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A B S T R A C T   

Recently, Virgin coconut oil (VCO) has emerged as one of the most favorable edible oils because of its application 
in cooking, frying as well as additive used in food, pharmaceuticals, and cosmetic goods. These qualities have 
established VCO in high consumer demand and there is a great need of establishing a reliable method for the 
identification of its geographical origin. Through this present study, for the first time, it has been established that 
Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS) combined with multivariate chemometrics can be used 
for the identification of the geographical origin of the VCO samples of various provinces. Principal Component 
Analysis (PCA), and Linear Discriminant Analysis (LDA) were able to differentiate and classify the VCO samples 
of different geographical origins. Further, calibration models (Principal Component Regression and Partial Least 
Square Regression) were developed on the calibration dataset of the elemental concentration obtained from the 
ICP-MS analysis. An external dataset was used to develop the prediction model to predict the geographical origin 
of an unknown sample. Both PCR and PLS-R models were successfully able to predict the geographical origin 
with a high R2 value (0.999) and low RMSEP value 0.074 and 0.075% v/v of prediction respectively. In 
conclusion, ICP-MS combined with regression modelling can be used as an excellent tool for the identification of 
the geographical origin of the VCO samples of various provinces. This whole technique is the most suitable as it 
has high sensitivity as well as provides easy multi-metal analysis for a single sample of edible oil.   

1. Introduction 

In recent times, Virgin coconut oil (VCO) has arrived as one of the 
most beneficial edible oil because of its broad range of uses in cooking, 
frying besides as an additive used in food, pharmacy, and cosmetic 
goods. It is one of the most advantageous edible oil after olive oil 
(Marina et al., 2009a). These qualities have established VCO in high 
consumption demand. The official European Union (EU) classification 
implemented for defining oil authenticity and quality are “Protected 
designation of origin” (PDO) and “Protected geographical indication” 
(PGI) (EEC, 1992). Many studies have been carried out and published on 
validating the endogenous species as markers of origin of monovarietal 
oils by many analytical approaches, such as NMR (Mannina et al., 1999; 
Sacchi et al., 1998), FT-IR (Amit et al., 2020a, 2020b, 2020c) and GC 
(Benincasa et al., 2003). 

In addition to these findings of organic components of oils, heavy 
metal/element analysis plays a crucial role for edible oil geographical 
determination and characterization (Zeiner et al., 2005; Benincasa et al., 
2007). The existence of metals in edible oils may be because of many 
aspects: the metals can be assimilated in the edible oil through the soil or 
production process of the packed edible oils. Hence, it can be stated that 
elemental allocation in VCO differs corresponding to its origin, and the 
multi-elemental data subjected to statistical analysis could be used in the 
geographical identification of VCO samples with different origins. 

Atomic absorption spectroscopy (AAS) and inductively coupled 
plasma mass spectrometry (ICP-MS) are the most frequently applied 
technology for the determination of multi-metal concentration in 
different food samples (Zeiner et al., 2005). 

Since in the case of edible oils, multi-metals are in very low con-
centration, therefore it is very difficult to determine multi-metals con-
centration using AAS. Moreover, the concentration of only a limited 
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number of metals can be determined by AAS. To solve this issue, ICP-MS 
is the most suitable technique as it has high sensitivity as well as it 
provides easy multi-metal analysis for a single sample of edible oil 
(Benincasa et al., 2007). 

Since VCO is one of the most valuable edible oils in the market, its 
geographical origin is indicated on the product by most of the brands 
and companies to depict its authenticity and quality. This aspect of VCO 
production becomes very critical for consumers as well as authorities. 
Keeping this background information in mind, we performed a primary 
study to determine the geographical origin of different VCO samples 
using ICP-MS along with multivariate chemometrics. 

