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Abstract

Background

Highly accurate detection of intracranial hemorrhages (ICH) on head computed tomography

(HCT) scans can prove challenging at high-volume centers. This study aimed to determine

the number of additional ICHs detected by an artificial intelligence (AI) algorithm and to eval-

uate reasons for erroneous results at a level I trauma center with teleradiology services.

Methods

In a retrospective multi-center cohort study, consecutive emergency non-contrast HCT

scans were analyzed by a commercially available ICH detection software (AIDOC, Tel Aviv,

Israel). Discrepancies between AI analysis and initial radiology report (RR) were reviewed

by a blinded neuroradiologist to determine the number of additional ICHs detected and eval-

uate reasons leading to errors.

Results

4946 HCT (05/2020-09/2020) from 18 hospitals were included in the analysis. 205 reports

(4.1%) were classified as hemorrhages by both radiology report and AI. Out of a total of 162

(3.3%) discrepant reports, 62 were confirmed as hemorrhages by the reference neuroradiol-

ogist. 33 ICHs were identified exclusively via RRs. The AI algorithm detected an additional

29 instances of ICH, missed 12.4% of ICH and overcalled 1.9%; RRs missed 10.9% of ICHs

and overcalled 0.2%. Many of the ICHs missed by the AI algorithm were located in the sub-

arachnoid space (42.4%) and under the calvaria (48.5%). 85% of ICHs missed by RRs

occurred outside of regular working-hours. Calcifications (39.3%), beam-hardening artifacts

(18%), tumors (15.7%), and blood vessels (7.9%) were the most common reasons for AI

overcalls. ICH size, image quality, and primary examiner experience were not found to be

significantly associated with likelihood of incorrect AI results.
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Conclusion

Complementing human expertise with AI resulted in a 12.2% increase in ICH detection. The

AI algorithm overcalled 1.9% HCT.

Trial registration

German Clinical Trials Register (DRKS-ID: DRKS00023593).

Introduction

Level V-III trauma centres are not usually equipped to offer 24/7 neurological care. They often

rely on radiological reports and teleradiology to evaluate the severity of neurological condi-

tions and the need for on-site monitoring/treatment or transfer to a specialized center. As tele-

radiology networks continue to develop, bigger centres receive an ever-increasing stream of

diagnostic imaging data of variable quality around the clock. This trend demands improve-

ments in the prioritization and speediness of reporting to ensure prompt treatment in emer-

gent cases [1].

Non-contrast head computed tomography (HCT) scans account for the majority of imag-

ing requests made in teleradiology networks [2]. The majority of these HCTs is conducted on

weekends between 8 am and 4 pm [2]. 24-hour in-house radiology coverage is far from the

norm for many radiology departments [3]. Overnight neuroradiology coverage is even less

common, the interpretation of cranial imaging primarily falling to radiology residents or clini-

cians [4]. A prospective study examining primary radiology reports (RRs) by residents with re-

evaluation by a neuroradiologist found a discrepancy rate of 0.6% regarding the presence of

intracranial hemorrhages (ICH) [5]. Technical innovations are needed to offset this diagnostic

gap during on-call shifts and improve diagnostic rates for subtle findings [6], as only their

detection will ensure that both HCTs and patients undergo evaluation by a clinical specialist.

The term artificial intelligence (AI) was coined during the 1940s [7]. Deep learning is a

form of machine learning which uses convolutional neuronal networks to solve both simple

and complex tasks [8]. In radiology, AI is increasingly perceived as an opportunity to optimize

medical care [9]. Multiple AI algorithms for ICH detection have been tested successfully [10–

13]. These innovations offer an opportunity to reduce diagnostic errors in high-volume centres

at any time of day or night [14, 15].

Typical pitfalls during the interpretation of HCTs for ICH are other hyperdense intracranial

structures (such as calcifications), image quality, and the presence of artifacts [16]. While

humans learn to differentiate true ICHs through experience, AI analysis software must be

trained on specific analysis results. Radiologist and clinicians can improve ICH detection rates

by interpreting HCT using coronal and sagittal reconstructions; AI algorithms usually rely

solely on axial views [17]. Despite a wealth of articles on AI, it remains unknown whether the

use of deep learning algorithms for ICH detection in teleradiology networks poses specific

challenges for the AI software itself and/or for the interpretation of results.

