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Abstract: Circular RNAs (circRNAs) are transcripts generated by back-splicing. CircRNAs might
regulate cellular processes by different mechanisms, including interaction with miRNAs and RNA-
binding proteins. CircRNAs are pleiotropic molecules whose dysregulation has been linked to
human diseases and can drive cancer by impacting gene expression and signaling pathways. The
detection of circRNAs aberrantly expressed in disease conditions calls for the investigation of their
functions. Here, we propose CircIMPACT, a bioinformatics tool for the integrative analysis of
circRNA and gene expression data to facilitate the identification and visualization of the genes whose
expression varies according to circRNA expression changes. This tool can highlight regulatory axes
potentially governed by circRNAs, which can be prioritized for further experimental study. The
usefulness of CircIMPACT is exemplified by a case study analysis of bladder cancer RNA-seq data.
The link between circHIPK3 and heparanase (HPSE) expression, due to the circHIPK3-miR558-HPSE
regulatory axis previously determined by experimental studies on cell lines, was successfully detected.
CircIMPACT is freely available at GitHub.

Keywords: circular RNA; gene expression; regulatory axes; pathways

1. Introduction

Circular RNAs (circRNAs) are a class of abundant and stable RNAs that result from
the ligation of a downstream splice donor to an upstream splice acceptor [1]. The progres-
sive discovery of circRNA functions, involvement in biological processes, and oncogenic
potential made them attractive molecules for both fundamental and cancer research [2].

CircRNAs regulate cellular processes by acting with different mechanisms (Figure 1),
mostly involving sequence-specific binding with other nucleic acids or proteins. Of note,
one prominent mechanism whereby circRNAs are believed to function is by sponging
miRNA, thus regulating the expression of miRNA-target genes, working as competitive
endogenous RNAs (ceRNAs) [3]. Aberrant DNA methylation and histone modifications
can be controlled by circRNAs that regulate key epigenetic “writers” like DNMT1 [4]
and EZH2 [5] methyltransferases. Regulatory functions on gene transcription were also
described for circRNAs [6]. Other circRNAs modulate the activity of RNA-binding proteins
(RBPs), a large class of molecules involved in a multitude of processes, including the
control of cell cycle progression [7] and splicing [8], among others. In addition, since most
circRNAs originate from the circularization of coding gene exons, circRNA biogenesis
can compete with linear RNA splicing [8]. Beyond exerting functions typical of long
non-coding RNAs, circRNAs can be translated into peptides [9,10].
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Evidence on circRNA functions added another level of complexity in the network of 
diverse players in regulating cellular processes, impacting normal and pathogenic or 
malignant phenotypes. Transcriptomics data has been proven useful to unearth the effects 
of protein and RNA dysfunctions, and their contribution to the pathogenesis and global 
deregulation of gene expression in cancer. This type of analysis falls in the field of 
expression data reverse engineering, which has been extensively used to infer regulatory 
networks involving transcriptional regulators [11], miRNAs [12], and combinations 
thereof [13,14]. Starting from the hypothesis that circRNAs affect gene expression, then 
gene expression profiles could be used to infer circRNA biological functions (Figure 1). 

 
Figure 1. CircRNAs regulate cell behavior with different mechanisms. The integrated analysis of 
circRNA and linear gene expression profiles can predict circRNA functionsby identifying the 
biological processes and pathways impacted by circRNA expression variation. 

CircRNAs can be detected and quantified using RNA-seq [15] and appropriate 
software tools [16,17]. Typically, studies aiming at identifying circRNA roles in disease 
and cancer face two consecutive challenges. The first is to efficiently prioritize the 
circRNAs that discriminate between normal and malignant cells or that have the potential 
to define new and possibly relevant disease subtypes. Subsequently, the involvement of 
circRNAs in specific pathological mechanisms or biological processes should be 
identified. These challenges can be tackled by circRNA screening, for instance, by massive 
circRNA silencing or overexpression studies, and with experimental investigation of the 
mechanisms involved, once the circRNAs whose expression impacts significant cell 
features have been identified. 

Computational predictions were extensively used to identify circRNA correlation 
with diseases [18] and infer circRNA functions. Most of the efforts were put toward 
predicting the miRNA-sponging activity of circRNAs and inferring circRNA-miRNA-
gene regulatory axes. Among circRNA-dedicated databases, CircInteractome [19], 
CircAtlas [20], and CSCD [21] provide information about miRNAs potentially sponged by 
circRNAs. However, none of them allows the analysis of new expression data. 