In our case, VCO samples procured with different origins are sub-
jected to ICP-MS to determine the concentration of twenty trace ele-
ments. But merely analysing or comparing multi-metal data did not 
provide any valuable or conclusive information to determine the 
geographical origin of different VCO samples. So, the obtained multi- 
metal concentration data is further subjected to multivariate chemo-
metrics to obtain the valuable information to be used in identifying the 
geographical distribution of different VCO samples. 

Multivariate chemometrics has been exceedingly implemented 
recently for the analysis of various adulterants in coconut oil (Amit et al., 
2020a, 2020b, 2020c). But for geographical identification of different 
edible oils, there are very few cases where multivariate chemometrics 
has been applied so far. However, in these studies also, only the differ-
entiation methods (PCA, and LDA) have been used for the geographical 
identification of edible oils (Benincasa et al., 2007; Aceto et al., 2019). 
So, there was a gap in the geographical identification studies of edible 
oils regarding the accuracy and precision of the methodology used till 
now. But in our case, for the first time, we have utilized regression 
modelling (PCR, and PLS-R) along with ICP-MS analysis for the 
geographical identification of VCO samples of different provinces. 
Moreover, an external set of samples has also been used to predict the 
geographical origin of an unknown sample. These regression models 
along with various validation parameters (R2, RPD, and RMSE) provided 
high accuracy and precision in our results. Moreover, there is no study 
reported in the literature so far where ICP-MS along with multivariate 
chemometrics has been used to determine the geographical origin of 
coconut oil. In the present study, Principal Component Analysis (PCA) 
has been used for obtaining principal components and for the selection 
of the most informative elements crucial for further analysis. Linear 
Discriminant Analysis (LDA) has been utilized for classifying and 
differentiating VCO samples of different origins based on the 
multi-elemental data. For constructing a suitable regression methodol-
ogy, Principal Component Regression (PCR) and Partial Least Square 
Regression (PLS-R) calibration models were used to build the vigorous 
calibration model. For predicting the geographical origin of the pre-
diction sample set, R2, RMSE, and RPD values were examined. 

2. Materials and methods 

2.1. Sample procurement 

For virgin coconut oil (VCO) samples used in this study, coconut fruit 
samples were procured from five major coconut-producing states of 
India i.e., Kerala, Karnataka, Andhra Pradesh, Tamil Nadu, and Goa. 
with various cultivars as depicted in Table 1. Further virgin coconut oil 
(VCO) was extracted and stored at 4 ◦C for further use in the experiment. 

2.2. VCO extraction by cold extraction method 

2.2.1. Coconut milk extraction 
Testa and coconut water were isolated from the kernel part of the 

coconut fruit. Freshly obtained kernel part was divided into small pieces 
and processed through a juicer grinder and coconut milk was obtained. 
This coconut milk was filtered through a muslin cloth. 

2.2.2. VCO extraction 
This filtered coconut milk was incubated at 10 ◦C for 10 h. This in-

cubation led to the solidification of the lipids and the separation of oil 
globules from the water molecules. Further, the aqueous layer was dis-
carded and the lipid block was incubated at 30 ◦C until it dissolved 
completely. This dissolved lipid mixture was centrifuged at 16000 g for 
45 min and the oil layer was separated. This obtained oil is pure, without 
any chemical additives, called virgin coconut oil (VCO) (Seneviratne 
et al., 2009). 

2.3. Sample treatment (microwave assisted acid digestion) 

Before the ICP-MS analysis, microwave-assisted acid digestion was 
performed to dissolve the VCO samples using Anton Paar make model 
(Microwave PRO) oven. Each sample was assiduously mixed and 0.5 g of 
aliquot was weighed straight into the digestion vessel. The digestion was 
carried out by adding 5 mL HNO3 to each sample. The operating pa-
rameters for microwave-assisted acid digestion are depicted in Table 2. 
After cooling down of all the samples to room temperature, samples 
were transferred into the volumetric flask, and volume was made up to 
20 mL with Milli Q water. A standard calibration curve was recorded 
with a blank sample spiked with a standard solution having twenty el-
ements (Benincasa et al., 2007). 

