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Switzerland; E-Mail: zamboni@imsb.biol.ethz.ch
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Abstract: Metabolite identification is a major bottleneck in metabolomics due to the number
and diversity of the molecules. To alleviate this bottleneck, computational methods and tools
that reliably filter the set of candidates are needed for further analysis by human experts.
Recent efforts in assembling large public mass spectral databases such as MassBank have
opened the door for developing a new genre of metabolite identification methods that rely
on machine learning as the primary vehicle for identification. In this paper we describe
the machine learning approach used in FingerID, its application to the CASMI challenges
and some results that were not part of our challenge submission. In short, FingerID learns
to predict molecular fingerprints from a large collection of MS/MS spectra, and uses the
predicted fingerprints to retrieve and rank candidate molecules from a given large molecular
database. Furthermore, we introduce a web server for FingerID, which was applied for
the first time to the CASMI challenges. The challenge results show that the new machine
learning framework produces competitive results on those challenge molecules that were
found within the relatively restricted KEGG compound database. Additional experiments
on the PubChem database confirm the feasibility of the approach even on a much larger
database, although room for improvement still remains.
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1. Introduction

Metabolomics is the science of measuring and analyzing the pool sizes of metabolites, which
collectively define the metabolome of a biological sample [1]. Metabolomics has numerous and diverse
applications in medicine, pharmaceutical research, nutrition, forensics, anti-doping, plant research
and biotechnology. Due to its unparalleled sensitivity and selectivity, mass spectrometry (MS) is a
cornerstone measurement technology in metabolomics.

Identification of metabolites from mass spectra is a prerequisite for further biological interpretation of
metabolomics samples and metabolic modeling [1,2]. It is also the most time-consuming and laborious
step in a metabolomics experiment [3].

An MS measurement of a metabolomics sample results in a set of peaks representing the
mass-to-charge (m/z) ratios and intensities of the different metabolites of the sample. The fact that
the same elemental composition and the same mass-to-charge ratio can arise from various different
structures, as well as noise, adducts and fragments, hampers the identification of metabolites from
MS data [4].

Tandem mass spectrometry (MS/MS) facilitates metabolite identification by fragmenting the detected
compound and measuring the m/z ratios of the resulting fragment ions. Querying measurement spectra
against spectral reference databases [5] and manual curation by domain experts dominate the current
approaches via MS/MS.

The reference database method is reliable as long as the database contains the corresponding
spectrum, and the query and reference spectra are measured with compatible, or ideally, identical mass
spectrometers with closely matching operating parameters. Due to the general similarity of spectra,
misleading false positives can occur even if the database does not contain the correct spectrum. Indeed,
conventional methods are often only able to identify a minority of the detected compounds, as low as
10% [6] to 30% [7]. Unsurprisingly, a recent survey posed to MS experts found metabolite identification
as the most important bottleneck in metabolomics today [3].

To alleviate the shortcomings of the reference database methods, computational approaches to model
the fragmentation processes have been undertaken. Current state-of-the-art methods are based on
combinatorial algorithms and database searches. Computation of fragmentation trees is tackled with
several approaches [3,8–11]. The MetFrag software filters the compound databases by the precursor
mass of the query mass spectra and for every candidates after filtering, the fragmentations are simulated
and compared with the observed peak list [10]. SIRIUS used the analysis of isotopic patterns to give
additional data on the metabolite’s elemental composition [11].

Fueled by public mass spectral databases such as MassBank [5], the use of machine learning
now represents a promising and so far under-utilized approach to improve the accuracy of metabolite
identification and to decrease the burden of manual tuning of metabolite identification methods. A
machine learning approach for metabolite identification through molecular fingerprints was very recently
introduced [12]. FingerID [13] relies on a two-step scheme. Instead of directly learning a mapping from
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the spectrum to the metabolite, a set of characterizing fingerprints of the metabolite is first predicted from
its tandem mass spectrum using a kernel-based approach. The fingerprint prediction model is learned
from a large set of tandem mass spectra obtained from the public mass spectral database MassBank [5].
In the next step, the predicted fingerprints are matched against a molecular database such as KEGG [14]
or PubChem [15] to obtain a list of candidate metabolites. The metabolite identification model is thus
generalized to metabolites that are not presented in reference spectral databases. Due to the machine
learning approach, data from any type of mass spectrometer is supported.

In this paper, approaches used in the Critical Assessment of Small Molecule Identification
(CASMI) [16] challenge, the first small molecule identification challenge in computational mass
spectrometry community, are explained. In Section 2, the main methods underlying the FingerID
framework [12] and the new user interfaces are presented. In Section 3 the experimental data and
methods are described followed by results in Section 4. Section 5 concludes the article with future work.