According to recent literature, a commercially available, FDA-cleared, and CE-marked tri-

age and notification software (AIDOC) with a sensitivity of 89–95% and a specificity of 94–

99% in detecting ICH [2, 10, 18] might be used to increase the detection rates for ICH [19].

The study reported here sought to determine the number of additional intracranial hemor-

rhages detected by an AI analysis software and to evaluate possible reasons for errors at a level

I trauma center with teleradiology network.
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Materials and methods

This retrospective multi-center cohort-study was prospectively registered on the German Clin-

ical Trials Register (DRKS-ID: DRKS00023593) and conducted in accordance with the Decla-

ration of Helsinki 2013. The institutional review board (Medical Association of Berlin,

Germany, Eth-46/20) approved the study protocol and waived the need for written consent.

The study comprised 7 phases: screening/enrolment; report classification; AI analysis; discrep-

ancy review; endpoint analysis; review of patient records; and statistical analysis. The study

protocol, summarized in Fig 1, is in line with the guidance provided by the Strengthening the

Reporting of Observational Studies in Epidemiology (STROBE-) Initiative [20].

Screening and enrolment

We conducted an exploratory retrospective review of consecutive non-contrast HCTs at both

the primary study site and 17 teleradiology network hospitals. The review of all HCTs,

acquired during 5 months (05/2020–09/2020), took place prior to the routine implementation

of a commercially available, FDA-cleared, CE-marked triage and notification software for ICH

detection (AIDOC, Tel Aviv, Israel). None of the HCTs had previously been analyzed using

Fig 1. Study protocol. Study protocol and conduct followed STROBE-Initiative guidance and describes: patient screening; inclusion and exclusion criteria; comparison of

primary RR and AI analysis results with the reference standards, i.e. review by a neuroradiologist (STROBE, Strengthening the Reporting of Observational Studies in

Epidemiology; AI, artificial intelligence; RR, radiology report).

https://doi.org/10.1371/journal.pone.0260560.g001

PLOS ONE Retrospective multicenter cohort study of 4946 patients at a level I trauma center with teleradiology

PLOS ONE | https://doi.org/10.1371/journal.pone.0260560 November 29, 2021 3 / 18

https://doi.org/10.1371/journal.pone.0260560.g001
https://doi.org/10.1371/journal.pone.0260560


the AI algorithm. Scans had a slice thickness of 0.5–5 mm and were performed either in spiral

technique with secondary coronal and sagittal reconstructions or in incremental technique. To

be eligible, patients had to be aged 18 years or over and had to have undergone examination

for an emergent cause such as trauma, neurological deficit, or headache. Routine examinations

and contrast-enhanced studies were excluded. All primary RRs were composed by a team of

neuroradiologists, radiology consultants, or experienced residents who had been trained at the

primary study site.

Report classification and preparation of cases

After inclusion, RRs were reviewed manually and classified as either “positive-by-report” or

“negative-by-report” by an independent radiologist. Additional data collected for each HCT

included the number of CT scanner rows, the CT technique (spiral versus incremental), and

the experience of the primary examiner (neuroradiologist, radiology consultant, or experi-

enced resident). All HCT were subsequently pseudonymized for analysis by the AI algorithm.

AI analysis

Prior to this retrospective analysis, a commercially available, cloud-based AI solution for com-

puter-aided triage and prioritization of ICH detection (AIDOC, Tel Aviv, Israel) was selected

out of a pool of 11 products to become the first AI tool to be implemented at the teleradiology

network. Designed to detect intracranial hemorrhages, it was chosen due to its status as one of

the first FDA-cleared products, having received its Section 510(k) clearance in 2018. The algo-

rithm’s high level of accuracy has since been described by a number of studies [2, 10, 18, 21].

The AI solution is based on a proprietary two-stage algorithm consisting of a region pro-

posal stage and a false positive reduction stage. The first stage is a 3D Deep Convolutional

Neural Network (CNN) trained on HCTs acquired using a diverse range of CT scanners from

multiple medical centers around the world. Trained on segmented scans, this network pro-

duces a 3D segmentation map from which region proposals are generated and passed as input

to the second stage of the algorithm. The second stage then classifies each region as either posi-

tive or negative based on features from the last layer of the first stage and traditional image

processing methods. Upon detection of suspected positive findings, the AI solution delivers

notifications to the radiologist workstation [2].

