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The procedure of catheter ablation for the treatment of drug resistant atrial fibrillation (AF) has evolved but still relies on lesion
sets intended to isolate areas of focal firing, mainly the myocardial sleeves of the pulmonary veins (PVs), from the rest of the
atria. However the success rates for this procedure have varied inversely with the type of AF. At best success rates have been 20 to
30% below that of other catheter ablation procedures for Wolff-Parkinson-White syndrome, atrioventricular junctional re-entrant
tachycardia and atrial flutter. Basic and clinical evidence has emerged suggesting a critical role of the ganglionated plexi (GP) at the
PV-atrial junctions in the initiation and maintenance of the focal form of AF. At present the highest success rates have been obtained
with the combination of PV isolation and GP ablation both as catheter ablation or minimally invasive surgical procedures. Various
lines of evidence from earlier and more recent reports provide that both neurally based and myocardially based forms of AF can
separately dominate or coexist within the context of atrial remodeling. Future studies are focusing on non-pharmacological, non-
ablative approaches for the prevention and treatment of AF in order to avoid the substantive complications of both these regimens.

1. Historical Background:
From Bedside to Bench

The examination of a patient with chest palpitations and an
irregular and rapid pulse was more definitively diagnosed
and designated as auricular fibrillation with the advent of
the electrocardiogram at the beginning of the 20th century.
This clinical observation engendered an ongoing polemic
for many subsequent decades regarding the mechanism
underlying this most common disordered cardiac rhythm.
Essentially two schools of thought developed, each with its
chief proponents, each based on accumulated experimen-
tal evidence, which were apparently contradictory to one
another. Specifically, Scherf and his associates [1, 2] promul-
gated the focal theory of atrial fibrillation (AF) by demon-
strating that substances, such as aconitine [1] or acetyl-
choline applied to the atrial appendage or to the area of the
sinus/AV node, [2] could induce a rapid auricular tachy-
cardia or auricular fibrillation, respectively. Isolation of the
appendage or local cooling was consistently able to suppress

the tachyarrhythmia thereby promoting the conclusion that
AF was focal. On the other hand, initial studies by Moe [3]
provided strong evidence for multiple wavelets (reentrant
circuits) occupying the atria during AF induced by triggering
atrial premature beats along with vagal nerve stimula-
tion. More sophisticated mapping techniques employed by
Allessie and coworkers [4], using the same experimental
model, clearly demonstrated the existence of several reen-
trant circuits traversing the atria giving unambiguous sup-
port for Moe’s multiple wavelet hypothesis.

2. Evolution of Catheter Ablation for Clinical
Forms of AF: The Myocardial Hypothesis

The initial attempts at catheter ablation for AF, in patients
resistant to drugs and cardioversion, were based on the
rationale that the underlying mechanism for AF was due to
multiple reentrant wavelets encircling the atria. Therefore,
transmural lesions sets, similar to those produced surgically,
were instituted using radiofrequency energy delivered to
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the left and/or right atrial endocardium [5, 6]. In part,
this approach was an extension of what was found to be
highly successful in cutting the reentrant circuits involved in
Wolff-Parkinson-White (WPW) syndrome, atrioventricular
junctional reentrant tachycardia (AVJRT), and atrial flutter
(AFL). These attempts to follow the surgical findings of Cox
and associates [7] were modified as a result of the surprising
and seminal findings by Jaı̈s et al. [8] and Haı̈ssaguerre
et al. [9] which revealed that focal firing arising from the
pulmonary veins (PVs) were the apparent initiators of AF.
Other investigators found additional focal firing sites in
the myocardial sleeves of the superior vena cava [10] and
the myocardium within the ligament of Marshall [11]. Of
particular interest, this focal form of AF was singularly resis-
tant to standard antiarrhythmic drugs and cardioversion.
In contrast, the AFFIRM trial [12], while focusing on the
dichotomy between rhythm and rate control, clearly showed
that a substantial portion of the unselected AF population
was responsive to antiarrhythmic drug therapy, whereas
drugs were not effective in converting approximately half of
the treated population. It is reasonable to assume that this
latter cohort consisted of candidates for catheter ablation.

