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Objectives. To develop and validate a radiomics-based nomogram with texture features from mammography for the prognostic
prediction in patients with early-stage triple-negative breast cancer (TNBC). Methods. The study included 200 consecutive
patients with TNBC (training cohort: n = 133, validation cohort: n=67). A total of 136 mammography-derived textural features
were extracted, and LASSO (least absolute shrinkage and selection operator) was applied to select features for building the
radiomics score (Rad-score). After univariate and multivariate logistic regression, a radiomics-based nomogram was constructed
with independent prognostic factors. The discrimination and calibration power were assessed, and further the clinical applicability
of the nomograms was evaluated. Results. Among the 136 mammography-derived textural features, fourteen were used to build
the Rad-score after LASSO regression. A radiomics nomogram that incorporates Rad-score and pN stage was constructed. This
nomogram achieved a C-index of 0.873 (95% CI: 0.758-0.989) for predicting iDFS (invasive disease-free survival), which
outperformed the clinical model. Moreover, it is feasible to stratify patients into high-risk and low-risk groups based on the
optimal cut-off point of Rad-score. The validations of the nomogram confirmed favorable discrimination and considerable
predictive efficiency. Conclusions. The radiomics nomogram that incorporates Rad-score and pN stage exhibited favorable
performance in the prediction of iDFS in patients with early-stage TNBCs.

1. Introduction

Breast cancer, the most frequently diagnosed malignancy, is
the leading cause of cancer-related deaths among women [1].
Triple-negative breast cancer (TNBC), accounting for
15-20% of breast cancers [2], does not benefit from en-
docrine therapy or classic targeted therapy due to the ab-
sence of estrogen receptor (ER), progesterone receptor (PR),

and the human epidermal growth factor receptor (HER-2)
gene amplification. Despite the attempts of novel therapeutic
agents such as immune checkpoint inhibitors [3] and poly
(ADP-ribose) polymerase inhibitors [4], traditional cyto-
toxic chemotherapy is still the mainstream systemic treat-
ment option for TNBC [5], while the clinical outcomes
remain the poorest among all molecular subtypes of breast
cancers.
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Nomogram is a feasible and efficacious statistical pre-
dictive tool that incorporates multiple variables of value
[6, 7]. Seeking new prognostic factors and embedding them
into nomograms is an important research method in the
prediction of clinical outcomes. To date, nomogram pre-
dictions for the survival of TNBCs merely considered
conventional clinical and pathological risk factors [8-10].
While efforts have been made in adding novel prognostic
factors such as the expression of HIF-la and c-myc to
nomograms [11], imaging features have not yet been ana-
lyzed. Nowadays, the advent of deep-learning-based
“radiomics” technology has allowed for the high-throughput
extraction of quantitative imaging features from images,
thus enhancing the accuracy of diagnosis and prognostic
prediction, especially for malignancies [12]. Radiomics-
based methods are being widely applied in discrimination of
confusing lesions on the images [13, 14]. Mammography,
ultrasound, and MRI are the most important diagnostic
imaging modalities in the management of breast cancers.
And imaging-based radiomics nomograms have been
constructed in the prediction of axillary lymph node me-
tastasis in early-stage breast cancer [12, 15, 16].

Mammography, mainly displayed in craniocaudal (CC)
and mediolateral oblique (MLO) views, has long been a
routine screening method for early detection of breast
cancers, typically through detection of characteristic masses,
microcalcifications, and/or architectural distortions. Apart
from distinct biological properties and clinical activation,
TNBCs might be distinguished from non-TNBCs with
radiomics features based on mammography [17]. More
importantly, mammographic features can further help in
differentiating basal-like and normal-like subtypes of
TNBCs [18]. These facts suggested that mammographic
radiomics features might be a potential prognostic factor for
TNBCs.

So far, there has been no radiomics-based study for the
prognostic prediction of TNBC to the best of our knowledge.
Therefore, this study analyzes the prognostic value of
mammography textures using deep-learning strategies and
constructs an optimized nomogram for the prognostic
prediction of TNBCs.

2. Methods

This study was approved by the West China Hospital Re-
search Ethics Committee (No. 2019[887]). The study only
involved retrospective analysis of anonymous data, and in
consequence the requirement for informed consent was
waived.

