371/journal.pntd.0010881


PLOS NEGLECTED TROPICAL DISEASES Pyruvate kinase participates in T. spiralis glycometabolism and development

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010881 October 31, 2022 14 / 28

https://doi.org/10.1371/journal.pntd.0010881


P< 0.01) (Fig 9A and 9B). Therefore, dsRNA-TsPKM2 was used in the following experiment.

When the ML were transfected with 20, 40 and 60 ng/μl dsRNA-TsPKM2 and cultured for 3 d,

TsPKM mRNA level was reduced by 22.80, 37.30 and 50.91% compared with the PBS group,

respectively (P< 0.05) (Fig 9C). TsPKM protein expression level was suppressed by 26.81,

36.91 and 49.26% respectively, compared to the PBS group (P< 0.05) (Fig 9D). When the ML

were transfected with 60 ng/μl dsRNA-TsPKM2 and cultured for 1, 2, 3 d, TsPKM mRNA

level was reduced by 17.21, 38.54 and 52.08% compared with the PBS group, respectively

(P< 0.05) (Fig 9E). TsPKM protein expression level was suppressed by 22.49, 33.85 and

52.03% respectively, compared to the PBS group (P< 0.05) (Fig 9F). When the ML were trans-

fected with 60 ng/μl dsRNA-TsPKM2 and cultured for 1 d, Trichinella spiralis calreticulin

(TsCRT, GenBank: KRY34215.1) protein expression level was not suppressed in ML treated

with dsRNA-TsPKM2 (Fig 9G), suggesting that the dsRNA-TsPKM2 is TsPKM-specific. The

results of the enzymatic activity assay showed that natural TsPKM enzyme activity in soluble

proteins of the ML treated with dsRNA-TsPKM2 was decreased by 26.06% compared to the

PBS group (P< 0.05) (Fig 9H). Hence, the ML were transfected with 60 ng/μl

dsRNA-TsPKM2 and cultured for 3 d in the following experiment.

Suppression of dsRNA-TsPKM on larval glycometabolism

After RNAi treatment, the ATP content of the ML from dsRNA-TsPKM, dsRNA-GFP and

PBS groups were 4.1416 × 10−2, 5.0452 × 10−2 and 5.1958 × 10−2 μM, respectively. Compared

to the GFP and PBS group, ATP content in dsRNA-TsPKM treated ML was decreased by

20.29% (F = 10.916, P< 0.05) (Fig 10A). After tannin treatment, the ATP content was

decreased by 43.99% relative to the saline control group (t = 17.427, P< 0.05) (Fig 10B).

The results of PAS staining showed that glycogen was mainly distributed around the sticho-

some and intestine of normal ML (Fig 11A and 11B). The total sugar content in ML of

Fig 9. Silencing TsPKM gene suppressed TsPKM expression and enzymatic activity. A: TsPKM transcription levels

in ML transfected with different dsRNA-TsPKM. B: TsPKM expression levels in ML transfected with different

dsRNA-TsPKM. C: TsPKM transcription levels in ML transfected with various doses of dsRNA-TsPKM2. D: TsPKM

expression levels in ML transfected with various doses of dsRNA-TsPKM2. E: TsPKM transcription levels in ML at

1–3 days after transfection with 60 ng/μl dsRNA-TsPKM2. F: TsPKM expression levels in ML at 1–3 days after

transfection with 60 ng/μl dsRNA-TsPKM2. G: Expression levels of TsPKM and Trichinella spiralis calreticulin

(TsCRT) in ML treated using dsRNA-TsPKM2. H: TsPKM enzyme activity in dsRNA-TsPKM2 treated in ML.
�P< 0.05 relative to the PBS group.

https://doi.org/10.1371/journal.pntd.0010881.g009

Fig 10. Suppression of dsRNA-TsPKM (A) and tannin (B) on larval ATP content. �P< 0.05 relative to the PBS or saline control group.

https://doi.org/10.1371/journal.pntd.0010881.g010
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dsRNA-PKM, dsRNA-GFP and PBS groups were 741.8667, 944.5333 and 940.5333 μg respec-

tively. Compared to the GFP and PBS group, total sugar content in ML of dsRNA-PKM group

was decreased by 19.86% (F = 38.611, P< 0.0001). After tannin treatment, the total sugar con-

tent in ML was decreased by 22.71% (t = 29.302, P< 0.0001) (Fig 11C and 11D). The results

indicated that TsPKM-specific dsRNA and native inhibitor tannin of pyruvate kinase obvi-

ously reduced the sugar content of T. spiralis worms, suggesting that pyruvate kinase partici-

pates in the glycometabolism of the nematode.