For our retrospective analysis, axial HCTs were first checked for technical unsuitability for

ICH detection (excessive motion artifacts, severe metal artifacts, or an inadequate field of

view) by the algorithm. Only HCTs with suspected ICH were flagged (= marked as positive) by

the algorithm and the results displayed as color-coded maps on key slices. The independent

radiologist received the color-coded maps of flagged cases and classified results into “positive-

by-AI” and “negative-by-AI”. The color-coded maps marked suspected hemorrhage locations

(Fig 2).

Discrepancy review

Comparison of primary RRs and retrospective AI analyses resulted in two discrepancy catego-

ries, namely “negative-by-report/positive-by-AI” and “positive-by-report/negative-by-AI”.

Discrepant cases were transferred to one of two neuroradiologists (NR) who were blinded to

both the RR and AI results and adjudicated on whether or not the HCT in question contained

an ICH. Any ICHs detected by the NR were further described according to type (subarach-

noid, subdural, epidural, or intracerebral hemorrhage), size, location (supra-/infratentorial,

ventricular, lobar), and neighboring structures (calvaria, scull base, falx, or foreign bodies).
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Endpoint analysis

The independent radiologist subsequently determined if the NR agreed with at least one of the

findings of the AI analysis (“positive-by-NR”) or if she/he disagreed, describing no relevant

findings (“negative-by-NR”). Uncertain cases were recorded and discussed by both NRs to

determine a consensus result.

The independent radiologist then evaluated the color-coded maps of positive-by-AI/nega-

tive-by-NR HCTs for possible underlying reasons, such as: beam-hardening, motion, or metal

artifacts; typical hyperdensities (calcifications of falx, plexus, basal ganglia, tentorium, or pineal

gland); blood vessel-associated hyperdensities (arteriosclerosis, sinus, developmental anomaly,

aneurysm); tumor- and cavernoma-associated hyperdensities; atypical parenchymal

Fig 2. Color-coded maps. Axial non-contrast HCT showing a thin SDH of the right frontotemporal hemisphere (A)

and a traumatic SAH of the left frontal and temporal lobe (C). B and D: AI analysis results as color-coded maps

identifying the relevant findings (ICH) correctly (HCT, head computed tomography, SDH, subdural hematoma; SAH,

subarachnoid hemorrhage; AI, artificial intelligence; ICH, intracranial hemorrhage).

https://doi.org/10.1371/journal.pone.0260560.g002
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hyperdensities (grey matter or white matter with or without calcifications, basal ganglia with-

out apparent calcifications); and dural patches. The number of additional cases detected by the

AI algorithm but missed by the RR corresponded to the negative-by-report/positive-by-AI

cases evaluated as positive by the NR; the number of additional ICHs detected exclusively by

the RR corresponded to the negative-by-AI/positive-by-report cases evaluated as positive by

the NR. Cases overcalled by the RR corresponded to the positive-by-report/negative-by-AI

cases evaluated as negative by the NR. Cases overcalled by the AI algorithm corresponded to

the positive-by-AI/negative-by-report cases evaluated as negative by the NR. As the study

design focused on discrepancies, diagnostic accuracy measures could not be calculated.

Patient records

Patient records were only accessible at the primary study site via the radiology department.

For our final data collection, records of patients with ICH (positive-by-report/positive-by-AI

and positive-by-NR) were reviewed for management of ICH (monitoring/conservative in

ICU; surgery; angiography; none) and mortality (death in hospital versus discharge). Missed

ICHs (negative-by-report/positive-by-AI and positive-by-NR) were examined by two indepen-

dent neurosurgery attendings who evaluated the following: treatment outcomes in light of the

size and location of the ICH; readmission since discharge; anticoagulation medication; and

time since HCT. Whether or not there was a medical need to contact a specific patient was

determined based on these factors.

Statistical analysis

All statistical analyses were performed using the SPSS software package for Windows, version

27 (IBM, Armonk, NY, USA). Missing values were not imputed but presented for all relevant

variables. Our reporting adhered to the Standards for Reporting of Diagnostic Accuracy state-

ment and recommendations [22]. Descriptive statistics included arithmetic mean, median,

standard deviation (SD), minimum and maximum values (range), interquartile range (IQR),

as well as absolute numbers (n) and relative proportions (%). We used Pearson’s chi squared

(two-sided) test to evaluate associations between: (a) ICHs detected/missed by RR and various

parameters (size, location, and neighboring structure of ICH; artifacts; CT technique; detector

width; location of the study site; experience of radiologist); and (b) ICHs detected/missed ICH

by AI and the aforementioned parameters. Where a parameter had multiple ordinal values,

these were aggregated into larger categories. P-values of<0.05 were considered statistically

significant.

