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Sex differences in the 1H NMR 
metabolic profile of serum in 
cardiovascular risk patients
Ignasi Barba1,2, Mireia Andrés1, Irene Picón1, Santiago Aguade-Bruix1 & David Garcia-Dorado1,2

Personalized diagnosis and risk stratification of cardiovascular diseases would allow optimizing 
therapeutic strategies and lifestyle changes. Metabolomics is a promising technique for personalized 
diagnosis and prognosis; however, various physiological parameters, including sex, influence the 
metabolic profile thus hampering its translation to the clinic. Knowledge of the variation in the 
metabolic profile associated with sex would facilitate metabolomic translation to the clinic. The 
objective of the present work was to investigate the possible differences in the metabolic 1H NMR 
profile associated to sex beyond lipoproteins. 1H NMR spectra from whole serum and methanol 
deproteinized samples from 39 patients (22 males, 17 females) between 55–70 years old with suspected 
coronary artery disease that underwent a stress test that was considered negative where included. 
Deproteinized serum could be used to differentiate sex based on higher levels of lactate and glucose in 
women. Lipoprotein region was the most variable area of the spectra between individuals, but spectra 
of whole serum were able to differentiate sex based on lipoproteins. There are sex-related differences in 
the 1H NMR metabolic profile of individuals with suspected cardiovascular disease beyond lipoproteins. 
These findings may help the translation of metabolomics to the clinic.

Cardiovascular diseases are the number one cause of death globally [http://www.who.int/mediacentre/factsheets/
fs317/en/], they are usually slow developing and can take decades to manifest thus preventive interventions are 
likely to be most effective if applied early, ideally before symptoms appear1. Prevention of cardiovascular risk is 
effective1,2 and current guidelines recommend that cardiovascular prevention should be delivered to the general 
population and at individual level by promoting healthy lifestyle behavior3. Individuals at high risk would benefit 
the most from preventive strategies; however, the identification of those individuals before symptoms appear is 
challenging. Personalized risk stratification would allow the identification of the individuals at high risk thus giv-
ing the opportunity to optimize therapeutic strategies and lifestyle changes for each individual. Also, once clinical 
symptoms appear, a personalized diagnosis would improve patient treatment.

Myocardial perfusion SPECT studies are widely used for ischemic heart disease screening in populations that 
have mobility difficulties, as they allow mixed studies of mild physical stress plus simultaneous pharmacological 
stress. This association is very common in the elderly, patients with traumatological problems, obese adults, and 
in those situations where adequate tachycardia cannot be guaranteed. To be able to determine with a blood sam-
ple which of these patients have a high risk of ischemic heart disease, could improve the patient’s selection and 
avoid the inadequate use of these tests that are time-consuming and require the use of radioactive tracers.

Metabolomics or the study of the metabolite profile of biofluids show great promise in the area of personalized 
diagnosis. Because metabolites are the downstream products of gene expression and protein action, they provide 
a snapshot of a biological phenotype. 1H NMR spectroscopy offers the advantages of high reproducibility, being 
quantitative, and capability to analyze intact biofluids and tissues with no need for sample separation or prepara-
tion4 which have made it a technique of choice for metabolomics studies.

Previous studies have been able to grade the severity of coronary artery diseases based on 1H NMR metab-
olomics with over 90% specificity5 and, in the same work, it is stated that 1H NMR based metabolomics would 
allow widespread population screening and more efficient drug targeting. However, working with a similar pop-
ulation, Kirschenlohr and cols. showed that when confounding variables including sex were taken into account, 
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the results were not as good as previously reported thus limiting the diagnostic power of 1H NMR metabolic 
profiling of serum6. Later, a meta-analysis showed that metabolomics could be indeed used for cardiovascular risk 
prediction7 and identified phenylalanine and mono- and polyunsaturated fatty acids as biomarkers for cardiovas-
cular risk after adjusting for confounding factors including sex. However, at this time, metabolomics offers low 
diagnostic value for coronary artery disease8 and has not yet reached clinical application in other pathologies9.