The result of oil red O staining showed that lipid component in intact muscle larvae was

dyed red by oil red O, small lipid droplets were thoroughly distributed in the muscle larvae,

but there were large lipid droplets in the intestine and tail of the ML (Fig 12A). The darker the

red color, the more the lipid content. After treatment with dsRNA and tannin, the larval red

color became lighter, suggesting that larval lipid content of treated larvae with dsRNA and tan-

nin was obviously lower than the control groups. The larval lipid content of dsRNA-TsPKM,

dsRNA-GFP and PBS groups were 99.825, 150.7 and 152.075 μg respectively. After silencing of

larval TsPKM gene by specific dsRNA, larval lipid content in dsRNA-PKM group was

decreased by 33.02%, compared to the PBS group (F = 117.450, P< 0.0001). After tannin treat-

ment, the larval lipid content was decreased by 54.88% (t = 61.662, P< 0.0001) (Fig 12B and

12C), suggesting that after larval glycometabolism was inhibited by TsPKM-dsRNA, larval

lipid metabolism was also impeded.

Inhibition of dsRNA TsPKM on the in vitro larval molting

The results of the in vitro larval molting assay showed that dsRNA-TsPKM and tannin clearly

impeded the larval molting and development of T. spiralis (Fig 13A). Larval molting rate of

Fig 11. Suppression of dsRNA-TsPKM on T. spiralis larval glycometabolism. Glycogen is mainly distributed in the

muscle larval stichosome (A) and around the intestine (B). C: dsRNA-TsPKM reduced larval total sugar content. D:

Tannin reduced larval total sugar content. The arrows indicate glycogen. �P< 0.0001 relative to the PBS or saline

group. Scale bars: 100 μm.

https://doi.org/10.1371/journal.pntd.0010881.g011
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dsRNA-TsPKM, dsRNA-GFP, PBS, tannin and saline groups was 13.33, 20.67, 22.00, 10.67

and 22.67% respectively. Compared with the PBS group, larval molting in the dsRNA-TsPKM

group was decreased by 8.67% (χ2 = 3.873, P< 0.05). Compared to the saline group, larval

molting of the tannin group was decreased by 12% (χ2 = 7.776, P< 0.01) (Fig 13B). The results

suggested that TsPKM also takes part in larval molting and development of the parasite.

Inhibition of RNAi on the in vivo larval development and native TsPKM

activity

TsPKM-specific dsRNA and tannin obviously restrained the larval growth and development in

intestine of infected mice, as demonstrated by shorter and smaller worms recovered from the

dsRNA-TsPKM and tannin groups (S1 Fig). Compared to the PBS group, the number of

recovered IIL and AW of dsRNA-TsPKM treated group was decreased by 27.69 and 48.57%,

respectively (P< 0.0001). The number of recovered IIL and AW of tannin-treated group evi-

dently declined too, it was reduced by 43.63 and 44.51%, respectively (P< 0.0001) (Fig 14A

and 14B). After the ML were treated with RNAi and tannin, the length of the IIL and female

and male adults from infected mice was also obviously reduced (FIIL = 75.806, Ffemale = 34.329,

F male = 37.422, P< 0.001). Compared to the PBS group, the length of IIL, female and male

adults of the dsRNA group was decreased by 11.37, 21.40 and 16.75%, respectively

(P< 0.0001). The length of IIL, female and male adults of the tannin group was reduced by

17.14, 9.30 and 7.09% (P< 0.0001) (Fig 14C–14E).

Furthermore, RNAi also remarkably suppressed the enzyme activity of native TsPKM of the

IIL and AW recovered from infected mice. Compared to the PBS group, native TsPKM enzyme

activity of IIL and AW was decreased by 14.76 and 24.10%, respectively (P< 0.0001) (Fig 15).

The results suggested that specific silencing TsPKM gene evidently impeded the larval invasion,

growth and development, also reduced the native TsPKM activity of the parasite in host’s gut.