Results

A total of 7478 non-contrast HCTs acquired between 05/2020 and 09/2020 were screened

according to the inclusion criteria. Of these, we excluded 2447 routine HCTs and 39 HCTs of

patients aged under 18. Another 46 cases were excluded during the first step of AI analysis due

to inadequate image quality (Fig 1).

Case mix

Out of a total of 4946 consecutive HCTs included in analysis, 2347 (47.5%) were from female

and 2596 (52.5%) from male patients. The median age of patients was 72 (IQR 56–83). 2736

(55.3%) cases were sourced from the primary study site (two CT scanners), while the other

2210 (44.7%) were sourced from 17 teleradiology hospitals (17 CT scanners). CT scanners
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included one six-row scanner, one eight-row scanner, nine 16-row scanners, five 64-row scan-

ners, two 128-row scanners, and one 2x192-row scanner (S1 Table).

Primary analysis

A total of 205 (4.1%) reports were classified as hemorrhages by both the RR and the AI, 162

(3.3%) as discrepancies. 62 (1.3%) of the discrepancies were subsequently confirmed as hemor-

rhages by a NR, resulting in a total of 267 ICHs and an estimated prevalence of 5.4%.

RRs correctly identified a total of 238 (4.8%) ICHs, including 33 (0.67%) cases missed by

the AI analysis, resulting in an estimated miss rate of 10.9%. AI analysis flagged a total of 234

ICHs (4.7%), including 29 (0.59%) cases missed by the RR, an estimated miss rate of 12.4%.

The AI algorithm identified an additional 12.2% of ICHs which had not initially been detected

by RR (Table 1). 88 (1.9%) HCTs which the AI algorithm had flagged as hemorrhages as well

as 10 (0.2%) positive RRs were evaluated as incorrect by the NR. Both therefore corresponded

to the estimated overcall rates for the AI algorithm and the radiologists. Two cases were classi-

fied as inconclusive by the NR.

Neuroradiologists (as primary examiner) missed 4 (estimated miss rate of 10.0%) cases but

recorded no overcalls. Radiology consultants missed 19 (estimated miss rate of 11.4%) cases

and misclassified 7 as ICH (estimated overcall rate of 0.25%), while residents missed 6 cases

(estimated miss rate of 9.8%) and misclassified 3 cases as ICH (estimated overcall rate of

0.34%).

25 (86.2%) of ICHs missed by the RR but detected by the AI algorithm occurred outside of

regular working hours, i.e., weekdays between 4:31 pm and 7:30 am or at the weekend.

Description of incorrect AI/RR results

According to the NRs, the AI algorithm missed a total of 33 ICHs, ranging in size from 1mm

to 18 mm (largest diameter). 16 (48.5%) of these misclassifications were associated with hem-

orrhages smaller than 5 mm in diameter and 17 (51.5%) with hemorrhages 5 mm in diameter

or larger. 20 out of 29 (69.0%) ICHs classed by the NR as having been missed by the RR were

smaller than 5 mm (S1 Fig). A total of 10 cases (30.3%) of ICH which had been missed by the

AI algorithm showed multiple types of hemorrhage, compared with only 3 cases (10.3%) of

ICH missed by the RR. Subarachnoid hemorrhages (SAH) were the most common type of

missed ICH, accounting for 13 of both the AI (39.4%) and RR (44.8%) evaluations. Subdural

hematomas (SDH), epidural hematomas (EDH), intracerebral hematomas (ICB), and intra-

ventricular hemorrhages (IVH) were observed less often (Table 2). ICHs missed by AI were

Table 1. Summary of main results.

Variable AI analysis Radiology report

Correctly classified as ICH 234 of 267 (87.6%) 238 of 267 (89.1%)

both by AI/RR 205 (87.6%) 205 (86.1%)

exclusively by AI or RR 29 (12.4%) 33 (13.9%)

Correctly classified as non-ICH 4590 of 4679 (98.1%) 4669 of 4679 (99.8%)

both result by AI/RR 4579 (99.7%) 4579 (98.1%)

exclusively by AI or RR 11 (0.3%) 88 (1.9%)

Estimated miss rate 33 of 267 (12.4%) 29 of 267 (10.9%)

Estimated overcall rate 89 of 4679 (1.9%) 10 of 4679 (0.2%)

Results of the primary analysis for the AI algorithm and the primary radiology report.