The ceRNA function was the first described for circRNAs [1,22] and has important 
implications in cancer. We and other groups used custom integrative analysis of circRNA, 
miRNA, and gene expression data, with systems biology methods, to infer circRNA 
regulatory networks [23–26]. Besides, the Cerina tool for predicting biological functions 
of circRNAs based on the ceRNA model was recently made available [27]. However, the 
ceRNA function may not apply to all circRNAs [28,29]: systematic analyses of circRNA 
sequences showed that only a minority present multiple binding sites for specific miRNAs 
[30], and, in general, circRNAs are not bound to miRNA-loaded Argonaute proteins [31]. 

Figure 1. CircRNAs regulate cell behavior with different mechanisms. The integrated analysis
of circRNA and linear gene expression profiles can predict circRNA functionsby identifying the
biological processes and pathways impacted by circRNA expression variation.

Evidence on circRNA functions added another level of complexity in the network
of diverse players in regulating cellular processes, impacting normal and pathogenic or
malignant phenotypes. Transcriptomics data has been proven useful to unearth the ef-
fects of protein and RNA dysfunctions, and their contribution to the pathogenesis and
global deregulation of gene expression in cancer. This type of analysis falls in the field
of expression data reverse engineering, which has been extensively used to infer regula-
tory networks involving transcriptional regulators [11], miRNAs [12], and combinations
thereof [13,14]. Starting from the hypothesis that circRNAs affect gene expression, then
gene expression profiles could be used to infer circRNA biological functions (Figure 1).

CircRNAs can be detected and quantified using RNA-seq [15] and appropriate soft-
ware tools [16,17]. Typically, studies aiming at identifying circRNA roles in disease and
cancer face two consecutive challenges. The first is to efficiently prioritize the circRNAs
that discriminate between normal and malignant cells or that have the potential to define
new and possibly relevant disease subtypes. Subsequently, the involvement of circRNAs in
specific pathological mechanisms or biological processes should be identified. These chal-
lenges can be tackled by circRNA screening, for instance, by massive circRNA silencing or
overexpression studies, and with experimental investigation of the mechanisms involved,
once the circRNAs whose expression impacts significant cell features have been identified.

Computational predictions were extensively used to identify circRNA correlation
with diseases [18] and infer circRNA functions. Most of the efforts were put toward
predicting the miRNA-sponging activity of circRNAs and inferring circRNA-miRNA-gene
regulatory axes. Among circRNA-dedicated databases, CircInteractome [19], CircAtlas [20],
and CSCD [21] provide information about miRNAs potentially sponged by circRNAs.
However, none of them allows the analysis of new expression data.

The ceRNA function was the first described for circRNAs [1,22] and has important
implications in cancer. We and other groups used custom integrative analysis of circRNA,
miRNA, and gene expression data, with systems biology methods, to infer circRNA reg-
ulatory networks [23–26]. Besides, the Cerina tool for predicting biological functions
of circRNAs based on the ceRNA model was recently made available [27]. However,
the ceRNA function may not apply to all circRNAs [28,29]: systematic analyses of cir-
cRNA sequences showed that only a minority present multiple binding sites for specific
miRNAs [30], and, in general, circRNAs are not bound to miRNA-loaded Argonaute pro-
teins [31]. As described above, robust evidence disclosed that circRNA functions can be
exerted by several different mechanisms (Figure 1).
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Recent studies provided interesting hints on circRNA functions comparing the gene
expression between sample groups defined by diverging expression of one specific circRNA.
For example, a high circFBXW7 expression in acute myeloid leukemia (AML) patients
was linked to gene expression profiles enriched in genes encoding epigenetic regulators
and transcription factors governing leukocyte activation. Conversely, a low circFBXW7
abundance was linked to cell stemness [32]. Similarly, circBCL11B expression in AML
patients has been associated with a T-cell–like gene expression signature [33]. These
observations prompted the effectiveness and usefulness of predicting the circRNA impact
on gene expression and cell behavior, independently of specific or known circRNA function
mechanisms.