Abbreviations 

ICP-MS Inductively Coupled Plasma-Mass-Spectrometry 
VCO Virgin Coconut Oil 
PCA Principal Component Analysis 
HCA Hierarchical Cluster Analysis 
LDA Linear Discriminant Analysis 
PCR Principal Component Regression 
PLS-R Partial Least Square Regression 
R2 coefficient of determination 
RPD Residual Predictive Deviation 
RMSEC Root Mean Square Error of Calibration 
RMSECV Root Mean Square Error of Cross-Validation 
RMSEP Root Mean Square Error of Prediction  

Table 1 
Coconut fruit sample procurement.  

Province No. of 
samples 

Variety 

Kerala 05 LCT, WCT, VPM-3, Philippines Ordinary, Kera 
Sagara 

Karnataka 05 WCT, LCT, VPM-3, TPT 
Andhra 

Pradesh 
04 WCT, ECT, LCT, Philippines Ordinary 

Tamil Nadu 04 VPM-3, ECT, Aligar Nageri, Kera Chandra 
Goa 03 LCT, ECT, VPM-3  

Table 2 
Parameters for microwave assisted acid digestion.  

Parameter Microwave Operating Conditions 

Sample Volume 1000 uL 
Conc. HNO3 8 mL 
Internal Temperature Limit (◦C) 200 
Max. Microwave Power (Watt) 1200 
Max. Pressure (bar) 60 
Time (min) 30 
Volume make-up 40 mL 
Filtration of samples 0.2-μm membrane 
Number of replicates 3  
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2.4. ICP-MS analysis 

The elemental analysis was performed using ICP-MS Spectrometer 
(Agilent Technologies make Model: 7900) and measurements were 
recorded in triplicates using a standard calibration curve. The ICP-MS 
instrumental operating conditions are as follows: The flow of Nebu-
lizer Gas was 1 L/min whereas the auxiliary and plasma gas flow was 
maintained at 1 L/min and 15 L/min respectively. The reflected and 
forward power was set at 45 W and 1500 W respectively. Furthermore, 
the helium gas flow in the reaction was kept at 0.2 mL/min (Table 3). 

2.5. Multivariate chemometric analysis 

Statistical software SPSS 20 was used to perform LDA analysis while 
PCA, HCA, PCR, and PLS-R were performed using Unscrambler 11 
software. Principal Component Analysis (PCA) converts many possibly 
concurrent variables into a few dissimilar factors that are defined as 
principal components (PCs) and therefore reduces the size of the dataset 
(Vasconcelos et al., 2015; Amit et al., 2020a). PCA approved the iden-
tification of the most crucial variables corresponding with the ICP-MS 
data of VCO samples of various provinces. The rejection of ineffective 
variables is essential to get robust and uncomplicated outcomes. Hier-
archical cluster analysis (HCA) is an exploratory statistical technique 
originated to form natural groupings within a data set that would 
otherwise not be evident. Whereas Linear Discriminant Analysis (LDA) is 
a statistical method used to obtain a linear amalgamation of forms with 
the quality to differentiate observation classes (Vasconcelos et al., 
2015). Further, the regression models including Principal Component 
Regression (PCR) and Partial Least Square Regression (PLS-R) are used 
which are specially devised for the cases having more probably corre-
lated predicting variables than the number of samples. Furthermore, the 
accuracy and the precision of the predictive model were assessed by 
measuring the R2, RMSE, and the residual predictive deviation (RPD) of 
the prediction (external) dataset (Amit et al., 2020a). Firstly, PCA was 
applied to the data collected from the ICP-MS analysis, for obtaining 
principal components and for selecting the most important elements 
vital for further analysis. HCA was applied to check whether the VCO 
samples from the same geographical origin are forming a separate 
cluster to the samples of different geographical origins. Further, LDA has 
been used for classifying and differentiating VCO samples of different 
origins based on the multi-elemental data. Principal Component 
Regression (PCR) and Partial Least Square Regression (PLS-R) calibra-
tion models were constructed to obtain the vigorous calibration model 
by employing the calibration data set obtained from the ICP-MS anal-
ysis. Further, an external data set was used to predict the geographical 
origin of unknown VCO samples in terms of, R2, RMSE, and RPD values. 