Suppression of RNAi on the in vivo glycometabolism of adult worms

The result of PAS staining showed that glycogen in 3 d AW was mainly distributed in the mus-

cles, stichosome and around intrauterine embryos (S2 Fig). The results of oil red O staining

showed that lipid droplets in adult worms were mainly distributed in intrauterine embryos

and around intestine (S3 Fig). The sugar content in 3 d AW of dsRNA-TsPKM, dsRNA-GFP,

PBS, tannin and saline groups were 624.7111, 620.2667, 533.1556, 622.9333 and 629.1556 μg

respectively (F = 46.371, P< 0.0001). Compared to the PBS group, the sugar content in 3 d

AW of dsRNA-TsPKM group was decreased by 14.59% (P< 0.0001). But, the sugar content in

3 d AW of the tannin group was basically unchanged compared to the saline group (P> 0.05)

(Fig 16A). The lipid contents in 3 d AW of dsRNA-TsPKM, dsRNA-GFP, PBS, saline and tan-

nin groups were 553.1167, 540.2833, 426.6167, 536.6167 and 556.7833 μg respectively

(F = 10.802, P< 0.01). The lipid content of dsRNA-TsPKM treated group was decreased by

23.28% relative to the PBS group (P< 0.0001), but the lipid content of tannin treated group

had no statistical difference compared to the saline control group (P> 0.05) (Fig 16B). The

results suggested that PKM-specific dsRNA suppressed the glycometabolism in both larval and

adult stages.

Fig 12. Suppression of dsRNA-TsPKM and tannin on T. spiralis larval lipid metabolism A: Distribution of lipid

droplets in different groups of T. spiralis muscle larvae. Small lipid droplets were distributed all over the muscle larvae,

but large lipid droplets were principally localized in the larval intestine and tail. After treatment with dsRNA-TsPKM

and tannin, the larval red color became lighter, indicating that larval lipid content of treated larvae with

dsRNA-TsPKM and tannin was obviously lower than the control groups. B: dsRNA-TsPKM decreased larval lipid

content, C: tannin decreased larval lipid content. �P< 0.0001 relative to the PBS or saline group. Scale bars: 100 μm.

https://doi.org/10.1371/journal.pntd.0010881.g012
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Discussion

At present, albendazole is the first choice for treatment of trichinellosis [73]. Previous studies

showed that albendazole has a good killing effect on the intestinal stage of T. spiralis, but it has

a poor killing effect on NBL and ML stages [74]. Additionally, albendazole has a low bioavail-

ability after oral administration with the recorded values being as low as 5%, and such low bio-

availability reduced the chance for successful killing of the migrating and encapsulated larvae

[75]. Therefore, it is needed to develop new anti-Trichinella drugs. Glycolysis is found to be a

good therapeutic target for some parasitic infection, such as Schistosoma japonicum [12], Plas-
modium [15], and so on. Pyruvate kinase as drug target for different parasitic diseases could be

verified by gene knockout, RNAi and inhibitors.

In the current study, the complete sequence of TsPKM gene was cloned and expressed in

prokaryotic expression system. Sequence analysis revealed that TsPKM had an identity of

98.71, 98.71, 98.53, 98.52, 98.34, 98.34 and 97.79% with pyruvate kinase of the 7 encapsulated

Trichinella species/genotypes (T. nativa, T. patagoniensis, T. murrelli, Trichinella T8, T. nel-
soni, T. britovi and Trichinella T6), and it had an identity of 88.89, 88.21 and 88.21% with pyru-

vate kinase from 3 non-encapsulated Trichinella species (T. pseudospiralis, T. papuae and T.

Fig 13. Trichinella spiralis larval molting was suppressed by dsRNA-TsPKM in the IIL stage. A: RNAi and tannin

significantly inhibited the larval molting, and there was no transparent sheath on both the anterior and tail ends.

Especially in the tannin group, there was no obvious separation between old and new cuticles. The area in the red

box was enlarged for observation. B: Molting of T. spiralis larvae at 3 days after RNAi and tannin treatment. �P< 0.05

relative to the PBS group. #P< 0.01 relative to the saline group. Scale bars: 200 μm.

https://doi.org/10.1371/journal.pntd.0010881.g013

Fig 14. RNAi suppressed the in vivo larval development. The numbers of 24 h IIL (A) and 3 d AW (B) collected from intestine of mice infected with the

dsRNA-TsPKM and tannin treated ML. The length of 24 h IIL (C) and 3 d female (D) and male adult worms (E) collected from various groups of infected

mice. �P< 0.001 relative to the PBS or saline control group.

https://doi.org/10.1371/journal.pntd.0010881.g014
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zimbabwensis). Phylogenetic tree revealed that a monophyletic group of the genus Trichinella
was well supported. Bioinformatics analysis revealed that the TsPKM belonged to transferases.