2. Metabolite Identification through FingerID

In this section, the FingerID metabolite identification framework [12] is described. An overview of
the framework is shown in Figure 1. It consists of two main modules:

• A molecular fingerprint prediction module that relies on support vector machines (SVM) equipped
with a probability product kernel representation of mass spectra.

• A molecule scoring and ranking module uses the predicted fingerprints to retrieve the best
matching candidate molecules from a molecular database such as KEGG or PubChem.

Figure 1. The FingerID framework.
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{ŷ1,..., ŷm}
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We describe these modules in the following. In addition, we outline the web server running FingerID
as well as the software distribution package available for download.
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2.1. Fingerprint Prediction through SVM

We define a mass spectrum χ = {χ(1), . . . , χ(`χ)} as a set of `χ peaks χ(k) = (µ(k), ι(k)) ∈
R2, (k = 1, . . . , `χ) consisting of the peak mass µ(k) and the normalized peak intensity ι(k). Our
goal is to learn a mapping between the mass spectra χ ∈ X and a set of m molecular fingerprints
y = (yj)

m
j=1 ∈ {+1,−1}m. The fingerprints encode molecular properties with the value yj = +1

denoting the presence of jth property in the corresponding molecule.
We estimate the mapping f : X → {+1,−1}m using support vector machines (SVM) [17]. For each

fingerprint, a separate SVM model

ŷj(χ) = sign

(
n∑
i=1

αijyijK(χ, χi)

)
(1)

was built using a training set {(χ1,y1), . . . , (χn,yn)} of tandem mass spectra of metabolites with their
associated fingerprints. In Equation (1), the coefficients αij > 0 are dual variables denoting support
vectors, training examples χi that have margin less or equal to unity in the model of the jth fingerprint.
The kernel K measures the pairwise similarities of the spectra (see next subsection), and yij denotes the
presence or absence of the jth fingerprint in the ith training molecule.

2.2. Probability Product Kernel

Previously, two types of kernels were proposed [12] for mass spectra, i.e., integral mass kernel and
probability product kernel [18]. Integral kernel bins the mass of the peak to the nearest integer and takes
it as the index in the feature vector. Integral mass kernel has a simple intuitive interpretation, however, it
ignores the accurate mass of the peak and treats all peaks within [µ − 0.5, µ + 0.5] as identical to mass
µ. On the other hand, the probability product kernel assumes that the observed peak mass and intensity
is only an approximation to the true mass and intensity by placing a 2-D Gaussian distribution over
the observed peaks and intensities with Gaussian noise reflecting measurement errors. In practice, the
probability product kernel achieves consistently better results [12]. Hence, in this paper and the CASMI
challenges, the probability product kernel was used.

The peaks χ(k) of mass spectrum χ are represented with Gaussian distributions pχ(k) = N (χ(k),Σ)

centered around the peak measurement and with covariance shared with all peaks

Σ =

[
σ2
µ 0

0 σ2
ι

]

The variances σ2
µ and σ2

ι for the mass and the intensity, respectively, are both estimated from data and
no covariance is assumed between them. The spectrum χ is finally represented as a mixture of its peak
distributions pχ = 1

`χ

∑`χ
k=1 pχ(k).
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The probability product kernel Kpeaks between the peaks of two spectra χ, χ′ is now given by an
all-against-all matching of the underlying peak distributions [12]:

Kpeaks(χ, χ
′) = K(pχ, pχ′) =

∫
R2

pχ(x)pχ′(x)dx =

∫
R2

1

`χ

`χ∑
k=1

pχ(k)(x) · 1

`χ′

`χ′∑
k′=1

pχ′(k′)(x)dx

=
1

`χ`χ′

`χ,`χ′∑
k,k′=1

1

4πσµσι
exp

(
−1

2
(χ(k)− χ′(k′))TΣ−1(χ(k)− χ′(k′))

)
(2)

The kernel is computationally efficient as the integrals take a closed form that can be solved
analytically without numerical integration.

Two additional variants of the probability product kernel were considered, which differ in the way of
deriving the underlying probability distributions:

• Mass loss kernel Kmloss records the difference between a fragment peak and the theoretical
precursor peak by centering a Gaussian at the difference, giving the probability

pχ(k) = N (χ(k)− χ̃,Σ)

where χ̃ = (µprec, ι(k)) is a dummy peak with the precursor mass and the same intensity as the
peak χ(k). This kernel can be interpreted as capturing putative cleaved fragments or combinations
of them.