To our knowledge, currently available bioinformatics tools do not support the inte-
grated analysis of circRNA and gene expression profiles to prioritize the most promising
candidate circRNAs whose expression changes can have an impact in biological processes,
pathways, and ultimately cell phenotypes. Therefore, we have developed CircIMPACT
(https://github.com/AFBuratin/circIMPACT), an R package. It offers a comprehensive
pipeline that integrates different approaches to select circRNAs discriminating sample
groups by unsupervised analysis, allows integrative analysis of circRNAs and gene expres-
sion data to define gene differentially expressed between and most discriminating samples
groups defined by circRNA expression changes. Finally, functional enrichment analysis
helps the user to identify the biological processes and signaling pathways impacted by
each circRNAs.

2. Materials and Methods
2.1. Input Data and Format

The program’s workflow for circRNA impact analysis begins with the loading of (i)
back-splice junction read count, (ii) gene expression quantifications in the same samples,
and (iii) sample clinical data. CircIMPACT does not require input files generated with
specific circRNA/gene expression quantification methods. The user-owned files are only
required to be properly formatted as follows: each row of the expression matrices must
contain circRNA or gene expression values, with one column per sample; the first column
must contain the circRNA or the gene identifiers, and the first row the sample names. The
sample clinical data must be declared in a table format with samples in rows and data
sources in columns. The CircIMPACT input file formats resemble the expression matrix
and metadata input formats required to build a SummarizedExperiment object [34]. In
this work, we leveraged the CirComPara2 software to obtain expression input files from
RNAseq data analysis. However, other or custom computational pipelines can be used for
this purpose.

The circRNA and gene expression matrices are normalized by raw library size scaling
using the sizeFactors function from the R package DESeq2 [35] for visualization. Normalized
counts are computed using the function counts from DESeq2.

2.2. CircRNA Selection and Sample Grouping

The first step of the CircIMPACT workflow (Figure 2) is to compute sample groups
according to the expression pattern of each circRNA. This process is independent of the
sample annotation provided by the user, and, in principle, each circRNA may determine
a different grouping of the samples. Then, for each circRNA expression-defined sample
group, the circRNAs are tested to obtain significance estimates of the expression change
between the groups. After correction for multiple tests, the circRNAs with significant
expression variation are selected.

https://github.com/AFBuratin/circIMPACT
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Figure 2. The CircIMPACT workflow.

The function marker.selection (Table 1) fulfills this task. The user can choose between
two approaches to defining the circRNA expression-guided sample grouping: the default
one splits the samples into two groups according to the circRNA median expression; the
second strategy is based on clustering. If the clustering method is chosen, the user can
customize the function behavior through several options: distance measure and agglom-
eration method of the clustering, a fixed number of final clusters (i.e., sample groups),
or optimal cluster number data-driven computation. The parameters available for these
options derive from the dist and hclust functions of the R package stats and the NbClust
R package [36]. Default settings consider Euclidean distance, k-means agglomeration,
and automatic determination of the optimal number of clusters using the silhouette index
parameter for the NbClust function. We recommend the use of the default method with
small sample size, when only two groups are expected and for a first exploratory analysis.
Sample clustering can be useful with large datasets and to discover sample groups, beyond
annotation.

Table 1. The functions implemented in CircIMPACT.

Function Description

marker.selection Defines the discriminant circRNAs and sample grouping according to
circRNA expression patterns

gene.expression Performs differential gene expression tests between the sample groups
defined by circRNA expression

gene.class Normalization, feature selection, and classification of sample groups
defined by circRNA expression using gene expression
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In the median expression threshold approach, the circRNAs undergo pairwise contrast
differential expression tests performed using the nbinomWaldTest function from the DESeq2
package. Only circRNAs with an adjusted p-value ≤ 0.05 and absolute log2 fold-change ≥ 1
are selected for further analysis. Whereas, with the clustering approach, the circRNAs are
selected according to one-way ANOVA test p-values ≤ 0.05 calculated using the function
anova from the R stats package.

CircRNA passing these filters compose the list of the discriminant circRNAs for the
corresponding sample grouping.

2.3. Dimensionality Reduction and CircRNA Ranking

Principal component analysis (PCA) is used to perform dimensionality reduction of
the appropriately standardized circRNA expression matrix to cluster samples and calculate
the goodness of sample separation, according to the circRNA expression. This analysis
takes as input back-splicing quantification tables, with the samples of interest as rows
and the selected circRNAs as columns. PCA is implemented through the singular value
decomposition algorithm provided by the prcomp function from R package stats.

The total contribution of each variable (circRNA) towards data variance along with
selected principal components, based on the implementation of fviz_contrib from R package
factoextra, is used to rank the circRNAs and narrow down the list of circRNAs kept for
further investigation. By default, 25 circRNAs most-discriminating among groups are
selected; this number is nevertheless customizable by the user.