The efficiency of both the constructed models was analysed and 
distinguished based on R2, RMSEC, and RMSECV values by utilizing the 
calibration data. In contrast, R2 and RMSEP values were employed to 
check the perdition capability of the constructed model by utilizing an 
external dataset. The lesser the RMSEP value, the higher the extent of 
prediction accuracy given by the model and vice-versa for the R2 value 
of prediction. For every model, R2, and RMSE were measured for both 
calibration and prediction datasets, whereas BIAS, SEP, and RPD (must 
be above 6.5) were measured for the prediction dataset. R2 (coefficient 

of determination) is a statistical unit to determine how close the data are 
to the fitted regression line. When the regression equation fits the data 
well, R2 will be large (close to one). While RMSE is a parameter to 
determine how spread out these residuals (data points) are from the 
regression line. Whereas, Residual Predictive Deviation (RPD) is used to 
check how well a calibration model can predict. The greater the RPD, the 
higher the probability of the model to predict the samples outside the 
calibration set with accuracy and precision. In addition, Standard Error 
of Prediction (SEP) examines and compares the predictive ability of the 
regression models. The highest R2 (near to one) and least RMSE value 
make a constructed model most competent. Besides, RPD, SEP, and the 
BIAS values were estimated, which illustrates the accuracy and precision 
of the built models. 

3. Results and discussion 

3.1. ICP-MS data analysis 

The mean elemental composition/Concentration (ppb) of twenty 
trace elements obtained from the ICP-MS analysis has been depicted in 
Table 4. Co, Ar, and B were not detected in any of the VCO samples and 
therefore are not included in the data table for further analysis. Na, Mg, 
Fe, and P have been detected in high concentrations in almost all the 
VCO samples of all provinces. The very high concentration of phos-
phorous in almost all VCO samples of all the states is prominent because 
of the high use of fertilizers in coconut cultivation. The rest of the ele-
ments have varying concentrations in different samples. This ICP-MS 
elemental data cannot help in discriminating between different prov-
inces for geographical origin identification. Therefore further, this 

Table 3 
ICP-MS instrumental operating conditions for elemental analysis.  

Spectrometer Agilent Technologies make Model: 7900 

Nebulizer Gas flow ~ 1 L/min 
Auxiliary Gas flow ~ 1 L/min 
Plasma Gas flow ~15 L/min 
He Gas flow in Reaction Cell ~ 0.2 mL/min 
Reflected Power ~ 45 W 
Forward Power ~ 1500 W 
Analyzer vacuum ~6 × 10-5  

Table 4 
The mean elemental composition (ppb) of all VCO samples obtained from the 
ICP-MS spectrometer (Agilent Technologies make Model: 7900).  

Province 
(ppb) 