• Mass difference kernelKdiff computes the difference of all pairs of peaks and centers the Gaussian
at the peak difference pdiff (χ(k), χ(k′)) ∼ N (χ(k) − χ(k′),Σ). This kernel can be seen as a
generalization of the mass loss kernel by not fixing a precursor mass but instead recording all
possible fragmentation reactions between the peaks of two mass spectra. The kernel computation
has quadratically higher complexity compared with the other two variants.

The above base kernels can be combined to several types of spectral features. The experiments in [12]
showed that the combination of the peaks and mloss kernels demonstrates a good prediction accuracy
and shorter computation time compared with combinations involving Kdiff . The Kpeaks+mloss was used
in the CASMI challenge.

2.3. Candidate Retrieval

Given the predicted fingerprint vector corresponding to a tandem mass spectrum, the candidate
molecules matching these fingerprints are retrieved from a molecular database such as KEGG or
PubChem. As a preprocessing step, one needs to generate the true fingerprint vectors of each molecule
in the database.

In matching the predicted fingerprints to the observed ones in the database, it is sensible to give more
weight to fingerprints that can be predicted reliably from the mass spectrum. To implement that idea,
FingerID uses a probabilistic model that exploits the cross-validation accuracies (γj)

m
j=1 ∈ [0.5, 1]m of

the fingerprints as the reliability scores. Given the reliability scores and the predicted fingerprints ŷ, the
model assigns the Poisson-binomial probability for the fingerprint vector y as follows:

PPB(y|γ, ŷ) =
m∏
j=1

γ
[yj=ŷj ]
j (1− γj)[yj 6=ŷj ]
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The above can be interpreted as measuring the likelihood of a fingerprint y to be the source generating
the observations ŷ. For a molecule M , the probability of its fingerprint vector y(M) gives its score used
in candidate retrieval:

score(M) = PPB(y(M)|γ, ŷ) (3)

It is useful to reduce the number of candidates by filtering the molecular database by the exact mass
of the molecule. If the mass is not known, it is estimated from the MS2 or MS1 spectrum. A a small
search window is set [µM −∆, µM + ∆] around the estimated mass µM of the unknown molecule, and
the records in the molecular database that exceed the allowed mass difference are filtered out. The size
of the candidate set is obviously dependent on the width of the search window. A smaller width gives
a smaller candidate set but has a higher risk to miss the true molecule, if the exact mass was estimated
incorrectly. Based on the fingerprint scores in Equation (3), a ranked list is generated for the molecules
within the mass window.

2.4. FingerID Web Server

The FingerID web server [19] was initially built for tackling the CASMI challenges. The server
provides easy access to user who wishes to try the machine learning framework for metabolite
identification. The underlying database on the server is KEGG. A screen-shot is shown in Figure 2.

Figure 2. A screen-shot of FingerID web server.
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The FingerID web server has two modes. In the query mode, the user can submit an http form to the
server with the information related to the unknown molecule. The server will send back the result in a
table. In the batch mode, the user can write the queries in pre-defined format files and compress them in
a package. Then the user can upload the package to the server and the server will send back a package
of results to the user.

Both modes share the same set of input search parameters. Exact mass is used in the beginning of
database matching. Search PPM specifies the width of the mass window. It should be adjusted according
to the assumed precision of the exact mass. Precursor is required for the mloss feature. Peaks are simply
the list of masses and intensities of the MS/MS. Device type determines which trained model are used
for molecular fingerprint prediction. The user should set the Device type according to his own mass
spectrometer type. Mode tells the ionization mode of the mass spectrometer and it is useful in both
estimating the exact mass and aligning the peaks.

2.5. FingerID Software Distribution

When using the FingerID web server, the user can only use the trained model provided by the web
server administrators. The FingerID package [13] allows the user to select his own training mass spectra
to train the prediction models. The training spectra should be in MassBank [5] format. Model parameters
and database search parameters are specified in a configuration file. Training process could be minutes
to hours or even more, depending on the size of the training data. More detailed instructions can be
found on sourceforge project home page5 and in the readme file of the package.

3. Materials and Methods

3.1. CASMI Challenge Data

The 2012 CASMI contest [16] had four categories. Categories 1 and 2 are for high-resolution LC/MS
data coupled with MS/MS while Categories 3 and 4 are for nominal mass GC/MS data. Categories 1 and
3 concern the identification of the chemical formula and Categories 2 and 4 concern the identification
of the molecular structure. FingerID utilizes MS/MS data, therefore, only the Categories 1 and 2
are relevant.

All the challenge molecules are measured by two devices: Bruker micrOTOF-Q and LTQ-Orbitrap
in which APCI ionization and ESI ionization are both used. Some analytes are better ionized by APCI
and even in the cases that ESI and APCI deliver comparable ionization efficiency, the analytes respond
differently [20]. In addition, for the LTQ-Orbitrap, both collision-induced dissociation (CID) and higher
energy collisional dissociation (HCD) appear in the challenges and the resulting spectra for the same
molecules are quite different.