ICH, intracranial hemorrhage; AI, artificial intelligence; RR, radiology report.

https://doi.org/10.1371/journal.pone.0260560.t001
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often located immediately under the calvaria (n = 16; 55.2%), whereas ICHs missed by RR

were more frequently parafalcine (n = 9; 31.0%) and in the parenchyma (n = 10; 34.5%)

(Table 2).

Artifacts were described in 521 (10.9%) of concordant and 83 (51.2%) of discrepant HCT

and were most often caused by beam-hardening. They were present in 16 (48.5%) of the ICHs

missed by the AI algorithm and in 12 (41.4%) of ICHs missed by the RR.

No statistically significant associations were found between: (a) size, location, or neighbor-

ing structure of ICH; artifacts; CT technique; detector width, location of the study site, or expe-

rience of radiologist; and (b) the likelihood of an incorrect AI or RR.

Incorrect AI findings on color-coded maps

In 79 cases (89.8%) positive-by-AI/negative-by-NR results were accounted for by one main

reason. Uncommon hyperdensities or calcifications of the parenchyma and dural patches

caused 24 (27.3%) (Fig 3), typical hyperdensities caused by calcifications of falx, plexus, basal

ganglia, tentorium, or pineal gland accounted for 18 (20.5%) of the false positive AI results (S2

Fig). Beam-hardening artifacts resulted in 16 (18.2%) (S3 Fig), intracranial tumors in 14

(15.9%) (S4 Fig), and unremarkable as well as atypical/pathological blood vessels in 7 (8.0%)

(Fig 4) HCTs incorrectly flagged as positive. In 9 (10.2%) cases, false positive AI results were

accounted for by multiple findings which contributed equally.

Table 2. Missed ICH by AI/RR and properties of hemorrhages.

Property Missed AI (n = 33) Missed RR (n = 29)

Size of hemorrhage

<5mm 16 (48.5%) 20 (69.0%)

> = 5mm 17 (51.5%) 8 (27.6%)

Missing 0 1 (3.4%)

Type of hemorrhage

Multiple hemorrhages 10 (30.3%) 3 (10.3%)

SAH 13 (39.4%) 13 (44.8%)

SDH 3 (9.1%) 9 (31.0%)

EDH 3 (9.1%) 0

ICB 3 (9.1%) 2 (6.9%)

IVH 1 (3.0%) 1 (3.4%)

Missing 0 1 (3.4%)

Adjacency of hemorrhage

Under calvaria 16 (48.5%) 7 (24.1%)

Parafalcine 3 (9.1%) 9 (31.0%)

Ventricle 1 (3.0%) 2 (6.9%)

Surrounding foreign body 1 (3.0%) 0

Parenchyma 12 (36.4%) 10 (34.5%)

Level of skull base 0 1 (3.4%)

Location of hemorrhages

Supratentorial 30 (90.9%) 23 (79.3%)

Infratentorial 3 (9.1%) 5 (17.2%)

Missing 0 1 (3.4%)

SAH, subarachnoid hemorrhage; SDH, subdural hemorrhage; EDH, epidural hemorrhage; ICB, intracerebral

bleeding; IVH, intraventricular hemorrhage; AI, artificial intelligence; RR, radiology report.

https://doi.org/10.1371/journal.pone.0260560.t002
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Relevance, therapy, and mortality

We were able to examine the medical records of 171 patients with confirmed ICH (64.0%) at

the primary study site. Of these patients, 97 (56.7%) were monitored in an ICU, 31 (18.1%)

underwent surgery, 7 (4.1%) received a cerebral angiography, and 13 (7.6%) were given a poor

prognosis. A total of 122 (71.3%) patients were discharged, 29 (17%) patients died in hospital,

and in 20 (11.7%) cases, the outcome remained uncertain. The AI algorithm missed the ICH

in 3 of the 29 deceased patients (10.3%).

29 cases were initially missed by the RR (negative-by-report/positive-by-NR). Of these, two

patients had died due to causes unrelated to the missed ICH. One patient was under followed-

Fig 3. Uncommon calcifications. A: Axial HCT showing extremely calcified basal ganglia and calcification of the

paraventricular parenchyma of the left dorsal parietal lobe. C: Axial HCT with metal artifact due to a shunt valve.

