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Emerging evidence has identified the association between gut microbiota and various diseases, including cardiovascular diseases
(CVDs). Altered intestinal flora composition has been described in detail in CVDs, such as hypertension, atherosclerosis,
myocardial infarction, heart failure, and arrhythmia. In contrast, the importance of fermentation metabolites, such as
trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and secondary bile acid (BA), has also been implicated in
CVD development, prevention, treatment, and prognosis. The potential mechanisms are conventionally thought to involve
immune regulation, host energy metabolism, and oxidative stress. However, numerous types of programmed cell death,
including apoptosis, autophagy, pyroptosis, ferroptosis, and clockophagy, also serve as a key link in microbiome-host cross talk.
In this review, we introduced and summarized the results from recent studies dealing with the relationship between gut
microbiota and cardiac disorders, highlighting the role of programmed cell death. We hope to shed light on microbiota-targeted

therapeutic strategies in CVD management.

1. Introduction

Cardiovascular disease (CVD), with its rising prevalence rate
and mortality, entails both health threats and economic
burdens to our society. As a chronic progressive condition,
the development of CVDs often begins with risk factors like
obesity, type 2 diabetes, and hypertension, most of which
would irreversibly damage vascular structure and eventually
lead to detrimental clinical outcomes like arterial thrombosis
and ischemic stroke. While heredity can only be blamed for less
than 20% occurrence of CVDs, dietary and nutritional statuses
are two stimuli with more profound and lasting impacts [1].
Therefore, increasing evidence has suggested a close relation-
ship between gut microbiota and CVD development [2].

The gut microbiota refers to trillions of commensal
microorganisms located in the intestine in a certain propor-
tion, whose balance is easily disturbed by food intake, life-
style, and environment [3]. Considered a complex organ,
the microbial community is required in the committed step

through which food would be converted into small com-
pounds and metabolites, thus modulating intestine structure,
gut barrier integrity, inflammatory status, and host metabo-
lism both directly and indirectly [4]. Since Hippocrates
claimed that “all diseases begin in the gut” centuries ago, a
great body of research has demonstrated the interplay
between intestinal microbiota and diseases, including colo-
rectal cancer [5], cerebral ischemia-reperfusion injury [6],
liver fibrosis [7], and CVDs [8]. The gut microbiota accounts
for 0.2-2.0kg of the weight of an adult and approximately
50% of the dry weight of adult feces. The enormous genome
of microbial genes and their functions are described as the
microbiome, which outnumbers the human genome tremen-
dously [3, 9]. Although the characteristics of the gut commu-
nity may be inherited in early life, the composition could also
be altered by external conditions [10, 11]. Appropriate gut
microbiota structure and metabolite functions are essential
in homeostasis maintenance, whereas gut dysbiosis contrib-
utes to atherosclerosis, hypertension, heart failure, arrhythmia,
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cardiac tumours, and others [12]. However, its underlying
mechanisms are multifactorial and yet to be determined.

In this report, we introduce the role of gut microbiota in
CVDs and summarize possible mechanisms, which may pro-
vide a theoretical basis and shed light on novel therapeutic
strategies in the prevention and treatment of CVDs.

2. Mechanisms Underlying the
Interaction between Gut Microbiota and
the Host

The community of gut microbiota consists mostly of bacteria,
fungi, and viruses in which the primary component is bacteria.
There are 5 major families in the intestinal flora: Bacteroidetes,
Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicro-
bia [13]. Although the variety of species is abundant, the archi-
tecture of gut microbiota is comparatively fixed in different
sites. However, the differences in gut microorganism quanti-
ties between locations are significant, with the ascending colon
containing the largest number [13]. Under physiological con-
ditions, more than 90% of the bacteria comprise Bacteroidetes
and Firmicutes, while an elevated Firmicutes/Bacteroidetes
(F/B) proportion is associated with CVDs [14]. Koliada et al.
found that with the body mass index (BMI) in Ukraine adult
population increasing, their F/B ratio raised likewise after
removing other confounders such as age or smoking [15].
Subsequently, evaluation of children’s gut microbiota compo-
sition and BMI had confirmed F/B ratio as a key risk indicator
for childhood obesity [16]. Additionally, the F/B ratio is
related to low-grade inflammation leading diabetes mellitus
[17]. These diseases serve as both risk factors and stimulatives
for CVDs. In addition to intestinal integrity maintenance, gut
metabolites serve as essential messengers in the communica-
tion between gut microbiota and the host. Here, we review
the mechanisms underlying the interaction between gut
microbiota and the host, especially in CVDs.