For those CASMI challenges not explicitly indicating the precursor mass, it is assumed to be the
molecular ion with some adducts, usually [M+H]+. With MS1 data at hand, estimating the exact mass
of the unknown molecule is usually straightforward. Most MS1 spectra in the CASMI challenges have
clear isotopic distributions. If the spectrum is measured in positive mode, the exact mass of the molecule
can be computed as the most abundant peak in MS1 minus the mass of the proton. The most abundant
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peak was taken as the precursor if it is not given. However, positive mode does not necessarily imply
[M+H]+. Other adducts such as [M+2H]+ and [M+Na]+ are also possible. Furthermore, noise and
measurement error may lead to the difference larger or smaller than the mass of the proton.

3.2. Mass Spectral Training Data

Due to the differences in the CASMI challenges we decided to train different fingerprint prediction
models for the different setups. In particular, we define three variables for our datasets: instrument
type, ionization type and fragmentation method. According to these variables, the challenge data
can be categorized to 5 models, which are (1) LC-APCI-ITFT-CID; (2) LC-APCI-ITFT-HCD;
(3) LC-ESI-ITFT-CID; (4) LC-ESI-ITFT-HCD and (5) LC-ESI-QTOF-CID.

The summary of training data obtained from MassBank is listed in the first part (MS2) of Table 1. The
molecules in Model (1) are a subset of Model (2), the molecules in Model (3) are a subset of Model (4).
The molecules in Model (5) are quite different, with at most 5 molecules overlapping with the other
models. Models (1) and (2) have 5 molecules also in Models (3) and (4).

Table 1. The training datasets statistics. The number of molecules is smaller than the
number of spectra because of the existence of mass spectra of the same molecules measured
in different collision energies.

MS type Instrument type No. of spectra No. of molecules Fingerprints

MS2 (1) LC-APCI-ITFT-CID 295 65 179
(2) LC-APCI-ITFT-HCD 882 86 181
(3) LC-ESI-ITFT-CID 447 224 281
(4) LC-ESI-ITFT-HCD 2655 225 281
(5) LC-ESI-QTOF-CID 1027 523 290

MS1 LC-ESI-ITFT 41 41 -
LC-ESI-QTOF 62 62 -

An auxiliary dataset named QqQ, which contains spectra of collision energies of 10 eV
(491 molecules), 20 eV (502 molecules), 30 eV (502 molecules), 40 eV (490 molecules) and 50 eV
(449 molecules), is used to analyze the effect of different collision energies on the fingerprint prediction.

3.3. Molecular Fingerprints

OpenBabel [21] was used to generate molecular fingerprints, FP3 (55 bits), FP4 (307 bits) and
MACCS (166 bits), all together 528 bits. However, in each dataset many of the fingerprints are either
present in all molecules (+1) or absent (−1), which means they provide no information for training.
We removed these ineffective fingerprints from each dataset. The number of the remaining effective
fingerprints are shown in Table 1.
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3.4. Molecular Databases

For the CASMI challenges, the KEGG [14] compound database was usedas the underlying molecular
database, which contained 11,657 molecules. After the CASMI submission, the experiments with
PubChem, which contains more than 30 million molecules, as the molecular database in place of KEGG
were conducted.

3.5. SVM Model Training and Evaluation

Multiple spectra related to a single molecule are a potential source of bias in a cross-validation setting,
if some of the spectra end up in the testing fold while others are present in the training fold. In such cases,
the cross-validation accuracy becomes artificially high. To avoid this problem, the following stratified
cross-validation scheme was used in training the models: all spectra related to a particular molecule
were confined to the same cross-validation fold. Thus, in each trained model, either all spectra of a given
molecule were present in the training data and none in the testing, or vice versa.

The margin softness parameter “C” for SVM is chosen from the list of [2−5, 2−4, . . . , 210]

independently for every fingerprint and training fold.

4. Results and Discussion

This section begins by reporting and analyzing the CASMI challenge results. Next, the different
design choices in our approach and their effect on the metabolite identification performance are
examnied. Finally, the extensions and improvements to FingerID that were not used in the CASMI
challenge are presented.

4.1. CASMI Challenge Results

The FingerID results submitted to the CASMI contest is shown in Table 2. The model that was used
for each challenge to predict fingerprints is also included in this table. Some challenges can map to
several models, such as Challenge 13 where both CID and HCD data are available. In this case, the
model with better cross validation performance was used, which is Model (4) LC-ESI-ITFT-HCD.