2.1. Patient Selection. Between April 14, 2010, and April 17,
2017, a total of 200 consecutive patients with TNBC who
were treated at West China Hospital of Sichuan University
were retrospectively identified from hospital database. The
inclusion criteria were pathologically diagnosed TNBCs with
mammography performed within 3 months before surgery.
In the determination of TNBCs, statuses of ER, PR, and
HER-2 were tested with immunostaining. Uncertain status
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of HER-2 amplification was confirmed by fluorescence in
situ hybridization. The exclusion criteria were as follows: a.
ductal carcinoma in situ (DCIS) or Paget’s disease without
invasive elements; b. excisional biopsy prior to mammog-
raphy; c. neoadjuvant therapy prior to mammography; d.
nonmass lesions, i.e., abnormities visible on either mam-
mographic views, which could not be characterized as a
distinct mass because of lack of a conspicuous margin or
shape [19], including (1) calcification without clear
boundary, (2) architectural distortion, and (3) focal asym-
metric density; e. patients with negative mammography; f.
recurrent or metastatic diseases.

The included patients were randomly divided into the
training (n=133) and validation (n=67) datasets at a
ratio of 2:1 using random number table (Supplementary
Table 1). The clinicopathological features and treatment
strategies of the patients were retrieved from medical
records, including age, clinical stage, WHO classifica-
tion, pathological type, Ki-67 expression, type of surgery,
radiation therapy, and chemotherapy.

2.2. Follow-Up. 'The primary end point of this study was
invasive disease-free survival (iDFS). After surgeries, pa-
tients were routinely followed up every six months for the
first five years and annually ever after. IDFS was defined as
the period from the date of diagnosis until the date of ip-
silateral invasive breast cancer recurrence, ipsilateral
locoregional invasive breast cancer recurrence, contralateral
invasive breast cancer, distant recurrence/metastasis, death
from any cause, and/or the date of last follow-up.

2.3. Image Acquisition and Texture Feature Extraction.
Mammography images were acquired through Mammomat
Novation DR systems (SIEMENS, German). Meanwhile,
craniocaudal (CC) and mediolateral oblique (MLO) pro-
jections of both breasts were acquired for each patient.

Two participants (X] and JY) who were blinded to
patient information independently extracted texture
features of mammography images using Local Image
Feature Extraction (LIFEx) software (http://www.
lifexsoft.org, version 5.10) and were supervised by a se-
nior breast radiologist in case of controversies [20].
Following the software instructions (supplementary data),
the regions of interests (ROIs) on both CC and MLO views
were carefully drawn along the edge of lesions (Figure 1).
Sixty-eight features of each mammographic view were
automatically extracted, and 136 features of both CC and
MLO projections were used to form the radiomic sta-
tistical dataset for subsequent machine-learning analysis.
The extracted texture features by LIFEx include the grey
level co-occurrence matrix (GLCM), the neighborhood
grey-level different matrix (NGLDM), the grey-level run
length matrix (GLRLM), and the grey-level zone length
matrix (GLZLM). Original data of texture features
extracted from 200 patients’ mammography images is
provided in the Supplementary Table 2. Detailed de-
scription of features is provided in the supplementary
data.
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FiGure 1: Workflow of radiomic signature building. Abbreviation: ROI=region of interest; LIFEx = Local Image Feature Extraction;

LASSO = the least absolute shrinkage and selection operator.

2.4. Selection of Radiomics Signatures. A total of 136 textural
features were extracted for each patient. The logistic regression
model with least absolute shrinkage and selection operator
(LASSO) was adopted to select value features for clinical
outcomes with nonzero coefficients (Figure 1) [21]. The cal-
culation formula of Rad-score was subsequently constructed
with a linear combination of the selected features of value that
were weighted by their respective coefficients [22, 23].

2.5. Construction, Assessment, and Validation of the Radio-
mics Nomogram. Univariate and multivariate analyses were
conducted with Cox proportional hazards regression model.
Firstly, a univariate analysis of Rad-score and clinicopatho-
logical features for iDFS prediction was performed within the
training dataset. For each parameter, hazard ratios (HRs) and
95% confidence intervals (95% Cls) were calculated, and sig-
nificant variables (p <0.05) in univariate analysis were then
tested in backward stepwise selection in the multivariate lo-
gistic regression model. Upon the basis of the multivariate
regression model, the independent predictive factors (p < 0.05)
of iDFS were incorporated in the ultimate nomogram, through
which a risk score was calculated for each patient.

In order to assess the predictive efficacy of nomogram,
the calibration curve was drawn to evaluate the calibration of
nomogram and the concordance index (C-index) was ap-
plied to further assess its performance.