Undeterred by these apparent differences in the AF
population, the clinical electrophysiologist focused their
catheter ablation techniques on those patients with PV and
non-PV focal firing. However, ablation of focal firing sites
within the PVs was quickly abandoned since PV stenosis
became a potential serious complication for this approach.
Most centers subsequently adopted the application of multi-
ple linear radiofrequency applications well outside the PV
ostia to provide a circumferential barrier between the focal
PV source of firing and the atria [13–15] thereby avoid-
ing the possibility of PV stenosis. Although the results of this
approach were relatively positive (70–80% success for par-
oxysmal AF), it was noted that (1) there was “. . .no signi-
ficant relationship between lesion completeness and clinical
outcome. . .”[13]. Others found that PV isolation was “not
crucial in determining clinical success” [16, 17]. (2) PV
firing, in the great majority of cases, unexpectedly stopped
after PV isolation [18]. These findings have led to the
conclusion that some influence coming from the atria must
be a critical factor in maintaining PV firing. As if to provide
the missing factor(s), Nademanee et al. [19] reported that
ablation of complex fractionated atrial electrograms (CFAE)
during AF could be performed, thereby increasing the
success rate to >90%. Although this procedure avoided PV
isolation, as few as 40 and as many as 140 radiofrequency
applications were performed in these cases [19]. However,
Oral et al. [20] performed ablation of CFAE in patients with
chronic AF and did not successfully reproduce the results as
Nademanee et al. reported. Whether the presence of CFAE
is culpable or innocent also remains difficult to determine
even though ablation of CFAE has been widely adopted. At
present, the catheter ablation procedure consists of at least 4
steps with the application radiofrequency energy attempting
to induce transmural myocardial lesions: (1) Circu-
mferential lesion sets to isolate both left and right PVs, (2) A
linear lesion connecting the circumferential lesion sets, (3)
A linear lesion between a circumferential line and the mitral

annulus, (4) Ablation of CFAE [21]. It should be pointed out
that lesion sets 2 and 3 were made to preempt an iatrogenic
macro-reentrant arrhythmia resulting from lesions sets, 1,
that were performed to isolate the PVs.

3. Catheter Ablation for AF: Clinical Outcomes

Mainly using PV isolation with additional lesion sets men-
tioned above, a world-wide survey of catheter ablation for
AF [22] from 182 centers reported on 20,825 procedures on
16,309 patients between the years 2003–2006. “Of the 16,309
patients with full disclosure of outcome data, 10,488 (median
70.0%) became asymptomatic without antiarrhythmic drugs
(AADs) and another 2,047 (10.0%) became asymptomatic in
the presence of previously ineffective AADs over 18 months
(range, 3–24) of follow-up. Success rates without AADs and
overall success rates were significantly larger in 9,590 patients
with paroxysmal AF (74.9%) than in 2,800 patients with per-
sistent AF (64.8%) and 1,108 patients with long-lasting AF
(63.1%) (P < 0.0001). Major complications were reported
in 741 patients (4.5%).” Interestingly, these findings do not
show any significant differences in success rates reported in
studies from individual centers nor from earlier consensus
statements [23]. More recent long-term studies of the out-
comes for catheter ablation for AF have been even more dis-
appointing. The long-term success of a single catheter abla-
tion procedure for AF with a follow-up period of five [24] or
six [25] years has ranged from 29% to 55%. Ablation of the
autonomic neural elements on the heart, either as a stand-
alone or adjunctive procedures with PV isolation have been
promulgated with varying degrees of success (see below).

4. The Autonomic Nervous System and Focal AF:
The Neural Hypothesis

The relationship between the autonomic nervous system’s
cardiac innervation from the brain and AF was well estab-
lished during the last century. Stimulation of the vagosym-
pathetic trunks to heterogeneously shorten refractoriness
across the atria (dispersion of refractoriness) and the
introduction of a premature or series of atrial premature
beats to induce and sustain AF became the accepted mode
for basic studies of AF [26, 27]. However, toward the end of
the 20th century, new findings began to emerge. Specifically,
another aspect of the autonomic innervation of the heart,
encompassed by the ganglionated plexi (GP) on the heart
itself and also on some of the large vessels close to the heart
[28–30] gave rise to the concept of an intrinsic cardiac auto-
nomic nervous system. In essence, there is the autonomic
innervation to the heart from the brain and the spinal cord
(extrinsic system) and the ganglia plexi on the heart itself
comprising the local autonomic nervous systems (intrinsic
system). This intrinsic system, with each of the major GP
situated at the PV-atrial entrances, can contain as few as 200
to as many as 1000 neurons [31, 32]. The intrinsic cardi-
ac autonomic nervous system (ICANS) on the heart and
within the pericardium, serves as more than a relay station
for the extrinsic projections of the vagosympathetic system
from the brain and spinal cord to the heart. It functions
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as an integrative system which acts cooperatively with the
extrinsic innervations but can act independently to modu-
late numerous cardiac functions, for example, automaticity,
contractility, conduction, and so forth [30].