The results for the molecule identification (Category 2) were computed first, and the chemical formula
identification is directly taken from molecule identification. As a result, it is more meaningful to discuss
the results of Category 2. Expectedly, molecule identification proves to be a harder problem than
chemical formula prediction. As an overall finding, most of our failures in the challenges are due to
the limited molecular database used for retrieval: the molecules in challenges 3,4,10,12–17 were not in
our version of KEGG. Exception is Challenge 11 in which the exact mass was estimated incorrectly.

The distributions of the scores for all the candidates in 14 challenges in Category 2 are shown in
Figure 3. One observation is that the score distributions are quite flat, indicating good discriminability
of FingerID. Below, the results of those challenges where the correct molecules were in the KEGG are
discussed individually.
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Table 2. Absolute ranks of the correct molecules in the solution lists for the challenges in
Category 1 and 2 and the number of candidates. Challenges where the correct molecule is not
in the result list are marked with “-” instead. The model used for each challenge to predict
the fingerprints is listed in the Model row. The proportions of wrongly predicted molecular
fingerprints are shown in the last row.

Challenge 1 2 3 4 5 6 10 11 12 13 14 15 16 17

Model (5) (5) (5) (5) (5) (5) (1) (1) (1) (4) (2) (2) (2) (4)
Category 1 rank 4 1 - 3 4 4 1 - - - 1 5 - -
# candidates 5 4 6 12 11 15 11 15 21 15 12 6 12 11
Category 2 rank 5 1 - - 5 11 - - - - - - - -
# candidates 6 6 8 14 17 20 15 32 47 38 28 10 13 18
Wrong FP (%) 25 33 32 33 30 34 23 25 32 19 21 31 41 24

Figure 3. The scores of all candidates (y-axis) for the challenges (x-axis) are shown in black
dots where the size indicates the number of candidates sharing the same scores. The correct
solutions are indicated with a square. For the challenges where the correct molecules were
not in the database, the hypothetical rankings (assuming the molecules were in the database)
of the true molecules are shown by the cross markers.
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• In Challenge 1, the correct molecule was in the fifth position out of six. The score of the correct
molecule was rather low; the high rank is probably a consequence of KEGG not having many
molecules with a similar molecular weight, rather than good fingerprint prediction.
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• In Challenge 2, the search ppm was set to 200 and the correct solution was obtained despite the
30 ppm error in the original challenge data. In the version of KEGG, only three entries have the
mass around 592.1792 within 200 ppm and only two of them had molecular fingerprint generated
using OpenBabel. Thus, the identification is simply choosing one from the two and the FingerID
made the right choice. Incidentally, after correcting the 30 ppm error, FingerID still ranked the
true molecule at the top, which surpassed other CASMI participants.

• In Challenge 5, the correct molecule ranks fifth and had the same confidence score as the fourth
one. If the CASMI organizers took the rank of the score as criterion, this would have been the
winning entry for this challenge.

• In Challenge 6, half of the candidates had better scores than the correct one, which means the
molecular fingerprint prediction was not perfect. However, comparing the absolute rank to the
other participants, this was sufficient to win this challenge.

• In Challenge 11, the highest intensity peak in MS1 is not the molecule with an adduct. Thus, the
exact mass of the molecule was estimated incorrectly.

The question of how the challenge molecules differ from the training molecules and molecules in
the database is answered by comparing the fingerprints , as shown in Appendix A. A simple similarity
function between fingerprints is defined and histograms of the similarity scores are presented.

4.2. Evaluation of the FingerID Framework in the CASMI Contest

Here we study the effects of different aspects and design choices in FingerID that explain the CASMI
results and point directions for future improvement. The robustness of the fingerprint prediction model
and the prediction of the exact mass are first studied, followed by a discussion of how to utilize mass
spectra measured by different collision energies. Finally, the uniqueness of fingerprints is also explored.

4.2.1. Effect of Training Set Size on Fingerprint Prediction Reliability

To understand how the size of training set affects the fingerprint prediction accuracy, subsamples
of the data of gradually increasing size were generated and 10-fold stratified cross-validation (see
Section 3.5) on each subsample was conducted. Each time one fold was picked as testing data and
20%, 40%, 60%, 80% and all of the remaining data were extracted as training data. The resulting
curves for cross-validation and training error are shown in Figure 4, together with the relative rank of the
retrieved molecule. In these experiments, fingerprints for which the majority class accounts for at most
80% are included.