Enlarged ventricles and hypodense parenchyma after non-traumatic SAH. Hyperdense appearance of the

frontotemporal dural patch. B and D: Corresponding color-coded maps flagging uncommon calcifications (B), dural

patch, falx, tentorium, and residual parenchyma in both the frontal and the right temporal lobes (D) (HCT, head

computed tomography; SAH, subarachnoid hemorrhage).

https://doi.org/10.1371/journal.pone.0260560.g003
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up for a small brainstem cavernoma. Another patient had undergone an MRI during her hos-

pitalization which unmasked her small SAH. Six patients had subsequently received HCTs

after repeated falls, which showed resorption of their SAH or SDH. 16 patients whose small

SDH or SAH had been missed would usually have been monitored for 1–3 days. Five of these

patients were in receipt of anticoagulation medication which would have been paused depend-

ing on their comorbidities until a follow-up HCT approximately four weeks later. The same

patients might also have undergone repeat HCTs prior to discharge. However, as more than

seven months had elapsed, the clinicians agreed that physical and radiological follow-up was

no longer medically indicated. Only one young patient with a minor ICH was notified and

invited back for a follow-up MRI, a decision prompted by his employer’s liability insurance

association.

Fig 4. Atypical and pathological blood vessels. A: Axial HCT with hyperdense appearance of a DVA of the right

frontal lobe. B: Corresponding color-coded map flagging the DVA. C: Axial HCT showing an aneurysm of the left

ICA. D: Color-coded map flagging the ICA aneurysm, the left ICA, and a hyperdense spot of the right cerebellar

hemisphere (HCT, head computed tomography; DVA, developmental anomaly; ICA, internal carotid artery).

https://doi.org/10.1371/journal.pone.0260560.g004
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Discussion

This cohort study confirms that use of AI analysis software can increase the number of ICHs

detected in a level I trauma center with teleradiology services. The AI algorithm detected 29

(0.59%) additional ICHs in a cohort of 4946 HCT, a 12.2% increase in the number of detected

ICHs. This is in contrast to Rao et al., who reported on the same algorithm retrospectively

detecting only 0.24% of missed ICH, most of which were found overlying the convexity and

the parafalcine structures [19]. Our analysis produced similar estimated miss rates for both AI

analysis and RR. While the likelihood of the AI algorithm missing an ICH was not affected by

either ICH size or type, radiologists seemed more likely to miss ICHs of smaller size. One pos-

sible conclusion is that the AI algorithm’s ability to reliably detect hyperdensities is less depen-

dent on ICH size, while humans are more prone to overlook smaller hyperdensities [23]. It

would then follow that combining AI analysis with radiological and clinical experience is likely

to benefit patients by highlighting smaller ICH which might otherwise have been missed. Arti-

facts are another potential risk factor for erroneous AI analysis results. According to our

results, AI analysis also missed the majority of ICHs beneath the calvaria and the parafalcine

region, most commonly SAH. Difficulties in identifying ICHs in these areas are usually caused

by beam-hardening and partial volume artifacts [24]. Artifacts were described in 10.9% of con-

cordant HCTs and in 51.2% of discrepant HCTs. While it appears reasonable that metal and

motion artifacts should cause false AI analysis results in any intracranial location, beam-hard-

ening, and partial volume artifacts are common in typical locations of the posterior fossa and

close of the skull [25]. The AI algorithm also flagged various typical and uncommon hyperden-

sities such as tumors, blood vessels, and calcifications as ICHs. The ability to differentiate

between hyperdensities and blood or combinations of the two has long been known as difficult

to master, and forms part of a long learning-process for residents [16]. Therefore, this skill

must be susceptible to errors in machine learning as well and must be afforded special atten-

tion during the evaluation of AI analysis results.

Both CT technique and detector width varied greatly in this multicenter study of a telera-

diology network, devices ranging from a mobile 6-row scanner HCT to a dual-source 192-

row scanner. It is a well-established fact that artifacts can be reduced by modern CT scanners

and spiral CT techniques [26–28]. This study did not find any statistically significant associa-

tions between: (a) location of the study site (in-house/teleradiology), artifacts, the detector

width, or the CT technique; and (b) the likelihood of incorrect AI results. The AI algorithm

appears to have operated at a constant level of accuracy despite variations in imaging quality

and technique. It might therefore make a valuable addition to teleradiology settings.