Within the past decades a series of studies from our
laboratories and others have related the stimulation of the
ICANS, either electrically [33, 34] or chemically, with auto-
nomic neurotransmitters, [35–38] to induce focal firing
arising from PV and non-PV sites closely simulating the focal
firing described clinically. Moreover, ablation of the major
GP at the PV-atrial entrances either eliminated or markedly
diminished AF inducibility [39–42]. Also, the administration
of autonomic blocking agents has been shown to suppress
triggered firing in the PV myocardium in vitro [43] and can
inhibit ICANS-based AF in vivo [44]. Another important
aspect of focal AF were the studies showing that this form of
AF was not responsive to standard antiarrhythmic drugs, for
example, Class III or IC agents [45, 46]. These findings are
in direct contrast to the series of studies by The Netherland
investigator whose rapid pacing model of AF was readily
controlled by various classes of antiarrhythmics [47].

Mapping studies of the long-term atrial pacing model
to induce sustained AF found that macro- and multiple
reentrant circuits were the responsible mechanism for this
form of AF [48]. The apparent discrepancy may readily be
explained by the presence of coexisting focal and macro- or
multiple reentrant forms of AF [46] in which one or the other
dominates or controls the arrhythmia. For example, Chou
et al. [45] found that ibutilide was ineffective in terminating
the focal discharges, that is, “nonreentrant mechanism” in
the PV during sustained AF. Niu et al. [46] reported that
propafenone was ineffective in terminating PV firing induced
AF. However, the same dose of propafenone readily converted
AF to sinus rhythm when GP ablations markedly reduced
CFAE and pacing could capture the residual macroreentrant
circuit that became the predominant mechanism maintain-
ing AF. This difference in drug responsiveness was consis-
tently demonstrated in an experimental model in which the
same heart could show both forms of AF or circumstances
where both mechanisms appeared to be operating simultane-
ously [46]. It is interesting to note that in 3 patients whose AF
continued after multiple CFAE ablations, ibutilide converted
AF to sinus rhythm as reported by Nademanee et al. [19]. The
importance of the coexistence of the focal (drug resistant)
and drug responsive forms of AF will be elaborated below.

5. Alternative Methods for Catheter Ablation of
AF: Targeting the Ganglionated Plexi

The earliest study of selective GP ablation was reported by
Platt et al. [49] who described the identification of the GP at
the PV-atrial junctions by applying high-frequency stimuli
to these nerve clusters. In patients with persistent forms of
AF, the response was a marked slowing of the ventricular rate
(≥50%) during AF. Ablation of these GP terminated the per-
sistent AF in 23/26 patients who had a complete study with
an overall success rate of 96% during a short 6-month follow-
up. More recent studies have reported highly variable success
rates ranging from 25% to 78% after ≥1 year of follow-up

[50–53]. It should be pointed out that in some of these
studies GP ablation was performed by on anatomic iden-
tification of GP sites. No high-frequency electrical stimu-
lation was used to determine that they were ablated after
radiofrequency applications [51, 52]. Furthermore, the study
showing the lowest success rate may have only performed
partial ablation by missing the largest GP situated anteriorly
between the right superior and inferior PVs, the anterior
right GP. In addition, in this study [50], the GP were
approached epicardially, the anterior right GP which is
situated closely adjacent to the phrenic nerve precluded the
separation of GP and phrenic nerve by stimulation and,
therefore, that particular GP was not ablated [54]. Experi-
mental studies have shown that partial GP ablation is not
only less effective than more complete GP ablation but
partial ablation of the GP may increase the incidence of AF
by exacerbating the heterogeneity of refractoriness across the
atria thereby promoting macro-reentrant AF [55, 56].

6. Combined Methods for Catheter Ablation of
AF: GP Ablation and PV Isolation

The first clinical study showing the relatively long-term
success of a combination of GP ablation and PV isolation
was reported by Pappone et al. [57]. In a nonrandomized
study of 297 patients with paroxysmal AF, undergoing left
atrial circumferential ablation to isolate the pulmonary veins,
these investigators found that some 34% showed marked
slowing of the ventricular response along with hypotension
during the application of radiofrequency energy to 4 specific
areas adjacent to the PVs. In a 12-month follow-up, those
101 patients showed 99% freedom from AF. In a series of
83 patients with paroxysmal and persistent AF, Nakagawa
et al. [58] provided similar results in that the freedom from
symptomatic AF was 95% and no AF or AT at 22 months
was 86% after a single procedure targeting both GP and
performing an antral type PV isolation. Similar results were
also confirmed by a recent randomized study [59] showing
that addition of anatomic GP modification to PV isolation
confers significantly better outcomes than PV isolation alone
during a follow-up period of 12 months.