2.4. Differential Gene Expression

The differential gene expression analysis is implemented in the gene.expression function
(Table 1) and is based on fitting a negative binomial model through the DESeq function
of the DESEq2 package for the sample groups defined with the marker.selection function.
p-Values are corrected for multiple tests with the Benjamini–Hochberg procedure. The
non-normalized gene count matrix is required for this analysis.

A result table is provided including, for each gene significantly associated with the
circRNA expression pattern, its average expression across samples, the logarithm fold
change and the corresponding standard error, the statistic of the DEseq test, the p-value,
and the adjusted p-value. This table can be saved as a .csv file.

2.5. Classification Analysis

The CircIMPACT gene.class function selects the best putative predictors (genes) for
the classification of samples in the groups defined by the expression changes of a given
circRNA (see Table 1). It is structured in three main processes: normalization, selection,
and classification. Normalization includes basic preprocessing of raw gene counts and data
transformation. A ‘Feature Selection’ procedure to extract a small subset of informative
genes from the original data is implemented based on the backward variable elimination
(partial least squares) to remove the less informative variables with respect to the response
variable, including those redundant with the selected variables highly correlated with the
sample groups [37]. Finally, the random forest classification model is used to classify the
sample groups according to gene expression and allow the reordering of genes to rank
their importance. CircRNA host genes are not treated in a specific way, but are analyzed in
the same way as all the other genes. The rfe and varImp functions from the R package caret
are used for classification and variable importance reordering, respectively. The R package
randomForestExplainer is used to visualize the results of the random forest model.

2.6. Functional Enrichments

CircIMPACT supports the gene set enrichment analysis (GSEA). In particular, the
gseGO and gseKEGG functions from the R package enrichplot are used for functional enrich-
ment analysis of genes associated to a given circRNA, whereas the dotplot and upsetplot
functions are used to help to visualize and interpret the enrichment results.
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2.7. Sample Analysis

Bladder cancer RNA-seq data (GSE97239) [38] were downloaded from Gene Expres-
sion Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).

CircRNA and gene expression quantification matrices used as input for CircIMPACT
were computed with CirComPara2 v0.1.2.1 [16] applied with default parameters. Default
CircIMPACT settings were used unless otherwise stated, including median threshold, for
group separation, according to the experimental design and size of the sample analysis
data. CircRNAs and genes supported by at least 5 and 20 reads, respectively, in half of
the samples were kept. In addition to CircIMPACT output files and figures, density and
volcano plots were generated using customized R functions to visualize results.

2.8. Software and Versions

The CircIMPACT tool is developed based on R [39] (R version 3.6.3 or later are
recommended), which also depends on several R packages (knitr [40], rmarkdown [41],
data.table [42], dplyr [43], tydyverse [44], Rtsne [45], kableExtra [46], sparkline, magrittr [47],
caret [48]). Additional R packages (ggplot2 [49], ComplexHeatmap [49,50], circlize [51])
were used to produce the figures in this paper.

3. Results
3.1. CircIMPACT Workflow

CircIMPACT has been implemented as an R package that integrates circRNA expres-
sion with gene expression to allow researchers to identify the most condition-discriminant
circRNAs and to predict their impact on gene expression, as a proxy for cell behavior
(Figure 1). To this purpose, CircIMPACT offers a comprehensive pipeline to perform
dimensionality reduction on circRNA expression profiles, differential circRNA and gene
expression analysis, and functional enrichments. The tool can be applied in different
contexts, ranging from the simple contrast between normal and tumor samples to more
complex and heterogeneous disease sample groups.

CircIMPACT needs three input sources: (i) a circRNA expression matrix, (ii) a gene
expression matrix, and (iii) the sample metadata containing, for instance, sample biological
or clinical information (Figure 2). The analysis workflow is summarized in Figure 2. Data
are filtered based on user-provided parameters to eliminate weakly expressed circRNAs
and genes. Normalized expression values are computed for later visualization. At first,
circRNA expression data are analyzed to pick circRNAs able to discriminate samples
into two or more groups for subsequent analysis. Next, gene expression data are taken
into account and integrated with circRNA variations across samples. For each of the
circRNA selected, differential expression and classification analysis are performed over
gene expression data to retrieve genes dysregulated according to circRNA expression
changes across samples. Finally, gene enrichment tests show the pathways and functions
correlated with each circRNA and potentially controlled by its activity through different
mechanisms.