Although it has been described that metabolic markers represent the most obvious kind of biomarkers for 
clinical application, changes caused by disease could be masked by physiological factors including sex, age, and 
diet10. Biological sex markedly impacts cardiac metabolism at rest11 and in response to metabolic diseases12,13. 
Also, lipoprotein profiles, a risk factor for the development of cardiovascular diseases, are also affected by sex6,14. 
Thus, guidelines recommended that parameters known to be associated with cardiometabolic disease, including 
sex, should be taken into account in metabolomic studies15.

There is a need for a population screening tool for individualized risk stratification and diagnosis of cardi-
ovascular diseases once symptoms appear. A first step towards reaching this goal would be to understand the 
background sources of variation in the metabolic profile of the population most likely to suffer cardiovascular 
diseases The objective of the present work was to evaluate possible differences associated with sex in the 1H NMR 
metabolic profile of patients with suspected CAD beyond lipoproteins.

Results
Patients.  Table 1 shows the relevant epidemiological and clinical data of the patients included in the study. 
Men were significantly taller than women while they had similar weight; as a result, BMI was higher in women 
than men. Women had higher total cholesterol levels than men; however when lipoprotein subclasses were ana-
lyzed individually, differences did not reach statistical significance. All other parameters analyzed, including the 
incidence of diabetes and pre-test medication were similar between the groups.

Spectra.  NMR spectra of serum samples obtained in this work were similar to our previously published 
data16. CPMG spectra removed part of the signal originating from lipoproteins thus allowing easier observation 
of small molecular weight compounds that would otherwise be masked by the large and broad peaks of macro-
molecules; conversely, diffusion edited spectra removes the signal originating from small molecules (Fig. 1).

Spectra of deproteinized samples (Fig. 1) were similar to those published previously17. However, in some spec-
tra traces of the methanol used for precipitation were observed even after freeze-drying the samples; the area of 
the spectra at around 3.34 ppm, containing the residual methanol peak, was removed from the analysis.

Pattern Recognition.  It is possible to obtain an OPLS-DA (Orthogonal projection to latent structures- 
Discriminant Analysis) model to differentiate between men and women using spectra obtained with the CPMG 
(Carr-Purcell-Meiboom-Gill) pulse sequence (Fig. 2A). The model (R2x = 0.7; R2y = 0.54; Q2 = 0.307) is able 
to correctly classify 80% of the samples. Although permutation tests show that the model is robust (Fig. 2B), 
CV-ANOVA does not reach statistical significance (p = 0.078) possibly due to the high variation seen in the lipid 
region between the samples, even in T2 edited spectra.

The variables responsible for the differences between sexes in the discriminant model obtained using T2 
edited spectra (Fig. 2A) were found around 1.28 ppm, which correspond mostly to the methylene peak of lipid 
acyl chains (Fig. 2C).

Gender Female Male p

Age 65.5 ± 5.3 66.6 ± 6.2 0.553

Weight (Kg) 75.5 ± 12.9 77.5 ± 9.9 0.582

Height (m) 1.60 ± 0.08 1.69 ± 0.07 <0.001

IMC 29.3 ± 3.6 27.1 ± 3.0 0.035

HTA 13/17 12/22 0.157

Total Cholesterol (mg/dL) 202.8 ± 45.7 171.8 ± 40.7 0.029

LDL (mg/dL) 120.0 ± 31.1 103.6 ± 41.1 0.176

HDL (mg/dL) 54.0 ± 16.2 47.1 ± 7.9 0.095

TAG (mg/dL) 153.6 ± 106.7 115.0 ± 47.0 0.141

Diabetics 5/17 (29.4%) 9/22 (40.9%) 0.550

Glomerular filtration Rate (ml/min/1.73 m2) 80.1 ± 12.6 73.2 ± 24.2 0.293

AAS 7/17 (41.2%) 11/22 (50.0%) 0.584

Statins 9/17 (52.9%) 13/22 (59.1%) 0.701

Fibrates 0 0

Ezetimibe 0 0

Oral Antidiabetics 4/17 (23.5%) 6/22 (27.3%) 0.791

Anticoagulants 3/17 (17.6%) 2/22 (9.1%) 0.428

Insulin 1/17 (5.9%) 5/22 (22.7%) 0.148

Table 1.  Epidemiological and clinical data of the patients included in the study. Data are expressed as average 
standard deviation or number of cases (%) and obtained from the blood test date closer to the stress test.
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Figure 1.  Typical spectra from serum samples. (A) Pulse-and-acquire spectra (B) CPMG with an effective T2 
delay of 32 ms (C) Diffusion edited spectra and (D) NOESYPR1D spectra obtained from a deproteinized serum 
sample.