Up to this time, the major source of results in which
both GP ablation and PV isolation have been performed as
a single procedure has been via minimally invasive surgi-
cal techniques. A survey was conducted of 5 such studies
from independent surgical investigators [60–64], showed
success rates ranging from 83 to 93% with follow-up periods
spanning 6 to 13 months. Most of these patients had per-
sistent or long standing persistent AF. Patients with paroxys-
mal AF were in the minority.

7. Coexistence of the Myocardial and Neural
Mechanisms in the Clinical Forms of AF

Taking into account what we have learned from previous
basic studies and from more than a decade of clinical exper-
ience with catheter and surgical ablation of AF, perhaps we
can construct a scenario which incorporates both the auto-
nomic and myocardial mechanisms in an attempt to explain
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the initiation as well as the maintenance of AF in patients. As
far as initiation of AF, it should be noted that the myocardial
tissues, that is, PVs, superior vena cava and “Marshall
Bundles,” comprising the major sources of focal firing derive
from a common phylogenetic and embryological origin,
namely, the sinus venosus [65]. Functionally, they show a
greater sensitivity to the cholinergic and adrenergic neuro-
transmitters than adjacent atrial tissues [43]. The basic
and clinical evidence gathered over the past decade would
support the hypothesis that the focal firing arising from PV
and non-PV sites are neurally based and due to a hyper-
active state of the ICANS. A fundamental question is Why do
these tissues become hyperactive in some of the population,
in particular, disproportionately in persons from 60–80 year
old? An early report by Kaijser and Sachs [66] studied
cardiovascular responses to autonomic influences in healthy
women and men comprising groups, age 25, 45, and those
between ages 60–80. “There seems to be only a moderate
attenuation of autonomic cardiovascular responses to about
60 years, after which there is a more rapid decline.” In
this regard, Smith et al. [67] tested the function of the
ICANS, weeks after denervation, which is separation of the
extrinsic from the intrinsic autonomic systems. Not only did
the intrinsic GP neurons remain viable but their respon-
siveness was enhanced. A more recent study by Zhang et al.
[68] showed that vagosympathetic trunk stimulation could
abolish neurally firing within the anterior right GP closely
associated with the adjacent right superior PV. As mentioned
above, both electrical and chemical stimulation, that is,
induced hyperactivity, of these GP, which in turn, triggered
focal firing of adjacent PVs leading to AF. The implications of
these separate findings suggest that with age extrinsic control
of intrinsic activity is reduced allowing not only independent
operation of the GP at the PV atrial junctions but also
“muscarinic facilitation of orthodromic neuronal activation
increased” [67]. In other words, the attenuation of extrinsic
control with age predisposes the elderly to paroxysmal AF
which in time progresses to more persistent forms.

Based on these findings, we hypothesized that extrinsic
control of the intrinsic autonomic nervous system leads to
hyperactivity of the GP which in turn could provide the
increased propensity for atrial fibrillation. To test this hypo-
thesis, we performed a chronic study in which the nexus
point between the extrinsic and intrinsic autonomic nervous
systems was ablated in dogs (n = 5) and the development
of AF monitored from an implanted pacemaker. Over a
period of 10 weeks, there was a progressive increase in the
AF burden starting at 4-5 weeks and increasing thereafter. No
AF burden was recorded in the sham operated (n = 5) group
[69].

Elegant basic studies promoted the hypothesis that “AF
begets AF” [70]. The electrophysiological changes, namely,
atrial refractoriness and pacing maladaptation, as well as
anatomic changes [71] implicitly showed that AF could
progress from the paroxysmal or the episodic form to the
persistent form. More recently, it has been shown that AF also
begets autonomic remodeling [42] which can significantly
add to functional and myocardial remodeling, all of which
promote the AF substrate. Specifically, as AF burden

increases, GP activity increases resulting in excessive release
of muscarinic and adrenergic neurotransmitters locally and
via their axonal fields to smaller clusters of ganglia which
comprise the interconnected neuronal network covering the
atria [30–32, 72]. As the increased neural activation spreads
to peripheral atrial sites, the excessive neurotransmitter
release locally engenders another exacerbating factor for the
“AF begets AF” effect. Recent studies in the dog heart with
sustained AF have demonstrated that acetylcholine appl-
ied locally to the atria in increasing concentrations can cause
site-specific intermittent, then continuous CFAE [73]. More-
over, the spread of rotor-like firing and CFAE occurs from
the GP at the PV-atrial junctions to the PV in one direction
and toward the atrial appendage in the other direction
[74]. In extreme cases, this “metastasizing” of the CFAE can
envelope the atrial appendage providing triggers capable of
initiating AF from these secondary sites [38].