The internal validation of the nomogram was performed
with the validation dataset. Each patient in the validation
cohort received a Rad-score with the established formula.
The calibration curve and C-index calculation were per-
formed subsequently. Moreover, Kaplan-Meier (K-M)
survival curve analysis of iDFS based on the median value of
the radiomics nomogram was performed to stratify patients
into high- and low-risk subgroups.

2.6. Clinical Utility Evaluation of Radiomics Nomogram.
Decision curve analysis (DCA) was conducted to evaluate
the clinical significance of radiomics nomogram in

predicting iDES in TNBC patients. More specifically, the net
benefits at ranges of threshold probabilities were calculated
in the combined training and validation cohorts.

2.7. Statistical Analysis. The comparisons of clinicopatho-
logical features between training and validation cohorts were
assessed by Student’s t-test or Mann-Whitney U test for
continuous variables and Pearson’s chi-squared test or
Fisher’s exact test for categorical variables. The survival
curves were displayed with Kaplan-Meier method and
differences in survival were examined using the log-rank
test. All statistical analysis were performed using R software
(version 3.5.2). The R packages implemented included
glmnet, psych, rms, Hmisc, survival, survminer, grid, Lattice,
Formula, ggplot2, nomogramEx, tidyverse, dplyr, tidyr,
rmda, devtools, rmda, and MASS. A two-tailed p <0.05 was
considered to be statistically significant.

3. Result

3.1. Patient Characteristics and iDFS. A total of 200 TNBC
patients were included for data analysis and patient char-
acteristics in training and validation cohorts are summarized
in Table 1. There were no statistically significant differences
in the follow-up duration, clinical-pathological character-
istics, or treatment strategies between the two cohorts.

As of the last follow-up, 17 patients (8.50%) had expe-
rienced disease relapse or death. The mean iDFS was 17.58
months and the median iDFS was 16.23 (3.10 to 36.43)
months. The 1-, 2-, 5-, and 8-year cumulative iDFS of all
patients were 2.50% (5/200), 7.00% (14/200), 8.50% (17/200),
and 8.50% (17/200), respectively.

3.2. Construction of Radiomics Score. Among the 136
mammography-derived textural features, fourteen were
used to build the Rad-score after LASSO regression (Fig-
ure 2). The equation of Rad-score was as follows:
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TasLE 1: Clinical and pathological characteristics of patients in training and validation cohorts.

Training cohort (n=133) Validation cohort (n=67) p value
Age (years, mean + SD) 49.22+9.87 47.79+10.10 0.196
BMI (kg/m [2], mean +SD) 23.59 +3.32 22.88 +2.63 0.232
Follow-up (months, mean + SD) 54,98 +21.72 54.39 +22.63 0.701
Menopausal status 0.889
Premenopausal 72 39
Postmenopausal 60 29
T Stage 0.651
T1 38 23
T2-4 92 42
Tx 3 2
N stage 0.452
NO 95 44
N1-3 37 23
WHO classification 0.276
1 0 0
2 6 6
3 108 47
NA 19 14
Ki-67 status 0.710
<14% 7 2
>14% 126 65
Type of breast surgery 0.928
Mastectomy 120 60
Lumpectomy 6 4
NA 7 3
Neoadjuvant chemotherapy 1.000
Yes 13 7
No 120 60
Adjuvant chemotherapy 1.000
Yes 127 64
No 6 3
Adjuvant radiotherapy 0.468
Yes 30 19
No 103 48
SD: standard deviation; BMI: body mass index; NA: not available.
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FIGURE 2: LASSO selection and the predictive efficacy of radiomics features. (a). Tuning parameter (1) selection with minimum criteria-
based 10-fold cross-validation in the LASSO model. Binomial deviances (y-axis) were plotted as a function of log (1) (lower x-axis), and the
upper x-axis represents the average number of predictors. The dotted vertical lines were drawn at the optimal values of A and the value that
gave the minimum average binomial deviance was used to select radiomics features. The optimal A value of 0.01 (log (1) =—-4.610) was
selected. (b) LASSO coefficient profiles of the 136 texture features. Each colored curve represents the trajectory of the change of an
independent variable. At the value selected using 10-fold cross-validation, the optimal A resulted in fourteen coefficients.