Figure 2.  Pattern recognition results from the CPMG spectra (A) corresponds to the score plot of the 
OPLS-DA model, each point corresponds to a sample; green female, blue male. (B) Permutation analysis 
showing the validity of the model and (C) S-plot with the 10 most important variables in the discriminant 
function marked with red circles; all correspond to the methylene lipid peaks.
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It was possible to obtain a model able to differentiate sex using diffusion edited spectra (R2x = 0.59; R2y = 0.25; 
Q2 = 0.07). However, this model is able to correctly classify 72% of the samples but does not reach statistical sig-
nificance in CV-ANOVA (p = 0.65).

Spectra from deproteinized samples show less inter-individual variation than spectra from complete serum. 
Principal component analysis performed on the spectra showed a tendency towards clustering in the first compo-
nent suggesting that the main source of variation within the deproteinized dataset is sex (Fig. 3A). It was possible 
to obtain a statistically significant OPLS-DA model (R2x = 0.716; R2y = 0.43; Q2 = 0.25) (p = 0.039) that was able 
to classify the spectra according to sex with 80% accuracy (31/39) (Fig. 3B). The variables responsible for the 
discrimination were found at around 1.35 and 3.70 ppm tentatively assigned to lactate and glucose respectively 
(Fig. 3C).

We did combine CPMG and deproteinized spectra in a single analysis. The statistical model obtained slightly 
improves the one obtained using spectra from deproteinized samples (R2x = 0.564; R2y = 0.511; Q2 = 0.302) 
(p = 0.021) reaching 89% accuracy (35/39) in the classification. However, the most important variables in the 
discrimination arise from the deproteinized spectra.

Finally, using Chenomx software we were able to identify and quantify 19 metabolites from the deproteinized 
spectra (Table 2). As expected from the whole spectra analysis, lactate, and glucose where elevated in women. 
Also, valine and glycine were elevated in women (Table 2); the other metabolites remained unchanged. Metabolite 
concentrations are in similar ranges to previously published data18 [http://www.serummetabolome.ca/].

Discussion
Data presented in this work shows that there are sex-related differences in the 1H NMR metabolic profile of indi-
viduals with suspected cardiovascular disease beyond lipoproteins.

Using NMR spectra of complete serum we have been able to show that women have higher lipoprotein levels 
than men. This is consistent with findings in the general population19 and could be also seen in a group of patients 
with cardiovascular diseases6. Moreover, in our study, women had higher total cholesterol levels than men, in 
accordance with general population findings20.

We have previously shown that T2 edited spectra of complete serum provide the best results to predict 
exercise-induced ischemia16. In the present work, the discriminant model to differentiate between men and 
women based on T2 edited spectra was based on lipoproteins as shown before6. However, this model did not 
reach statistical significance when evaluated using CV-ANOVA.

Diffusion edited spectra show only the resonances corresponding to macromolecules, mainly lipoproteins. Sex 
is known to be associated with blood lipoproteins6 suggesting that diffusion weighted spectra would be suitable 
for differentiating men from women. However, we could not obtain a valid statistical model able to differentiate 
between men and women; most likely due to the high variability in lipoprotein composition between individuals.