In patients with long-standing persistent AF presenting
with extensive CFAE recordings throughout the left atrial
appendage, attempts at isolation resulted in a “dismal” suc-
cess rate without total electrical ablation of the atrial append-
age [75]. It would appear that CFAE is to the abnormal
atrium what focal firing is to the abnormal PV. This may
help to explain some unusual findings reported clinically. For
example, the cessation of PV firing [18] and/or termination
of AF after complete or even incomplete PV isolation [16,
17]. In these cases, the linear ablation line may also pass
through and ablate the GP at the PV-atrial antra [57] thereby
reducing the efferent neural input, that is, parasympathetic
and sympathetic to a level that would not sustain paroxysmal
AF [57]; or, the PV isolating lesions may also interrupt CFAE
serving as additional focal firing sources sustaining both
paroxysmal and persistent AF [58].

Another, seemingly paradoxical, clinical finding is exem-
plified by the report by Danik et al. [76] on a series of
18 patients whose AF duration ranged from 1–12 years
despite various drug regimens. These investigators were able
to induce AF with rapid atrial stimulation after acute GP
ablation in 17 of 18 patients. Subsequently, PV isolation
was performed in the 17 patients who then were put on
antiarrhythmic drugs for 6 weeks, with 3 remaining on drugs
during a mean follow-up of 15 ± 2 months. Freedom from
AF recurrence was 94%, at least 20% higher than reported
in the two consensus statement listed above [22, 23]. We
suggest that after ablation of the GP and marked reduction of
PV firing [58] burst atrial pacing can induce macroreentrant
circuits in the remodeled atria [58]. During follow-up drugs
that were previously ineffective against the focal form of AF
[43, 44] now can maintain sinus rhythm. As sinus rhythm
persists, there is a reversal of remodeling, “sinus rhythm
begets sinus rhythm,” providing long-term freedom from AF
recurrence.

It should be mentioned that GP ablation as an adjunctive
procedure to pulmonary vein isolation (PVI) still does not
achieve the same degree of success as achieved by catheter
ablation procedures targeting patient with WPW, AVJRT and
AFL. Obviously AF is a more complex arrhythmia in which
more than one mechanism or a coexistence of mechanisms
are involved (see above). Also, the ablation of the major
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GP at the PV-atrial junctions has been shown to achieve
success rates as high as 99% [57]. As would be expected the
success rates should be reduced as AF “metastasizes” to the
atrial neural network resulting in persistent and long-stand-
ing-persistent AF. Clinical studies in which PVI plus major
GP ablation has been performed in patients with both par-
oxysmal and persistent AF have reported success rates of 86%
[77].

8. Future Approaches for the Treatment of
the AF Patient

Despite the successes of catheter ablation for AF, over more
that a decade, it has not achieved the same efficacy com-
pared to catheter ablation of WPW, AVNRT, and AFL. Fur-
thermore, the relative complexity, amount of myocardium
destroyed and the overall complication rate require much
needed improvement. What has been learned from both
basic and clinical investigations have begun to suggest dif-
ferent modalities, particularly neural based, that may sup-
plant catheter ablation, for the prevention and treatment of
some forms of AF. Our recent studies [78–80] demonstrat-
ed that bilateral low level electrical stimulation of the vag-
osympathetic trunks at a voltage 10% or even 50% below
that, which slows the sinus rate or AV conduction, can signif-
icantly prevent AF inducibility. In the normal dog heart, sub-
jected to 3 hrs of low level vagal nerve stimulation, there was
a progressive and significantly increased AF threshold com-
pared to baseline values. Controls showed no change after the
same time period. We also found that bilateral low level vagal
nerve stimulation can prevent and reverse atrial remodeling
induced by rapid atrial pacing as well as suppress AF-induced
by strong cholinergic stimulation [79]. These results were
further confirmed by our ongoing studies when stimulating
from the right vagosympathetic trunk alone [81] or when
we positioned a pacing catheter in the superior vena cava
to stimulate the preganglionics of the vagosympathetic trunk
to achieve low level vagal nerve stimulation without having
to surgically expose the nerves [82]. Evidence from other
investigations suggested that these low level voltages release
vasoactive peptides and nitric oxide, both of which manifest
strong antiadrenergic action [83–85]. Such an effect would
suppress triggered firing at PV and non-PV sites. Whether
the use of this modality can be made into a feasible clini-
cal tool and in which group of AF patients this would be
efficacious remains to be determined. The optimal treatment
may lie in the development of a noninvasive method for pre-
vention and termination of AF.
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