It had two functional domains of pyruvate kinase, and the enzyme active site. After expression,

solubility analysis showed that rTsPKM existed in both supernatant and inclusion body, and

the expression level in supernatant was higher. rTsPKM in supernatant was easier to be folded

and aggregated correctly, and its protein structure was closer to natural TsPKM, which was

more likely to have the catalytic activity function of natural TsPKM [76]. Immunization of

mice with rTsPKM induced a specific anti-rTsPKM antibody response, the serum titer of spe-

cific anti-rTsPKM IgG reached 1: 105, demonstrating that rTsPKM had a good

immunogenicity.

The results of RT-PCR and Western blot showed that TsPKM was transcribed and

expressed in various T. spiralis stages. The IFT results showed that TsPKM was mainly

Fig 15. Inhibition of specific dsRNA-TsPKM on native TsPKM enzymatic activity of 24 h IIL (A) and 3 d AW (B) collected from mice challenged with T.

spiralis ML treated by dsRNA-TsPKM and tannin. �P< 0.0001 relative to the PBS or saline control group.

https://doi.org/10.1371/journal.pntd.0010881.g015

Fig 16. Suppression of dsRNA-TsPKM on sugar and lipid metabolism of T. spiralis adult worm from infected mice. dsRNA-TsPKM evidently reduced the

content of sugar (A) and lipid (B) in 3 d adult worms. �P< 0.0001 relative to the PBS or saline group.

https://doi.org/10.1371/journal.pntd.0010881.g016
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distributed in the epidermis, muscle cells, stichosome, and intestine and around the embryos.

Western blotting results also indicated that rTsPKM was recognized by anti-rTsPKM serum

and infected serum, but not by normal mouse serum; natural TsPKM was found in ES proteins

of different T. spiralis stages. Previous study showed that enzymes of glucose metabolism path-

ways such as pyruvate kinase exist in ML, 3 d AW and NBL, but the expression level was obvi-

ously different in various worm stages, which was related to the different parasitic positions of

T. spiralis at different stages and the changes of aerobic metabolism and anaerobic metabolism

[77]. The pyruvate kinase activity of the ML from freshly killed mice was evidently increased

after 60 min-digest and saline incubation for 40 min, suggesting that the activation processes

of T. spiralis infective ML larvae are stimulated upon liberation of the larvae from the nurse

cell inside the host stomach, and the metabolic switch from anaerobic metabolism of infective

ML stage to aerobic metabolism was found in the enteral stages [78]. The result of the current

study was consistent with the expression of PKM in other parasites, which was mainly distrib-

uted in tissues with high energy metabolism, such as muscle and rapid embryo proliferation

[13,79]. Our results indicated that TsPKM was expressed in various T. spiralis stages and it was

a secretory protein, demonstrated that TsPKM is a necessary protein in T. spiralis lifecycle and

might participate in larval molting, sugar metabolism, development and reproduction of this

parasite [72]. The results suggested that secretory TsPKM could be exposed directly to host’s

immune system and trigger the production of anti-TsPKM antibodies during T. spiralis infec-

tion [80,81].

The enzyme activity of rTsPKM was detected by 2,4-dinitrophenylhydrazine chromogenic

method, the results showed that rTsPKM expressed in this study had the catalytic activity of

natural pyruvate kinase. In the buffer system, metal ions K+ and Mg2+ significantly enhanced

the enzyme activity of rTsPKM, suggesting that K+ and Mg2+ played an indispensable role in

the activity of pyruvate kinase. K+ and Mg2+ hardly affect the structure of pyruvate kinase,

however the domain can be reversed under the action of K+ and Mg2+, which made the active

site of pyruvate kinase more exposed [82]. For different concentrations of ethyl pyruvate and

tannin, the inhibition roles were increased with the increase of inhibitor concentration.

rTsPKM enzyme activity was completely inhibited by 0.60 mM ethyl pyruvate and 8 μM tan-

nin. In tumor tissues, the proliferation of tumor cells was through K433 site of PKM2, and tan-

nin selectively inhibits the pyruvate kinase activity of PKM2, rather than protein kinase

activity and PKM2 expression, to suppress colorectal cancer cell proliferation, tannin is a

promising PKM2 inhibitor for prevention of colorectal cancer [83] Ethyl pyruvate also has a

good inhibitory effect on PKM, it is safe for red blood cells and easy to penetrate the blood-

brain barrier [56]. In Trypanosoma brucei, 5 mM ethyl pyruvate incubated with trypanosomes

for 3 h can completely inhibit the proliferation of trypanosomes and kill trypanosomes [56].