Estimated overcall and miss rates for both the AI algorithm and RRs were low, at 1.9%/

0.2% and 12.4%/10.9% respectively. These results are comparable with previously published

sensitivity values of 88.7–95% and specificity values of 94.2–99% [2, 10, 18, 29, 30].

There is a dearth of literature on anatomical reasons for false positive AI analysis and data

pertaining to this specific algorithm do not currently exist. Our study identified typical ana-

tomical landmarks which proved difficult for the algorithm. Unusual hyperdensities due to cal-

cifications of the parenchyma, dural patches, and tumors could not be differentiated reliably

from ICH. Some typical hyperdensities caused by calcifications of falx, plexus, basal ganglia,

tentorium, the pineal gland, and vessels also resulted in AI misclassifications. All of these struc-

tures require careful examination by clinicians and radiologists to differentiate overlying blood

from misclassification errors by the AI algorithm. Further refinement of the algorithm may

reduce its overcall error rate.

Our analysis of patient records points to the relevance of missed ICHs. There was consensus

among the clinicians involved that, in 16 out of 29 cases missed by the radiologists, an initial
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diagnosis of ICH would have influenced subsequent management. Patients would have been

monitored and, wherever possible, anticoagulation medication would have been paused until

after a follow-HCT four weeks later. Conversely, the possibility of overdiagnosis by the AI

algorithm must also be considered. Some studies have raised concerns regarding the treatment

of mild traumatic brain injury, suggesting it might be unnecessary and unresourceful [31, 32].

The majority, however, stress the need for neurological monitoring in patients with small

ICHs, which is indicated due to the risk of secondary deterioration, especially in patients on

anticoagulants [33–35].

In our study, neuroradiologists were gold standard in HCT interpretation, with low esti-

mated miss and overcall rates. However, 24/7 neuroradiology cover is not the current standard

of care and cannot realistically be implemented on a broad basis. Radiological accuracy studies

have reported discrepancy rates of 2.3–3.7% between reporting radiologists and neuroradiolo-

gists. Discrepancies due to ICH accounted for 0.6% and were found to be mostly the result of

missed SDH or SAH in parafalcine and frontal locations [5, 35–37]. There is also the risk that

an increase in scheduled CTs and night shifts could reduce the accuracy of radiological report-

ing [14, 38, 39]. This was exemplified by the results of our study, in which 85% of missed ICHs

in this study occurred during on-call shifts. As the majority of emergency HCTs are performed

during on-call duty shifts, a prudent approach might be to seek solutions capable of reducing

both stress and errors during these sensitive times—particularly given the stark increase in the

numbers of emergency HCTs performed during on-call shifts [40–42]. At emergency depart-

ments without 24/7 in-house radiology coverage, intelligent solutions for ICH detection may

support rapid clinical rapid decision-making and the prompt treatment of critically ill

patients.

Algorithm performance can vary with both facility case mix and cohort-specific ICH preva-

lence [10, 30]. The discrepancy rate between primary RR and AI analysis was 3.3%. Working

with AI holds opportunities and challenges for both radiologist and skillful clinicians who, in

addition to maintaining their expertise also need to be aware of the pitfalls of the specific soft-

ware solutions [43, 44]. Specifically, both radiologists and clinicians can and should consult a

patient’s past and current medical history, previous imaging data, and additional CT recon-

structions to form a comprehensive diagnosis where results appear inconclusive (Fig 5 and S5

Fig). When used in combination, AI analysis and human evaluation have the potential to com-

plement their respective strengths and weaknesses. AI solutions should therefore be consid-

ered for integration into routine clinical practice as a way to increase the sensitivity of HCT

interpretation for ICH while maintaining a low overcall rate [2, 45].

Lastly, it must be stressed that, in many cases with complex conditions (e.g., polytrauma

patients with combined intracranial, throracoabdominal, and musculoskeletal injuries), ICH

detection only forms a part of a sequence of diagnostic and therapeutic measures. In teleradiol-

ogy networks, AI analysis could support the prompt and accurate detection of an ICH. Follow-

ing the identification of concomitant injuries, these patients would then need to be transferred

to a level I trauma centers to ensure treatment by an experienced team of radiologists and cli-

nicians [46].