Contrast Media & Molecular Imaging

Rad — score = CONVENTIONAL_#std_C* (-0.00132048)
+ SHAPE _Volume (mL)_CC" (0.004541706)
+ SHAPE_Volume (#vx)_CC”* (2.016478E — 19)
+ GLRLM_SRE_CC" (-74.75245)
+ NGLDM_Contrast_CC" (-5.214166)
+ NGLDM_Busyness_CC" (7.177503)
+ CONVENTIONAL_# min _MLO" (0.0006480479)
+ HISTO_Skewness_MLO" (—0.4479433)
+ GLCM_Correlation_.MLO" (-0.7861222)
+ GLCM _Entropy_logl0_MLO" (0.4937121)
+ GLCM _Entropy_log2 (=Joint entropy)_MLO™ (0.0000005908434)
+ GLRLM_GLNU_MLO" (-0.0004946444)
+ GLZLM_SZE_MLO" (20.57717)
+ GLZLM_SZHGE_MLO™ (0.00003251064).

3.3. Development and Validation of Nomogram.
Univariate Cox regression model analysis indicated that pN
stage (HR: 3.964, 95% CI:1.258-12.490, p = 0.019) and Rad-
score (HR: 3.071, 95% CI: 1.949-4.840, p <0.001) were as-
sociated with iDFS in TNBC patients (Table 2). Subse-
quently, multivariate Cox regression analysis confirmed
pN stage (HR: 3.898,95% CI:1.181-12.867, p = 0.026) and
Rad-score (HR: 3.052, 95% CI: 1.868-4.985, p <0.001) as
independent risk factors for iDFS. Accordingly, the no-
mogram was constructed to quantify probability 1-, 2-, 5-,
and 8-year survival (Figure 3(a)). As assessed by the
calibration curves, the nomogram revealed good cali-
bration in the prediction of iDFS (Figures 3(b)-3(e)). The
C-index for the radiomics nomogram was 0.873 (95% CI:
0.758-0.989) in the training cohort and 0.944 (95% CI:
0.883-1.004) in the validation cohort, while for the clinical
nomogram (N stage), it was 0.668 (95% CI: 0.531-0.805)
in the training and 0.761 (95% CI: 0.608-0.913) in the
validation cohort, indicating a better efficacy of radiomics
nomogram than clinical nomogram in predicting iDFS.

We were able to stratify patients into high-risk and low-risk
groups based on the optimal cut-off point obtained by the
“surv_cutpoint” function of the “survminer” R package
[24, 25]. Patients with a total score higher than or equal to
-51.53 were identified as high-risk patients (n =21), and those
with a total score less than -51.53 were classified as low-risk
patients (n=179). The verification with K-M survival curves
showed that the iDFS in the high-risk group was much lower
than that in the low-risk group in both the training (p < 0.0001)
and validation (p <0.0001) cohorts (Figure 4).

3.4. Clinical Utility. The DCAs for the radiomics nomogram
and clinical nomogram are presented in Figure 5. The
radiomics nomogram adds more net benefit than the “treat
all” or “treat none” strategies without limitation on the
threshold probability.

(1)

4. Discussion

Due to an advanced histological grade, a more aggressive
behavior, and the lack of effective therapeutic targets, the
clinical outcomes of TNBCs remain the poorest among all
molecular subtypes of breast cancers [26]. The recurrence
pattern of TNBCs is distinct from non-TNBCs. The risk of
disease relapse and death steadily continues for seventeen
years after diagnosis in non-TNBCs [27]. However, in pa-
tients with TNBCs, the risk of recurrence reached its peak in
the first three years after diagnosis and declines thereafter.
Recurrence is unlikely to occur in patients who remain
disease-free over eight years after diagnosis [27]. Moreover,
TNBCs are highly heterogeneous and they respond variously
to standard chemo-regimens, resulting in a comparatively
wide range of survival [28]. Therefore, a model that validly
predicts the survival of TNBCs has significant clinical value.
In this study, we assessed the value of radiomics features of
mammography in the prognostic prediction of TNBCs, and
the results revealed a desired effect. Accordingly, we further
established and validated a radiomics-based nomogram to
accurately predict the iDFS in TNBC patients. The nomo-
gram contains two indicators, namely, Rad-score and pN
stage. With the addition of mammography-derived radiomic
score, the nomogram significantly improved the predictive
efficiency compared to the existing predictive models.
Mammography has been adopted as a screening mo-
dality since 1960s and is currently accepted as the most
effective screening approach for breast cancer [29, 30]. There
are several discriminative mammographic findings on
TNBCs from non-TNBCs. The majorities of TNBCs appear
as a mass on mammograms [31]. In a retrospective study
with 198 premenopausal patients with breast cancer, all
TNBCs were associated with a mass (n=33) while 55% of
HER-2+ cancers and 48% of ER + cancers were related [32].
Moreover, TNBCs tend to be less frequently associated with
calcifications on mammography compared to non-TNBCs
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TaBLE 2: Univariate and multivariate analysis of clinicopathological-radiomics characteristics for prognostic prediction in training cohort.