Kerala Karnataka Andhra 
Pradesh 

Tamil 
Nadu 

Goa 

Na 200.42 ±
4.75 

298.25 ±
3.61 

724.58 ±
1.41 

28.38 ±
8.69 

286.38 ±
1.53 

Mg 65.93 ±
3.6 

45.50 ±
13.82 

146.38 ±
3.02 

75.83 ±
3.88 

156.14 ±
2.82 

Al 24.98 ±
7.64 

74.89 ±
8.45 

69.47 ±
6.16 

21 ± 6.67 66.85 ±
6.59 

P 836.67 ±
2.4 

750.1 ±
1.37 

674.89 ±
1.22 

165.47 ±
7.77 

973.28 ±
0.45 

Ca 32.94 ±
17.04 

26.17 ±
15.01 

65.76 ±
7.56 

30.86 ±
11.18 

35.36 ±
12.46 

Cr 5.92 ±
5.23 

14.03 ±
10.39 

17.40 ±
19.8 

3.54 ±
1.72 

7.88 ±
55.91 

Mn 2.30 ±
2.03 

2.36 ±
6.81 

4.96 ±
74.83 

3.76 ±
1.77 

7.24 ±
60.84 

Fe 109.56 ±
4.34 

87.97 ±
6.09 

113.77 ±
4 

64.87 ±
3.75 

129.36 ±
3.4 

Ni 3.18 ±
7.57 

5.12 ±
12.03 

8.60 ±
41.72 

2.21 ±
7.27 

5.01 ±
69.95 

Cu 1.28 ±
1.45 

0.94 ±
7.32 

2.90 ±
136.28 

0.44 ±
9.83 

3.41 ±
34.52 

Zn 4.54 ±
4.16 

21.75 ±
12.15 

5.83 ±
64.13 

3.09 ±
15.58 

3.29 ±
68.78 

Se 0.18 ±
63.5 

0.32 ±
64.62 

0.31 ±
39.93 

0.28 ±
120.96 

0.56 ±
44.25 

Rb 0.05 ±
3.33 

0.16 ±
11.81 

0.15 ±
72.89 

0.26 ±
4.15 

0.37 ±
72.56 

Sr 0.22 ±
25.3 

1.11 ±
28.7 

2.46 ±
20.52 

0.27 ±
35.88 

1.07 ±
23.88 

Mo 0.14 ±
14.35 

0.14 ±
1.47 

0.34 ±
33.29 

0.05 ±
9.51 

0.35 ±
63.82 

Cs 0.02 ±
24.64 

0.03 ±
19.22 

0.08 ±
145.04 

0.01 ±
23.83 

0.27 ±
66.24 

Pb 0.12 ±
6.98 

0.01 ±
8.13 

0.20 ±
55.37 

0.12 ± 4 0.26 ±
68.61 

All values are depicted as mean ± R.S.D. 
ppb: parts per billion. 
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elemental data was fed into different statistical software for multivariate 
chemometric analysis. 

3.2. Principal Component Analysis 

The ICP-MS data obtained for the five provinces (Kerala, Karnataka, 
Andhra Pradesh, Tamil Nadu, and Goa) and 17 elements (variables) (Na, 
Mg, Al, P, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Se, Rb, Sr, Mo, Cs, Pb) was recorded 
for a total of 21 samples. It is a huge task to reach any substantial 
conclusion from this dataset without applying any statistics. So, to solve 
this issue we applied Principal Component Analysis (PCA) to reduce this 
bulky dataset into principal components. These principal components 
are those important variables that help us to establish a relationship 
between the samples and the variables (element concentration) used in 
the study. 

PCA depicts and forms clusters of the data variables into a fewer 
number of important and unconnected variables called principal com-
ponents (PCs) having scored for every sample. This obtained score is 
used to analyse the grouping scheme of various samples in which similar 
samples are expected to be in the same group. Hence, it is a data 
reduction methodology depicting the overall scheme of the grouping of 
data and describes various groups and outliers in the whole dataset 
(Amit et al., 2020a). 

From the PCA score plot, a clear pattern of segregation can be 

observed between VCO samples of various provinces (Fig. 1). This 
segregation is defined by two principal components (PCs) i.e., principal 
component 1 (PC1) and principal component 2 (PC2), which explained 
69% and 30% of the variance, respectively. Therefore, the first two PCs 
explained 99% of the total variance, separating all the VCO samples 
from the various provinces. 