On the other hand, when using deproteinized samples, it was possible to obtain a statistical model able to 
differentiate men from women mostly based on the higher levels of glucose and lactate seen in women. In our 

Figure 3.  Results of the analysis performed on deproteinized samples. (A) First and second components of 
the Principal component analysis (B) OPLS-DA model obtained with the spectra from the deproteinized 
samples. (C) S-plot with the most relevant variables in the discriminant function marked with red circles, they 
correspond to glucose and lactate. (D,E) are bar graphs representing the concentrations (in mM) of glucose and 
lactate in women and men obtained from the spectra of deproteinized serum samples.
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database 14 out of 39 individuals were considered diabetics (were prescribed oral antidiabetics, insulin or both) at 
the time of analysis but only one individual (female) showed blood glucose over 6.1 mmol/L (limit to be diagnosed 
as diabetic) on the sample analyzed. In a study involving healthy human volunteers, women had shown higher 
glucose levels in urine but not in plasma19 while in another healthy population of young adults men showed 
higher glycaemia than women21. Metabolite quantification of deproteinized serum samples showed increases in 
glucose, lactate and also of valine and glycine in women. Glycine has been found elevated in younger21 and older22 
healthy women. On the other hand, valine was found to be higher in healthy older men than women22. However, 
we could find no reports based on individuals with suspected cardiovascular diseases as the ones described in 
this study.

There are some reports in the literature describing differences in the metabolic profile associated with sex19,23–25.  
However, this is the first one focusing on the population with suspected cardiovascular diseases, which would 
benefit most from a non-invasive screening and diagnostic tool.

Study limitations.  We are aware that the number of patients included in this study is limited; however, 
in well defined populations we16 and others26 have been able to obtain positive results for serum metabolomics 
in CAD patients. In order to minimize the effect of a limited sample size, we evaluated PLS-DA models using 
CV-ANOVA a robust approach and dependent on sample number. The percentage of diabetics in our study is 
similar to what is found in primary care for similar age groups in our environment with with slightly higher inci-
dence of men than women for similar age groups27. Diabetes is known to influence the metabolic signature how-
ever, when patients with glycated hemoglobin higher than 6 were removed from the analysis it was still possible 
to obtain a statistical model able to differentiate sex (CV-ANOVA p = 0.029) and there was no change regarding 
the variables responsible for group discrimination. However, further studies with larger populations should be 
done in order to validate our work.

In conclusion, we have detected differences in the 1H NMR metabolic profile between men and women in a 
population with suspected cardiovascular disease in deproteinized serum samples. These findings may facilitate 
the development of 1H NMR based metabolomics approaches in cardiovascular diseases and its translation to 
the clinic.

Methods
Patients.  39 consecutive patients (22 males, 17 females) between 55–70 years old that were referred to per-
form myocardial perfusion SPECT study with stress test at Hospital Vall d’Hebron were included in this study. 
Patient selection was done prospectively but only the samples of those studies considered negative in the report 
were taken, considering negative if the clinical stress test, the ECG, the gammagraphic images and the ventricular 
function were all normal. Patients that were unable to perform a full stress test or required pharmacological stim-
ulation where excluded from the study.

Patients included are from the METS (Metabolomic Profile of Patients Undergoing Myocardial Perfusion 
SPECT study (ClinicalTrials.gov Identifier: NCT02968771). All patients gave their written informed consent and 
the study was approved by the “Hospital Vall d’Hebron” ethics committee. Methods and procedures were per-
formed in accordance with local guidelines and regulations.