Univariate regression

Multivariate regression

Variables
HR (95% CI) p value HR (95% CI) p value
Age (years) 1.007 (0.951-1.066) 0.812
BMI (kg/m?) 0.950 (0.793-1.138) 0.575
Menopausal status 0.373 (0.101-1.377) 0.139
pT stage 2.199 (0.482-10.040) 0.309
PN stage 3.964 (1.258-12.490) 0.019* 3.898 (1.181-12.867) 0.026"
Histological type 3.886x 10° (0-Inf) 0.998
WHO classification 0.506 (0.065-3.956) 0.516
Ki-67 status 2.643 x 107 (0-inf) 0.998
Type of breast surgery 1.750 (0.226-13.560) 0.592
Neoadjuvant chemotherapy 1.774 (0.389-8.096) 0.459
Adjuvant chemotherapy 0.534 (0.069-4.138) 0.548
Adjuvant radiotherapy 1.117 (0.302-4.127) 0.868

Radiomics score

3.071 (1.949-4.840)

1.331 x 1076%**

3.052 (1.868-4.985) 8.380x 107 6***

*p<0.05 **p<0.001. HR: hazard ratio; BMI: body mass index.

0 10 20 30 40 50 60 70 80 90 100 1.0 A " i —
Points /
NI1-N3 09 4 -
N I " -
NO & -
Radiomics_score z 0.8 _-7
-58 -57 -56 -55 -54 -53 -52 -51 -50 -49 -48 -47 E _-7
Total points g 07 P -
0 10 20 30 40 50 60 70 80 90 100 110 "8 _-"
1-year survival probability T T T T 0.6 - - -
0.95 0.850.70.50.30.1 -7
2-year survival probability ———T 05 _
0.95 0.850.70.50.3 0.1 i . . . . .
5-year survival probability T 0.5 0.6 0.7 0.8 0.9 1.0
0.95 0.850.70.50.30.1 N dicted iDFS. 1 yes
8-year survival probability e e omogram-predicted iDFS_L years
0.95 0.850.70.50.30.1
(@ (b)
1.0 J T 1.0 J —
0.9 4 0.9 4
w w
= 13
2 08 2 08
E -~ E
E -7 2 -
2 0.7 -7 3 0.7 -
) _- ) -
© Pl o -
0.6 e 0.6 - -
05 -~ 05 4 -~
T T T T T T T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0
Nomogram-predicted iDFS_2 years Nomogram-predicted iDFS_5 years
(c) (d)
1.0 A
0.9 4
w
153
2 08
o
2
g
g 07 4
=)
o
0.6 o
05 L -~

0.5 0.6 0.7

Nomogram-predicted iDFS_8 years

(e)

0.8

0.9 1.0

FiGure 3: Radiomics nomogram to estimate iDFS for patients with triple-negative breast cancers and its discrimination performance. (a)
The radiomics nomogram was developed by incorporating pN stage and radiomics score. b—e. Calibration curves of the nomogram for the
estimation of 1-year (b), 2-year (c), 5-year (d), and 8-year (e) iDFS in the training cohort. The diagonal line represents a perfect match
between the predicted (x-axis) and actual (y-axis) probabilities, and the colored line represents the predictive performance of the nomogram.
The closeness between the two lines indicates the predictive accuracy of the nomogram.
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FIGURE 4: Kaplan-Meier survival analyses of high-risk and low-risk patients in the training (a) and validation cohort (b).
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FIGURE 5: Decision curve analysis for each model in survival prediction in patients with triple-negative breast cancers (TNBCs). The x-axis
represents the threshold probability and the y-axis represents the net benefit. The grey line represents the assumption that all patients had
experienced events of invasive disease. The black horizontal line represents the assumption that no patient had invasive disease. The decision
curves show that using the radiomics nomograms to predict survival adds more benefit for TNBC patients than all other models. *Radiomics

score binarily classified as high- and low-risk groups.