3.2. Case Study: An Exploration of Gene Expression and Pathways Impacted by circRNA in
Bladder Cancer

We applied CircIMPACT to a real dataset, to illustrate the package functions and
output, as well as to demonstrate its discovery power. We selected RNA-seq data orig-
inally produced by a bladder cancer study that profiled tumor tissue of three patients
and the matched normal counterpart, detecting massive circRNA dysregulation in the
tumor [38]. Bladder cancer is the most commonly occurring tumor of the urinary system
and the ninth most frequently diagnosed cancer in the world [52]. In the same study,
the role of circHIPK3 downregulation has been subsequently demonstrated through a
series of functional experiments in vitro. By circHIPK3 enforced expression, the authors
showed that this circRNA suppresses invasion, metastasis, and angiogenesis of bladder
cancer cells, by repressing heparanase (HPSE) expression via sponging miR-558. Of note,

https://www.ncbi.nlm.nih.gov/geo/
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unsupervised CircIMPACT analysis of the original patient RNA-seq data successfully de-
tected HPSE expression dependence from circHIPK3 level, unearthing the unconventional
circHIPK3-miR558-HPSE regulatory axis previously described by experimental studies [38].
Notably, most miRNAs have a suppressive function on their target genes, acting as negative
post-transcriptional regulators. In “classic” circRNA/miRNA/gene regulatory axes, con-
catenation of two repressive regulatory relations determines a positive correlation between
the expression profile of the circRNA and the gene targeted by the miRNA decoyed by
the circRNA [26–29]. Differently, miR-558 was proven to act with a different mechanism,
to positively regulate HPSE transcription, sustaining mRNA production [30]. Thus, in
the normal tissue, circHIPK3 efficiently sponges miR-558 leading to HPSE repression.
Reduced circHIPK3 expression in bladder cancer derepresses the enzyme whose activity
unleashes cancer cell metastatic potential. Consequently, the circHIPK3-miR-558-HPSE
axis determines a negative correlation between circHIPK3 and HPSE expression.

CircComPara2 analysis of the bladder cancer dataset produced expression matrices
of 50,513 circRNA and 51,151 genes. Analysis by CircIMPACT deemed 3479 circRNAs to
be differentially expressed (DE) between the two groups defined by the circular median
expression, which were saved in a table (Figure 3A).
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Figure 3. CircRNA analysis of bladder cancer RNA-seq data. (A) Fragment of the table produced by the circ.marker function,
indicating circRNAs equally or differentially expressed among sample groups. (B) Density plot for circHIPK3 expression
in the sample groups defined by circHIPK3 median expression (g1 corresponds to bladder cancer, g2 to control samples).
(C) Principal component analysis (PCA) of the sample separation using the top 25 circRNAs mainly contributing to sample
separation, which include circHIPK3.

In accordance with Li et al. [24], among the differentially expressed circRNAs, CircIM-
PACT identified circHIPK3, which is downregulated in the automatically defined group
(g1), corresponding to bladder cancer samples (Figure 3B). Different circRNAs can separate
sample groups in different ways, according to the experimental design, the dataset type and
structure. In this case, the group separation according to all DE circRNAs taken together
separates bladder cancer and normal tissue samples.

Afterwards, CircIMPACT selected circRNAs that contribute most to the sample sep-
aration in the two first principal components. Notably, the top 25 circRNAs identified
(Figure 3C and Table 2) included circHIPK3. We verified that running CircIMPACT with
the k-means option for sample separation, circHIPK3 remains in the top 25.
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Table 2. Top 25 circRNAs discriminating better among sample groups. For each circRNA, identified by the circRNA
host-gene name and the back-splice junction genomic coordinates (BSJ), the average expression in the two sample groups
(g1 and g2) are indicated along with the circRNA fold change in base-2 logarithm (Log2FC) and the adjusted p-value (p.adj)
of differential expression.