A general trend in Figure 4 is that with more data to train, lower testing error and better relative
rank of the correct molecule were observed. An exception is the LC-ESI-QTOF dataset where it
seems the performance after training with 60% of the data could not be improved much. For the
LC-ESI-ITFT-HCD, the cross validation testing error approaches zero rapidly. The APCI-ITFT dataset,
which is the combination of the APCI-ITFT-CID and the APCI-ITFT-HCD, shows that the merging
produces slightly better performance than simply using the APCI-ITFT-CID data but slightly worse
result then just using the APCI-ITFT-HCD data.
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Figure 4. This figure shows for different size subsamples the average cross-validation test
error (solid lines) and training error (dashed lines) over all fingerprints, and the average
relative rank (dotted lines) of the correct molecule in the list of retrieved candidates.
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In summary, most of the datasets seem to be large enough to give good average prediction quality
for fingerprints. In addition, the metabolite identification performance is seen to correlate with the
fingerprint prediction error in a clear way. However, the datasets are too small to represent the whole
metabolite space in balanced manner. Hence, the good results within each dataset may not translate to
good metabolite identification results outside the region of metabolite space covered by the training data.

4.2.2. Quality of Exact Mass Prediction

To understand how accurate the approach of deriving the exact mass from the spectra of the unknown
molecules, the difference (measured in ppm) between the exact mass and the predicted exact mass for
our training datasets was compared, as shown in Figure 5.

Figure 5 shows in most cases, the difference between the predicted and the real exact mass of the
molecule is less than 10 ppm, which indicates the suitable mass window width. For the CASMI contest,
the mass window width was set to range from 200 ppm to 500 ppm even though in hindsight our data
would have supported a much narrower search window. In the APCI-ITFT-CID, APCI-ITFT-HCD and
LC-ESI-QTOF-CID datasets, there are some outliers where the exact mass prediction is off by huge
amount (1000s of ppms), which need to be investigated in the future.
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Figure 5. Histogram of the difference between derived mass and exact mass, measured
in ppm, intercepted at 10. The difference less than 10 ppm accounts for 88%, 85%,
100%, 100%, 90% of the difference between derived mass and exact mass for five
datasets respectively.
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4.2.3. Effect of Using Multiple Collision Energies

As observed from Table 1, many spectra of the same molecule exist in the training dataset. This is a
result of different collision energies used in the measurement, which leads to different fragmentations of
the precursor ions.

To test if mixing the different collision energies in training data has a positive or negative effect on
fingerprint prediction, one fifth of the molecules measured in collision 30 eV in the QqQ dataset were
taken as fixed testing data and the rest of the dataset was used for training in two setups: training with
30 eV only and training with all collision energies. The result is shown in a scatter plot in Figure 6.
In this experiment, only fingerprints for which the majority class accounts for at most 80% of the data
were considered, as achieving high predictive accuracy for those is more challenging than the more
biased fingerprints.

Figure 6 shows that even though the resulting spectra of different collision energies are not the
same, integrating them as one model always improves prediction accuracy. Combining spectra from
different collision energies instead of building a model for every single collision energy reduces model
complexities and gains prediction accuracy.

4.2.4. Degree of Uniqueness of Fingerprints

Molecular fingerprints describe the selected properties of a molecule in the form of a bit vector. In
FingerID, the molecular fingerprint is an intermediate representation for identifying candidate molecules.
As the ranking of the candidates is based on the fingerprint vector and the mass of the molecule,
fingerprint vectors that are shared by large number of molecules cause the candidate lists to grow in
size, which is not desirable. In this experiment, for each different fingerprint configuration in KEGG and
PubChem, respectively, the duplicates in the database were counted and denoted as Ndp. We show the
cumulative distribution of Ndp (in log scale) in Figure 7.

Fingerprints with Ndp = 1 are unique in the database. In the versions of KEGG and PubChem
databases used, we have 9,399 and 18,043,141 different fingerprint configurations, respectively. In
KEGG (resp. PubChem), among them, 7,454 (resp. 12,829,187) fingerprint configurations are unique,
and 1,114 (resp. 3,282,098) fingerprint configurations have one duplicate molecule. The highest number
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of duplicates in KEGG is 86 and 2,501 in PubChem. In terms of molecules, only 64% of the molecules
in KEGG and 43% in PubChem have unique fingerprints.

Figure 6. Fingerprint prediction accuracy on QqQ data with single collision energy data
versus mixed collision energy data. The x-axis shows the accuracies of training model only
using collision energy 30 eV and the y-axis shows the accuracies of training model using all
available collision energies.
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For molecule identification, the harmful effect of the duplicate fingerprints existing in the database
is partly diluted by considering the masses of the molecules: the percentage of molecules with unique
fingerprints and unique mass are 75% and 73% in KEGG and PubChem, respectively.

4.3. Extensions

In the following, the extensions of FingerID that were not used in the CASMI contest are examined,
namely using isotopic distribution information from MS1 spectrum and the use of PubChem as the
molecular database instead of KEGG.