Several limitations of this study must be addressed. Firstly, the retrospective study design is

susceptible to selection bias. We addressed this through adherence to the STROBE standards,

which enabled us to increase the level of transparency of the selection and inclusion process of

consecutive patients. Secondly, given the lack of previous robust studies and sample size calcu-

lations, the exploratory nature of this study means it yields mainly descriptive results. Further-

more, while the multicenter approach is one of this study’s strengths, it is also associated

information or data bias. Access to patient records (for clinical course and mortality data) was

limited to the primary study site. Despite this, data from patient records were able to provide
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valuable insight into the potential impact of missed ICH cases. A further limitation was that

overcall rates and miss rates could only be estimated. While our study design allowed for the

inclusion of a large patient cohort, its focus on discrepancies between initial RR and AI analy-

sis means that it does not permit conclusions regarding diagnostic accuracy measures. How-

ever, the likelihood of a HCT with concordant AI and RR findings giving rise to a discordant

NR evaluation is vanishingly small. The estimated results can therefore be considered close

approximations of the actual miss and overcall rates. Lastly, our study describes the perfor-

mance of one particular AI algorithm in clinical practice. Additional larger studies are war-

ranted to compare the performance of the available products prospectively [21]. A broader

Fig 5. ICHs missed by the algorithm compared to previous imaging. Axial HCT showing ICHs (white arrows)

missed by the AI algorithm in the right ventricle (A) and the left temporal lobe after ischemic stroke (C). B and D show

the corresponding HCTs acquired during the same year, differentiating these hyperdensities from calcifications (HCT,

head computed tomography; ICH, intracranial hemorrhage; AI, artificial intelligence).

https://doi.org/10.1371/journal.pone.0260560.g005
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understanding and the availability of generalized data may aid the institutional decision-mak-

ing process involved in the procurement and implementation new AI-based solutions.

Conclusion

The AI algorithm identified an additional 12.2% ICHs. 1.9% of HCTs were overcalled by the

AI algorithm; this was often caused by calcifications. ICHs missed by the AI algorithm were

mainly located in the subarachnoid space or under the calvaria.

In conclusion, combining human, radiological and clinicals expertise with an AI algorithm

is a promising strategy for maximizing ICH detection in high-volume centers with teleradiol-

ogy services, especially during on-call duty. The identifications of additional ICHs enables

prompt monitoring or treatment and could potentially reduce the risk of secondary clinical

deterioration in these patients.

Supporting information

S1 Checklist. TREND statement checklist.

(PDF)

S1 Fig. ICH missed by the RR. A: Axial HCT showing a thin acute SDH and small contusion

of the right temporal hemisphere. B: Corresponding color-coded map identifying the ICHs

correctly as main findings. These ICHs were missed by the RR (RR, radiology report; HCT,

head computed tomography; SDH, subdural hematoma; ICH, intracranial hemorrhage).

(TIF)

S2 Fig. Typical calcifications. A, C, E: Axial HCT without ICH, typical false positive results.

Color-coded maps flagging a calcified spot of the falx (B), part of the tentorium (D), and part

of the infratentorial plexus at the left lateral aperture (F) (HCT, head computed tomography;

ICH, intracranial hemorrhage).

(TIF)

S3 Fig. Beam-hardening artifacts. A, C: Axial HCT without ICH. B and D: Corresponding

color-coded maps with false positive findings underneath the frontal skull due to beam-hard-

ening artifacts (HCT, head computed tomography; ICH, intracranial hemorrhage).

(TIF)

S4 Fig. Intracranial tumors. A, C, E, F: Axial HCT showing hyperdense/partially calcified

tumors. A: colloid cyst of the third ventricle, E: intra-/extracranial metastasis of the right fron-

toparietal hemisphere, G: vestibular schwannoma of the left auditory canal with extra-/intra-

canicular growth. B, C, G: Color-coded maps flagging the tumors (HCT, head computed

tomography).

(TIF)

S5 Fig. ICH missed by the AI algorithm on three planes. Axial (A), coronal (B), and sagittal

(C) reconstructions showing a thin SAH of the left cerebellar hemisphere (white arrows)

which was not flagged by the algorithm (SAH, subarachnoid hemorrhage).

(TIF)

S1 Table. Characteristics of included cases and scanning environment. Characteristics of

the whole case mix divided into cases with and without intracranial hemorrhage according to

the neuroradiologist. IQR, interquartile range; ICH, intracranial hemorrhage; CT, computed

tomography.
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