3.3. Hierarchical Cluster Analysis 

For further classification of the ICP-MS data into different clusters, 
Hierarchical Cluster Analysis (HCA) was performed. HCA classifies the 
data into different sample groups based on the similarities known as the 
clusters. HCA puts data samples into one cluster based on the similarities 
and separates that particular cluster from the samples of another cluster 
(Richter et al., 2019). In our case, Cluster analysis was applied to 
determine distance or similarities among the VCO samples and the 
elements. 

Ward’s method of linkage with squared Euclidean distance was used 
as a measure of similarity for the HCA measurement. The HCA output is 
depicted in the form of a dendrogram (Fig. 2). 

It is very evident from the dendrogram that the cluster having 
samples of Kerala province are nearest to the cluster having samples of 
Karnataka as the height of linkage branch joining these two is smallest. 
This linkage branch height represents the distance between two clusters. 

Fig. 1. PCA score plot with PC1 and PC2 depicting clear segregation of VCO samples of different provinces based on the ICP-MS dataset of 17 different elements.  

Fig. 2. HCA dendrogram depicting the clustering of VCO samples with their respective elemental concentration of different geographical origins (provinces).  
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Further, the common branch of the above clusters is linked closest to the 
cluster having VCO samples of Goa province. In accordance, the com-
mon branch of all three clusters is joined to the cluster with VCO samples 
of Andhra Pradesh province. And at last, the common branch arising 
from all these four clusters is distantly linked to the cluster with samples 
of Tamil Nadu province. Therefore, from this HCA analysis, it can be 
seen that the VCO sample of all the provinces are making different 
clusters. Moreover, the HCA cluster of Kerala province is closed to the 
Karnataka samples and in turn closer to the Goa samples. While Andhra 
Pradesh and Tamil Nadu samples are making clusters, which are 
distantly situated. This HCA dendrogram result is in accordance with the 
PCA score plot analysis. 

3.4. Linear Discriminant Analysis (LDA) 

LDA was applied for further classification and discriminative anal-
ysis of VCO samples based on their geographical origin. PCs imparting to 
the variation in the dataset were exposed to discriminant analysis using 

“IBM SPSS Statistics 20” to determine the possibility of a sample of a 
formerly determined cluster. LDA is a statistical method used to obtain a 
linear amalgamation of forms with the quality to differentiate obser-
vation classes (Vasconcelos et al., 2015). LDA firstly generates a classi-
fication model by employing a calibration (training) dataset, and later 
this model is used for the prediction of unknown samples using a 
separate validation dataset. In the majority of cases, with an incomplete 
number of samples, the cross-validation method is implemented, which 
lacks to develop separate validation dataset. In the cross-validation 
approach, the calibration dataset is used as a validation dataset for the 
validation of model efficiency. LDA methodology uses linear Euclidean 
distance to reduce within-class variance and increase the gap between 
classes. For the selection of the optimal number of discriminant factors 
in the LDA model, the Leave one out cross-validation (LOOCV) method is 
employed within the estimated classes. 

In our case, Both the discriminant functions with Eigenvalue >1 and 
p values < 0.001 are significant and demonstrate 92.3% and 5.6% 
variance of the VCO samples of various provinces respectively. All 
groups scatter plot, as deduced by LDA using discriminant function 1 
and 2 for VCO samples also explains the total variance (Fig. 3). The 
group centroid represented in the plot depicts that function 1 and 
function 2 are differentiating between the VCO samples of various 
provinces based on their elemental composition which depicts their 
geographical origin. The confusion matrix resulting from the LDA clas-
sified 100% of the initial groups as well as classified correctly when 
cross-validated as shown in Table 5. In cross-validation, each case is 
classified by the functions derived from all cases except that case. 

From the outcome, it has been observed that the VCO samples 
belonging to a particular class (province) are well classified and differ-
entiated from the samples of another class. These LDA results are in 
accordance with the pattern observed in both PCA and HCA analysis. 
Further to strengthen our results obtained from the above approaches 
(PCA, HCA, and LDA), PCR and PLS-R regression models were developed 
from the calibration dataset obtained from the ICP-MS analysis. And the 
constructed models were further validated by predicting the models 
using the external dataset which was not used in the calibration model. 