CircRNA Host Gene 1 Back-Splice Coordinates Log2FC p.adj Mean g1 Mean g2

SVIL 10:29512734-29531288 7.3 0.0000 0.5 47.5

AMY2B 1:103565434-103575540 4.5 0.0000 2.3 27.1

HIPK3 11:33286412-33287511 2.5 0.0979 37.0 213.8

SLC43A1 11:57491223-57491862 3.2 0.0000 6.4 43.0

TRAF5 1:211353238-211354467 3.1 0.0000 5.1 44.3

ITGA7 12:55700898-55701154 5.3 0.0007 22.5 903.0

SNHG12 1:28580559-28581229 6.2 0.0000 1.0 25.9

RPPH1 14:20343123-20343272 3.2 0.0000 41.4 359.3

RPPH1 14:20343123-20343277 5.1 0.0008 4.3 122.8

RPPH1 14:20343128-20343277 3.3 0.0000 39.0 373.9

MYOCD 17:12705127-12723008 6.8 0.0000 0.5 32.8

CircClust 17:79644136-79646334 5.4 0.0003 2.2 83.4

ZNF208 19:21974728-21988909 3.0 0.0000 52.7 419.3

PPP1R13L 19:45398004-45398339 4.2 0.0215 3.8 55.9

FER1L4 20:35595476-35595754 3.2 0.0097 4.5 36.0

AF165147.1 21:28377945-28417158 6.4 0.0000 1.8 145.7

SMTN 22:31097268-31104387 6.3 0.0001 1.2 71.9

SLC8A1 2:40428472-40430304 3.3 0.0007 7.0 59.2

GRHL1 2:9995878-9999029 4.5 0.0000 2.4 30.3

ABTB1 3:127674390-127674600 3.8 0.0000 3.7 39.3

FNDC3B 3:172112451-172133546 3.5 0.0000 8.3 86.1

KCNN2 5:114404437-114404856 4.7 0.0008 2.2 56.6

CD2AP 6:47503279-47554766 4.5 0.0153 3.1 62.3

RAB23 6:57193841-57210445 5.4 0.0001 1.5 53.8

PGM5 9:68378198-68392473 4.5 0.0009 1.5 30.5
1 CircRNA annotation was based on the Ensembl GRCh38 human genome and annotation v93. Genomic regions without annotated genes
but expressing one circRNA or more circRNAs (overlapping or not more than 5000 nt apart) defined new loci, called “CircClust”.

Next, for each circRNA, the differentially expressed genes were identified in the
corresponding sample groups. CircIMPACT revealed, in association with circHIPK3
expression changes, 1124 genes down- and 1236 genes upregulated in the sample group
2 characterized by the highest expression of circHIPK3 (Figure 4A). Of note, we found a
significant downregulation of HPSE when circHIPK3 is upregulated (Figure 4B).

CircIMPACT allows performing functional enrichment tests. Running the analysis
on DE genes associated with circHIPK3 variation, we identified 746 Gene Ontology (GO)
categories significantly enriched in the DE genes associated with circHIPK3 (p.adj ≤ 0.05).
The ten most enriched GO terms are shown in Figure 4C. The most enriched KEGG path-
ways include cell-cycle, with genes less expressed in the group with circKIPK3 upregulated,
in other words, in normal tissue compared to bladder cancer. In line with their tumor
suppressor role, cGMP-PKG [31] and cAMP [32] signaling pathways are enriched among
genes more expressed in normal tissue (Figure 4D).
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In addition, for each circRNA, CircIMPACT identified the subset of genes being the
best putative predictors of sample classification in the two groups defined by the expression
changes of the circRNA. The importance plot in Figure 5A shows the best predictors for
circHIPK3 in our sample analysis. The corresponding GO functional enrichment analysis
results are shown in Figure 5B.
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Figure 5. The most important genes in the classification analysis of sample groups, defined by circHIPK3 expression.
(A) Variable importance plot of the most relevant genes used in the random forest model; (B) top 10 activated and
suppressed enriched GO using most important genes in the group classification.
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4. Discussion

In this study, we developed a bioinformatic software package dedicated to integrated
analysis of circRNA and gene expression to investigate the possible impact of circRNA
in gene expression, biological functions, and pathway activation. CircIMPACT is a freely
available R package incorporating several user-friendly features that can facilitate the
prediction of circRNA functions and the identification of genes and pathways dysregulated
according to circRNA expression changes. In this way, CircIMPACT has the potential to
pinpoint specific regulatory axes potentially governed by circRNAs, highly pleiotropic
molecules, and to prioritize some of them for further experimental study.