Tannin and ethyl pyruvate inhibited the enzymatic activity of pyruvate kinase in Trichinella
spiralis and other parasites, but the difference of effective inhibitory concentrations may be

related with the size and parasitic site of the parasites.

RNAi has been widely used for study on the gene function of various parasites [60]. In

order to further verify the function of TsPKM in the sugar metabolism, growth and develop-

ment of this nematode, RNAi and tannin were used in this study. After treatment with60 ng/μl

of dsRNA-PKM2 for 3 days and 100 μM tannin for 2 hours, the catalytic activity of TsPKM,

ATP content, total sugar content and lipid content in ML distinctly decreased, suggesting that

RNAi and tannin suppressed larval sugar metabolism, reduced ATP production. Molting is

the most significant feature of intestinal larval development in T. spiralis lifecycle [84]. In the

present study, the in vitro IIL molting was evidently inhibited by RNAi and tannin treatment.

The results of animal challenge experiments showed that the number and length of 24 h IIL

and 3 d AW and the content of total sugar and lipid in 3 d AW in dsRNA TsPKM group were
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significantly reduced and inhibited. Furthermore, RNAi also remarkably suppressed the

enzyme activity of native TsPKM of the IIL and AW recovered from infected mice. The results

further confirmed that TsPKM played an important role in the larval molting, metabolism,

growth and development of this parasite. In previous studies on other parasites, inhibition of

pyruvate kinase led to the decline of ATP level, metabolic disorder and obvious inhibition of

larval growth and development of larvae. The inhibition of pyruvate kinase expression in Giar-
dia canis using specific hammerhead ribozyme decreased pyruvate kinase enzyme activity and

impaired growth and development of G. canis trophozoites [85]. Knockout of PYK1 and PYK2

genes by CRISPR/Cas9 technology completely hindered the growth and caused the death of

Toxoplasma gondii [16]. The results suggested that pyruvate kinase might be a potential candi-

date drug target against Trichinella infection.

In conclusion, a novel TsPKM was cloned and expressed, its biological characteristics and

roles in sugar metabolism, larval molting and development of T. spiralis were investigated in

this study. The results showed that TsPKM was transcribed and expressed at various T. spiralis
developmental stages, mainly localized at cuticle, muscle layer, stichosome, intestine and

around the embryos. The rTsPKM had the native enzymatic activity of pyruvate kinase to cata-

lyze the reaction of PEP and ADP. The silencing of TsPKM gene by TsPKM-specific dsRNA

significantly reduced the expression levels and enzyme activity of native TsPKM in the larvae,

and RNAi also suppressed larval molting, sugar metabolism, growth and development of this

parasite. The results indicated that TsPKM is an obligatory enzyme in T. spiralis lifecycle; it

was involved in larval molting, sugar metabolism and development, and may be regarded as a

potential candidate drug target against T. spiralis infection.

Supporting information

S1 Fig. Morphology of the IIL and adult worms recovered from mice challenged with T.

spiralis ML treated with dsRNA-TsPKM and tannin. Scale bars: 200 μm.

(JPG)

S2 Fig. Distribution of glycogen in cross-sections of 3 d adult worms from different groups

of infected mice. A: Saline group. B: Tannin group. C and D: dsRNA-TsPKM group. E:

dsRNA-GFP group. F: PBS group. Glycogen of 3 d AW is mainly distributed in muscles, sti-

chosome and around intrauterine embryos. Black arrows indicate the glycogen. Scale bars:

100 μm.

(JPG)

S3 Fig. Distribution of lipid droplets in whole adult worms of different groups of infected

mice at 3 days post infection. Lipid droplets were mainly distributed in intrauterine embryos

and around intestine of adult worms. Scale bars: 200 μm.

(JPG)
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