Females Males p

3-Hydroxybutyrate 0.202 ± 0.068 0.226 ± 0.084 0.604

Acetate 0.056 ± 0.026 0.058 ± 0.018 0.867

Alanine 0.387 ± 0.148 0.323 ± 0.104 0.143

Betaine 0.038 ± 0.027 0.051 ± 0.040 0.270

Carnitine 0.024 ± 0.017 0.021 ± 0.016 0.610

Choline 0.029 ± 0.010 0.034 ± 0.017 0.265

Creatine 0.053 ± 0.025 0.040 ± 0.018 0.068

Creatinine 0.087 ± 0.021 0.107 ± 0.093 0.385

Glucose 5.408 ± 1.748 3.981 ± 1.343 0.009

Glutamate 0.592 ± 0.247 0.492 ± 0.176 0.169

Glutamine 0.576 ± 0.200 0.493 ± 0.136 0.151

Glycine 0.230 ± 0.092 0.151 ± 0.046 0.002

Isoleucine 0.082 ± 0.027 0.078 ± 0.021 0.601

Lactate 2.843 ± 0.963 2.250 ± 0.627 0.037

Leucine 0.166 ± 0.057 0.150 ± 0.051 0.375

Acetone 0.021 ± 0.009 0.020 ± 0.009 0.815

Threonine 0.190 ± 0.097 0.150 ± 0.064 0.160

Valine 0.261 ± 0.069 0.206 ± 0.051 0.009

sn-Glycero-3-phosphocholine 0.057 ± 0.035 0.050 ± 0.031 0.551

Table 2.  Metabolite concentration derived from deproteinized spectra. Data in mmol/L.
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Samples.  Blood samples (5 ml) were obtained just before the stress test after overnight fasting. Blood was 
allowed to clot at room temperature, then, centrifuged at 1000 g, 4 °C, 5 minutes. The serum was separated and 
kept at −80 °C until needed.

Serum deproteinization.  Serum was deproteinized using methanol precipitation17. Briefly, 200 μl of serum 
were mixed with 400 μl of methanol, vortexed and kept at −20 °C for 20 minutes. Afterward, the sample was cen-
trifuged at 11000 g, 4 °C, 30 minutes. The supernatant was lyophilized and stored at −80 °C until NMR analysis.

NMR spectroscopy.  Prior to NMR spectroscopy, deproteinized samples were reconstituted in 600 μl of PBS 
(Phosphate Buffered Saline) made up with D2O, containing 0.5 mM TSP (Trimethylsilyl tetradeuteropropionic 
acid sodium salt) as a concentration and chemical shift reference and placed in a 5 mm NMR tube. Spectra were 
acquired at 300 K on a 400 MHz vertical bore magnet interfaced to a Bruker Avance console. Each spectrum con-
sisted in the accumulation of 64 scans with a NOESYPR1D (One-dimensional Nuclear Overhauser Spectroscopy) 
pulse sequence with a mixing time of 100 ms.

Serum samples (200 μl) were mixed with PBS-D2O (300 μl) just prior to NMR spectroscopy. A series of spec-
tra including pulse-and-acquire, CPMG with an effective T2 delay of 32 ms and diffusion edited spectra were 
acquired for each sample.

Data analysis.  For pattern recognition, each spectrum was manually phase corrected and the area between 
0.5 and 9 ppm (excluding the water zone) divided into bins of equal width of 0.01 ppm. The resulting digitized 
spectra were normalized to total area of 1 and fed into SIMCA v14 software (Umetrics, Umea, Sweeden) for fur-
ther processing. Pareto scaling was applied to the data.

General variance within the dataset was analyzed using principal component analysis (PCA)28,29. This method 
reduces the dimensionality of a data set while retaining as much as possible of the variation present in the original 
data set facilitating the extraction of information. Being an “unsupervised” approach, it does not require input 
from the observer and, thus, is free from possible bias.

In order to assess the capacity of the NMR spectra to differentiate between samples from men and women, a 
supervised classification analysis was performed. Supervised classification refers to the development of a statis-
tical model able to differentiate two (or more) populations defined in advance. The target is to assign an individ-
ual to one of the populations. The information for this classification is provided by a “training set” of correctly 
classified individuals. In our case the ability of the classification models was tested using the “leave-one-out” 
approach where one in seven samples within the dataset were not used to define the model and then used to test 
how well the classification algorithm worked; this process is repeated in an iterative process until all the samples 
have gone through being in the training and test sets. The supervised approach used in this work was Orthogonal 
PLS discriminant analysis (OPLS-DA) that highlights the variables responsible for differences among classes30. 
All OPLS-DA models were able to classify the samples better than random grouping but were only considered 
statistically significant when CV-ANOVA31 was <0.05.

Metabolite quantification was performed in deproteinized spectra using Chenomx software (Chenomx, 
Edmonton, Canada) by comparing the areas of the peaks of interest to that of TSP added as an internal standard 
at a final concentration of 0.5 mM. Metabolite concentration is given in mmol/L ± standard deviation and con-
centrations were compared using unpaired, two-sided t-test without correction for multiple comparisons.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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