CircRNA functions are exerted mainly through mediators, such as miRNAs and
RNA-binding proteins (RBPs) or encoded peptides. The activities mediated by miRNAs,
although indirect, can significantly affect gene expression, in a way that is predictable:
when a circRNA acts as a decoy for a miRNA, the circRNA upregulation desuppresses
miRNA target genes, likely resulting in their upregulation. Thus, circRNA and gene
expression changes can be used to investigate and also discover circRNA-miRNA-gene
axes. With this type of regulatory axis, it should be noticed that the expression of miRNA
can be unaffected by the circRNA differential expression. Since the miRNA is still present,
but it is sequestered by the circRNA, only the expression of miRNA target genes is varied.
This concept argues against an inclusion of the miRNA expression data in the analyses.
Once a possible link between a circRNA and a gene is detected, as with CircIMPACT
analysis, possibly involved miRNAs can be retrieved from databases, such as miRTarBase,
a curated database of microRNA-target interactions.

Other functions of circRNAs can be more difficult to predict using gene expression
data, such as those entailing circRNA-encoded peptides and interactions of circRNAs
with RBPs. As an example, a circRNA can both facilitate (e.g., acting as scaffold for a
molecular complex) and counteract (e.g., decoying the RBP) protein functions. However, if
this protein’s functions, in some way, regulate cell behavior or gene expression, integrative
analysis of circRNA and gene expression should provide a molecular readout of the
circRNA expression changes and of the genes and biological processes influenced by
the circRNA.

To demonstrate CircIMPACT functions and potential we conducted a sample analysis
using bladder cancer and matched control tissue data. CircIMPACT analysis identified
HPSE dysregulation according to circHIPK3 expression reduction in bladder cancer, in line
with the non-canonical regulatory axis previously proven and linked to the disease [24].
In our sample analysis, the software was applied to a relatively small and simple dataset.
This choice was based on the availability of ribodepleted RNA-seq data adequate to study
both circRNA and gene expression and previously established functional evidence about
the function of a specific circRNA that could be used for indirect method validation. In
this specific case, using both the circRNA expression median as a threshold and the k-
means clustering approach with the optimal number of clusters estimation, samples were
clustered as in the annotation groups, i.e., separating cancer and normal tissue samples.

In addition to circHIPK3, the integrative analysis of publicly available bladder cancer
RNA-seq data by CircIMPACT identified other circRNAs discriminating between sample
groups, linking them to gene expression changes. These new hints indicated circRNAs that
are worth study, to provide novel insights into bladder cancer. For instance, circZNF208
(19:21974728-21988909) and circFER1L4 (20:35595476-35595754), resulting in respectively
down- and upregulation in bladder cancer, were previously detected by Li et al. [24] but
not functionally investigated, whereas they were selected in the top 25 circRNAs by our
analysis. Both circZNF208 and circFER1L4 are poorly characterized and might deserve
further study.

It is important to note that, beyond the classic design entailing comparison of a dis-
ease condition with its normal counterpart, CircIMPACT can be applied to more complex
datasets. The clustering, dimensionality reduction, and classification functions imple-
mented in CircIMPACT will likely gain discovery power when used on large datasets
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of at least 30 samples. Plus, the unsupervised analysis of sizable patient cohorts has the
potential to discover new disease subtypes defined by circRNA expression. In turn, a
“footprint” of circRNA expression variation in gene expression profiles can be identified,
indicating the pathways and functions as well as those putatively impacted by the identi-
fied discriminating circRNAs. In this discovery-driven analysis, the new groups defined
by circRNA expression can be transversal to the groups defined by a priori sample annota-
tion. They could secondarily be put into relation with biological features of the samples
or with the patient clinical data, to further study the involved mechanisms and possible
clinical correlations.

Currently, CircIMPACT supports analysis based on RNA-seq read counts. In our
sample analysis, we used the same RNA-seq data to estimate both the circRNA and the
gene expression matrices. In principle, circRNA and gene expression can be estimated
with different methods in the same set of samples. For instance, qRT-PCR quantification of
a circRNA panel in samples extracted from available patient biobanks can be integrated
with genome-wide gene expression data previously obtained with microarray analysis of
the same cases. In the near future, the incorporation of functions adequate for managing
different types of expression quantification data will enrich the package and broaden
its scope.

5. Conclusions

In conclusion, CircIMPACT R package allows integrated analysis of circRNA and gene
expression to investigate the functional impact of circRNA expression variation and to
explore possible sample groups defined by circRNA expression level, with the potential to
discover new disease subtypes. Certainly, it is of utmost importance to promote circRNA
analysis of biological and clinical samples as a crucial complement to more conventional
research focused on gene expression.
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