3.5. Prediction of the geographical origin of VCO samples by regression 
models based on elemental data 

For the prediction of the geographical origin of VCO samples of 
different provinces, PCR and PLS-R regression models were constructed 
based on elemental data obtained from the ICP-MS analysis. In most of 

Fig. 3. All groups scatter plot as deduced by discriminant analysis using 
discriminant function 1 and 2 for the differentiation of VCO samples of different 
provinces based on their geographical origin. 

Table 5 
Confusion matrix for the classification of VCO samples of different provinces based on their geographical origin.   

Province Predicted Group Membership Total 

Kerala Karnataka Andhra Pradesh Tamil Nadu Goa 

Original Count Kerala 5 0 0 0 0 5 
Karnataka 0 5 0 0 0 5 
Andhra Pradesh 0 0 4 0 0 4 
Tamil Nadu 0 0 0 4 0 4 
Goa 0 0 0 0 3 3 

% Kerala 100 0 0 0 0 100 
Karnataka 0 100 0 0 0 100 
Andhra Pradesh 0 0 100 0 0 100 
Tamil Nadu 0 0 0 100 0 100 
Goa 0 0 0 0 100 100 

Cross-validated Count Kerala 5 0 0 0 0 5 
Karnataka 0 5 0 0 0 5 
Andhra Pradesh 0 0 4 0 0 4 
Tamil Nadu 0 0 0 4 0 4 
Goa 0 0 0 0 3 3 

% Kerala 100 0 0 0 0 100 
Karnataka 0 100 0 0 0 100 
Andhra Pradesh 0 0 100 0 0 100 
Tamil Nadu 0 0 0 100 0 100 
Goa 0 0 0 0 100 100  
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Table 6 
PCR and PLS-R models for the prediction of the geographical origin of the VCO samples by using the elemental concentrations obtained from the ICP-MS analysis.     

aR2   RMSE     

Model Factor Calibration Validation Prediction bRMSE cRMSECV dRMSEP gRPD BIAS hSEP 
ePCR 05 0.983 0.971 0.997 0.176 0.241 0.074 7.83 -4.27 0.082 
fPLS-R 05 0.985 0.973 0.997 0.167 0.240 0.075 7.74 0.007 0.083  

a R2: Coefficient of determination. 
b RMSEC: Root mean square error of calibration. 
c RMSECV; Root mean square error of cross-validation. 
d RMSEP; Root mean square error of prediction. 
e PCR: Principal component regression. 
f PLS-R: Partial least squares regression. 
g RPD: Residual Predictive Deviation. 
h SEP: Standard Error of Prediction. 

Fig. 4. (a) Principal Component Regression 
(PCR) calibration model of calibration set of 
VCO samples for a relationship between 
actual (Reference Y) versus predicted (Pre-
dicted Y) geographical origin using the 
elemental concentrations obtained from the 
ICP-MS analysis 
(Here 1- Kerala, 2 - Karnataka, 3 – Andhra 
Pradesh, 4 – Tamil Nadu, 5 – Goa) (b) 
Principal Component Regression (PCR) pre-
diction model of an external set of VCO 
samples.   
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the linear regression and prediction cases, the independent variables 
may be highly collinear known as multicollinearity. PCR resolves the co- 
linearity problem with lesser factors. Although, PLS-R may even resolve 
the problem with fewer factors than PCR. Simulations have depicted 
that PLS-R provides its least root mean square error (RMSE) with fewer 
factors than PCR (Yeniay and Goktas, 2002). These regression methods 
bank on two steps which are called as calibration and prediction. For the 
calibration step, a regression model was constructed to set up a relation 
between the ICP-MS elemental concentration (predictor variables) and 
the different provinces or geographical origin (response variable), using 
the calibration set of samples. And in the prediction step, the constructed 
model was utilized to measure the geographical origin of an external set 
of samples that were not used in model development. The optimal 
number of factors was established by employing the Leave-One-Out 
method for cross-validation. It is calculated from the plot between the 
number of factors and the RMSECV which gives an optimal number of 
factors for both the models (Rohman et al., 2017). The optimum number 
of factors plays major role in reducing the RMSECV value. The 