4.3.1. Isotopic Distribution Matching

Each chemical element can have several isotopes that share the same protons and electrons but
different number of neutrons. The isotopes occur in nature in certain abundances. For example, carbon
has two stable isotopes 12C and 13C with abundance of 98.890% and 1.110%.

For an element E with r isotope types, a molecule consisting of l atoms of that element has(
l+r−1
r−1

)
different isotopologues caused by that element [22]. All of the isotopologues also have

distinct abundances, which can be derived by applying multinomial probability over the isotope
abundances [23,24]. Consequently, the theoretical mass spectrum that arises from the set of
isotopologues can be simulated and compared with the observed spectrum. This information is more
informative for metabolite identification than using the mass alone. Many methods and tools have been
published for this purpose [25–27].

In the CASMI challenges, MS1 data were also given and most of them contain isotopic distributions.
This allows us to rank the candidates based on matching between observed isotopic distribution and
simulated isotopic distributions from the chemical formulas. For the matching score, the probability
product kernel function (2) was used.

The fingerprint based score (3) was fused with the isotopic distribution based score to obtain the final
ranking. Two rank aggregation methods are investigated: taking the average rank or minimum rank as
the combined ranking. Some molecules may have the same chemical formulas and thus they receive
the same isotopic distribution matching scores. Another slightly more complicated method is ranking
the candidates by the matching isotopic distribution score first and for those candidates having a tie,
reranking them by the fingerprint based scores.

MS1 data was used for LC-ESI-ITFT and LC-ESI-QTOF datasets as shown in the last two rows of
Table 1. Compared with MS2 data, only a few molecules have the MS1 data in the database. FingerID
was trained with the MS2 data and the MS1 data was used for isotopic distribution matching. Then the
combining method mentioned above was applied to merge two ranked list.

Figure 8 shows that FingerID alone achieves top 1 rank for the largest fraction of the data for both
datasets. It is also shared best with average rank aggregation on the whole of QTOF data. On ITFT
data, FingerID alone is the best until top 5 rank but fades beyond the competing methods in ranking the
tail of the data. Reranking with FingerID the candidates with matching isotopic distributions is a better
approach than minimum rank. As the CASMI challenges used the absolute rank of the correct molecule
as the goodness criterion, the FingerID alone was used to solve the challenges.
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Figure 8. The rank distribution of metabolites using FingerID alone, isotope matching alone
and the different rank aggregation schemes; average rank, minrank and rerank. The higher
the curve, the larger the proportion of highly ranked molecules. The x-axis is in log scale.
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4.3.2. Using PubChem as the Molecular Database

In the CASMI contest, KEGG was used as the underlying database to search candidates. As many of
the challenge molecules were not recorded in KEGG, the method failed to identify those molecules
correctly. After the challenge deadline, PubChem [15] was investigated as the alternative source
of candidate molecules. As PubChem contains more than 30 million compounds, several orders of
magnitude larger than KEGG, the recall of molecules is improved. At the same time, however, the
number of candidates within a mass window increases, making it harder to rank the correct molecules
towards the top. Table 3 shows the result for Category 2 when using PubChem as the underlying
molecular database.

Table 3. Retrieval of candidate molecules from PubChem. The top part of the table
corresponds to the CASMI setup except for replacing KEGG with PubChem. The middle
part shows the results with 10 ppm mass window with PubChem. The bottom rows depict the
best possible results that could be obtained if the optimal mass window width was known.

Challenge 1 2 3 4 5 6 10 11 12 13 14 15 16 17

Mass window (ppm) 300 200 500 300 300 300 500 500 500 500 600 500 300 500
Candidates 55,242 9,931 87,514 75,205 75,320 115,639 26,701 - - 69,708 10,390 18,669 97,567 19,718
Cat 2 rank 70 2 355 12,699 4,050 6,881 11 - - 13,796 341 13,689 71,410 8,350
10 ppm rank 25 - 5 2,225 1,343 1,048 7 - - 166 57 1,815 2,416 231
Ideal ppm 2.34 50 3.90 9.38 1.17 9.38 0.98 - - 0.98 9.38 7.81 0.98 1.95
Ideal rank 23 2 4 2,225 1,337 1,048 7 - - 15 57 1,780 775 198
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The top three rows show the results obtained when searching PubChem using the same mass window
width as was used in the CASMI challenges. It can be observed that for most of the challenges the
correct molecules are among the retrieved candidates, with the exception of Challenge 11, in which the
precursor mass was estimated incorrectly, and Challenge 12, where the molecule is not found in the
version of PubChem. The candidate lists are quite long and the absolute ranks of the correct molecules
are typically too low to allow manual checking by a human expert. For example, the correct molecule in
Challenge 3 is ranked as 355 out of 87,514, which corresponds to top 0.4% of the retrieved candidates.