[32], potentially because TNBCs progress rapidly to invasive
disease without a period of precancerous disease with in situ
components that is sufficient to allow calcifications to form
[31]. In a study involving 91 TNBC patients, analyses of
mammographic features suggested that mass margins were
significantly different between basal-like TNBCs and nor-
mal-like TNBCs. More specifically, margins of basal-like
TNBCs were microlobulated or speculated, whereas those

normal-like TNBCs were more likely to be microlobulated
[18]. These results suggest that the mammographic pre-
sentation of tumors may reflect the histological character-
istics and biological behavior of the tumors with
sophisticated mechanism.

Despite the wide popularity and the huge number of ex-
aminations, which makes mammography a potential data
reservoir in big data medicine, the in-depth information



hidden in the images has not been taken advantage of.
Nowadays, the advent of deep learning-based radiomics
technology has improved the accuracy of disease diagnosis and
prognostic prediction [12]. Radiomics is the process of high-
throughput extraction of a large number of image features,
which converts traditional medical images into high-dimen-
sional data that can be mined, and allows the subsequent
quantitative analysis of these data [33]. It helps in the iden-
tification of tumor types, noninvasively and quantitatively
evaluates tumor biological heterogeneity [34], and therefore
optimizes disease detection, diagnosis, treatment response
prediction, and prognosis evaluation to promote clinical de-
cision-making. At present, radiomics is mainly applied into the
management of malignant tumors, such as liver cancer [35, 36],
lung cancer [37], and glioblastoma [38].

In breast cancers, MRI-based radiomics has been eval-
uated in the prediction of response to neoadjuvant therapy
[39-41], prediction of sentinel lymph node metastasis [42],
and recognition of molecular subtypes [43]. Moreover, ul-
trasound-based radiomics has been applied in the prediction
of axillary lymph node metastasis [12] and the differential
diagnosis between TNBC and fibroadenoma [44]. Mam-
mography-based radiomics has been adopted in breast
cancer diagnosis [45]. However, few studies have applied
radiomics in prognostic prediction of patients with breast
cancer. This study analyzed the prognostic value of mam-
mography textures and constructed an optimized nomo-
gram that incorporated Rad-score and clinical features (pN
stage) for the prognostic prediction of TNBCs. According to
the results of univariate and multivariate regression, Rad-
score rather than T stage remained an independent prog-
nostic factor apart from pN stage. The Rad-score was
constructed with parameters of the grey level co-occurrence
matrix (GLCM), the neighborhood grey-level different
matrix (NGLDM), the grey-level run length matrix
(GLRLM), and the grey-level zone length matrix (GLZLM).
These parameters take into account number, distance, angle,
etc. (supplementary data). The Rad-score and the according
nomogram exhibited favorable discrimination and consid-
erable predictive efficiency. Based on the Rad-score and the
according nomogram, we can predict the prognosis of pa-
tients according to the texture features of tumor combined
with pN stage and optimize the surgical mode and che-
motherapy accordingly. Rad-score successfully identified
high-risk patients with poor survival outcomes who need
more intensive treatment. Compared to long-term outcome
overall survival, iDFS is an end point that avoids extended
follow-up and enables early adjustment of treatment.
Therefore, our study may provide a more effective tool for
making early personalized treatment.

There are several limitations of our study. First, the
retrospective nature of the study design might inevitably
bias the patient selection. Second, this is a single-center
study and the sample size was relatively small. Although
the incidence of breast cancers remains the highest among
malignancies of all sites in women, the mortality is
comparatively lower. In 2019, breast cancer accounts for
30% of the estimated new cases of cancers in the United
States, while the estimated deaths only account for 15%
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[46]. As a consequence in our situation, the number of
iDFS events was even smaller which may weaken the
statistical power of the current model. Thus, the nomo-
gram should be further validated in prospective studies
with larger sample size and longer follow-up. Third, we
only included TNBC patients with a definite mass on
mammogram to allow a ROI to be drawn. Therefore, our
nomogram is not applied to TNBCs with negative
mammograms and those with lesions appeared as dis-
tortions or calcifications with no clear boundaries.

In conclusion, we established a novel nomogram that
can effectively predict the iDFS in TNBC patients by in-
corporating mammography-based radiomics features into
clinicopathological variables. This nomogram mainly
benefits primary TNBCs with a mass-like lesion on
mammography. Still, future work is required to evaluate its
reliability as a routine clinical tool.
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