competence of the developed models for the prediction of the 
geographical origin for an external set of samples was examined by the 
RMSEP value. The relation between the number of factors and the 
RMSEC is inversely proportional to each other. A model constructed 
with a greater number of factors would result in overfitting, resulting in 
the very low RMSEC but very high RMSEP values. The prediction 
capability of the constructed model is checked using the R2 and the 
RMSEP (root mean square error of prediction). The lesser the RMSEP 
value, the higher the ability to predict accurate model and vice-versa for 
the R2 value of prediction (Rohman et al., 2017). For both the models, R2 

and RMSE were estimated for both calibration and prediction datasets, 
whereas BIAS, SEP, and RPD (must be above 6.5) were estimated for the 
prediction dataset. Table 6 shows the number of factors corresponding 
to the least RMSE and RMSECV values of both models. 

Fig. 4 and Fig. 5 depict the graphs of the measured geographical 
origin versus the predicted geographical origin from the ICP-MS data, 
which manifests the accuracy and significance of the developed models. 
Table 6 also demonstrates the different quality aspects (accuracy and 

Fig. 5. (a) Partial least squares regression 
(PLS-R) calibration model of calibration set 
of VCO samples for a relationship between 
actual (Reference Y) versus predicted (Pre-
dicted Y) geographical origin using the 
elemental concentrations obtained from the 
ICP-MS analysis 
(Here 1- Kerala, 2 - Karnataka, 3 – Andhra 
Pradesh, 4 – Tamil Nadu, 5 – Goa) (b) Partial 
least squares regression (PLS-R) prediction 
model of an external set of VCO samples.   
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precision) of the two calibration models in the forms of R2, RPD, and 
RMSE values. The relationship between measured and predicted 
geographical origin of elemental concentration based on ICP-MS anal-
ysis for PCR and PLS-R shows R2 value 0.983 and 0.985 respectively for 
calibration and 0.997 when the external set was used for prediction. And 
RMSEC value are 0.176 and 0.167% v/v for calibration and 0.074 and 
0.075% v/v for prediction (Table 6). This can also be explained from the 
above findings that both the PCR and PLS-R models are successfully able 
to predict the geographical origin of the VCO samples by using the 
elemental concentrations obtained from the ICP-MS analysis. 

4. Conclusion 

Through this present study, for the first time, it has been established 
that ICP-MS elemental data combined with multivariate chemometric 
tools can be used for the identification of the geographical origin of the 
VCO samples of various provinces. This whole technique is the most 
suitable as it has high sensitivity as well as provides easy multi-metal 
analysis for a single sample of edible oil. PCA, HCA and LDA were 
able to differentiate and classify the VCO samples of different 
geographical origins. Further, calibration models (PLS-R and PCR) were 
developed on the calibration dataset of the elemental concentration 
obtained from the ICP-MS analysis. An external dataset was used to 
develop the prediction model to predict the geographical origin of an 
unknown sample. Both PCR and PLS-R models were successfully able to 
predict the geographical origin with a high R2 value (0.999) and low 
RMSEP value 0.074 and 0.075% v/v of prediction respectively. The 
performance of the calibration models was analysed by using an external 
set of data which gave a low relative error and high (above 6.5) residual 
predictive deviation, resulting in high accuracy and precision. In 
conclusion, ICP-MS combined with regression modelling can be used as 
an excellent tool for the identification of the geographical origin of the 
VCO samples. 
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