The fourth row of the Table 3 shows the effect of choosing a much smaller mass window of 10 ppm,
based on the statistics in Figure 5, which suggest that larger errors in exact mass prediction are relatively
rare. This result shows remarkable improvement in ranking the challenge molecules. In fact, these could
have won Challenges 3 and 10. Correspondingly, in Challenge 2 the correct candidate would have been
pruned out due to the 30 ppm error in the mass.

In the last two rows of Table 3, the idealized case where the smallest ppm range is sought for that still
keeps the correct molecule in the candidate list is inspected. Ideal ppm is defined as the smallest value for
ppm that still allows the candidate list contain the correct molecule, and ideal rank is the corresponding
rank that is achieved by using the ideal ppm mass window. It can be noted that ideal ranks are in many
cases not much better than that achieved using the 10 ppm mass window.

5. Conclusions

The prediction of molecular fingerprints from tandem MS/MS using machine learning methods
tackles the molecule identification problem in a brand new way. In this approach, observed MS/MS
spectra are not directly compared with an MS spectral database or simulated MS/MS spectra. Instead,
molecular fingerprints are predicted and then used to search a molecular database of choice. The CASMI
contest results show this machine learning approach is competitive with other current methods.

This approach is modular in that the support vector machine used in this paper could be changed to
any other machine learning approach. The set of fingerprints generated by OpenBabel can be replaced
by others such as PubChem fingerprints. Finally, the molecular database used to retrieve candidate
molecules can be changed flexibly.

The presented approach still requires further development. The first issue is that the prediction is
highly dependent on the selection of the training dataset. Using merely a few hundred molecules as
training data cannot represent the whole relevant chemical space. Hence, some testing molecules that are
beyond the learned model domain may be encountered. However, as the results so far suggest, relatively
good performance can already be achieved with moderate training sets of a few hundred molecules.
Thus, extending the approach to new regions of metabolite space via generating spectral training data
for the sparsely populated regions should not prove an insurmountable challenge.

The molecular fingerprint prediction also incurs the necessity for studying the properties and
structures of the molecular fingerprints. Appendix A shows lots of molecules sharing the same
fingerprints in the KEGG and PubChem, even through 528 bits OpenBabel substructure fingerprints
can theoretically produce 2528 fingerprint configurations. Simply changing OpenBabel fingerprints to
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a larger set of fingerprints (e.g., PubChem fingerprints) can reduce some duplicates, but more detailed
research within the set of fingerprints is required.

There are several ways to refine the set of fingerprints and their predictions. First, modeling the
dependencies among the fingerprints could improve predictive accuracy, such as learning a Bayesian
network of fingerprints and using the learned dependency graph as the input for structured learning.
Second, weighting the fingerprints by the ability to differ molecules could help the ranking of candidates.

Choosing the molecular database for candidate retrieval is the final crucial component. A small
database will produce shorter candidate lists but with high chance the correct molecule is not in the list,
unless the molecules to be identified match the database very well. A much larger database such as
PubChem includes the correct molecule in many cases but may produce a prohibitively large candidate
lists. Using a small enough mass window can alleviate this problem to significant degree.

There are several further directions for improving the metabolite identification framework. First,
FingerID does not use information of plausible fragmentation trees, which are effectively used in
several competing systems. Second, using domain specific information about the kinds of molecules
that are more plausible than others could improve the framework. Finally, the molecular database can
be discarded if combinatorial algorithms are developed to reconstruct the molecule structure given the
predicted molecular fingerprints.
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Appendix

Appendix A

This appendix contains the definition of similarity between two fingerprints and similarity distribution
between CASMI challenge molecules in Category 1 & 2 and training molecules (Figure A1) and
molecules in KEGG compound database (Figure A2).

Given two vectors of m molecular fingerprints, y = (yi)
m
i=1 and y′ = (y′i)

m
i=1, the similarity between

them, if no prior knowledge exists on the weight of each individual fingerprint, is defined by:

S(y,y′) = 1− 1

m

m∑
i=1

|yi − y′i|

By this definition, two same fingerprints give similarity score of 1 while two totally different
fingerprints give similarity score of 0.
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Figure A1. Distribution of similarity scores between challenge molecules and training data
(used to predict the challenge).
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Figure A2. Distribution of similarity scores between challenge molecules and molecules in
the KEGG compound database.
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8. Heinonen, M.; Rantanen, A.; Mielikäinen, T.; Pitkänen, E.; Kokkonen, J.; Rousu, J. Ab Initio
Prediction of Molecular Fragments from Tandem Mass Spectrometry Data. In Proceedings of
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