2.1. Immunoregulation. Generated by fiber fermentation in
the colon, short-chain fatty acids (SCFAs) include three major
products, namely, acetate, propionate, and butyrate, all of
which contain less than six carbons [18]. Apart from being
nutrients and energy sources for intestinal epithelial cells,
these small-molecule metabolites could enter the blood circu-
lation, participate in immune regulation and inflammation
modulation either by binding to G protein-coupled receptors
(GPCRs) or by inhibiting histone deacetylases (HDACs)
[18], and thereby influence gut homeostasis and host diseases.
Laurence et al. found that SCFAs induce NLRP3 inflamma-
some activation and subsequent abundant IL-18 secretion in
a GPR43- and GPR109A-dependent manner, thus eliciting
favourable effects on intestinal integrity maintenance [19].
Of note, GPR43 and GPR109A are two receptors that are
expressed on intestinal epithelial cells and some immune cells,
where GPR43 mainly binds to acetate and propionate, while
GPRI109A is specifically activated by butyrate [20]. Studies
have demonstrated that SCFAs beneficially upregulate not
only the proliferation and differentiation of regulatory T cells
(Tregs) but also the anti-inflammatory IL-10 secreted from
Foxp3+ Tregs, which are mediated through GPR43 (also
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known as Ffar2) activation and HDAC inhibition [21].
Additionally, butyrate was shown to suppress proinflamma-
tory factors, including IL-6, IL-12, and NO, from intestinal
macrophages by HDAC inhibition [18]. Likewise, Bartolo-
maeus et al. recently proved that the anti-inflammatory role
of SCFAs such as propionate significantly reduced the number
of effector memory T cells and T helper 17 cells, thus mitigat-
ing cardiovascular damage [22]. However, the proinflamma-
tory functions mediated by GPR41 (also known as Ffar3)
and GPR43 were reported elsewhere [23], indicating that
SCFA-induced immunoregulatory effects are dependent on
the distinct cell types.

Additionally, trimethylamine N-oxide (TMAO) is
generally investigated as a risk indicator for cardiovascular
diseases, diabetes mellitus, nonalcoholic fatty liver disease,
and other metabolic events [24-26]. As the end-product of
dietary choline and L-carnitine, TMAO is converted from
trimethylamine (TMA) in the liver by flavin-containing
monooxygenases (FMOs), especially FMO3 [24]. However,
how exactly TMAO functions to regulate homeostasis is
seldom discussed. According to Sun et al., TMAO induces
inflammation by activating the ROS-TXNIP-NLRP3 inflam-
masome, thereby contributing to endothelial dysfunction in
human umbilical vein endothelial cells [27]. Similarly, Yue
et al. showed that TMAO promotes the release of the inflam-
matory cytokines IL-1f and IL-18 via activation of the NLRP3
inflammasome from foetal human colon cells in a time- and
dose-dependent manner [28]. Moreover, injection of TMAO
was shown to significantly increase inflammatory markers,
including cyclooxygenase 2, IL-6, E-selectin, and ICAMI,
through the MAPK and NF-«B signalling pathways, which
then recruit leukocytes and induce vascular inflammation
[29]. In these fine experiments in which treatments against
TMAO were adopted, inflammatory damage was prevented.
Taken together, the proinflammatory role of TMAO is
established.

Plasma cholesterol, the key cellular membranes constitu-
ent and precursor of steroid hormones, vitamin D, and bile
acids, is positively correlative with cardiovascular diseases.
There are two main sources of cholesterol, with one-third
being exogenous from daily dietary and the other two-third
synthesized inside the body [30]. Confirmed with various
models, microbial regulation is believed to be critically
involved in cholesterol balance modulation [31]. To begin
with, gut microbiome is reported to convert cholesterol into
poorly absorbed coprostanol, reducing the risk of cardiovas-
cular diseases [30, 32]. Further elucidation reveals that the
presence of intestinal sterol metabolism A genes is responsi-
ble for such metabolism mediation [32]. Another key aspect
the gut microbiota enrolled is bile acids metabolism. Bile
acids deconjugation yields free bile acids as well as free
glycine or taurine residues, which requires the participation
of bile salt hydrolase enzymes (BSHs) [30]. The presence of
BSHs was found within Clostridium, Bifidobacterium, Lacto-
bacillus, and others. With higher degree of bile salts deconju-
gation, more free BAs were excreted into feces [30]. Primary
bile acids refer to steroid molecules that result from the
decomposition of cholesterol in the liver. Most of them are
recycled back to the liver, while the rest enter the intestine,
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where they are converted into secondary bile acids by gut
microbiota [33]. The most well-studied secondary bile acids
are deoxycholic acid (DCA), lithocholic acid (LCA), and
ursodeoxycholic acid (UDCA), which often function through
their receptors, including G protein-coupled BA receptor 1
(TGR5), farnesoid X receptor (FXR), and vitamin D receptor
(VDR) [33]. When bound to the TGR5 receptor, secondary
bile acids cause the activation of macrophages and then the
production of inflammatory cytokines [34]. Interestingly,
researchers found that low concentrations of secondary bile
acids bring anti-inflammatory effects, while high concentra-
tions would instead cause damage. For example, Wang
et al. demonstrated that low-dose DCA mitigates the inflam-
matory response in birds [35].

Additionally, these products from commensal microbiota
would trigger innate immune signalling, thereby communicat-
ing with the host. Microbial-associated molecular patterns
(MAMPs) including LPS or peptidoglycan are recognized by
receptors like Toll-like receptors (TLRs), NOD-like receptors
(NLRs), and others [4]. The strong connection between TLRs
and atherosclerosis was confirmed in genetic mice researches.
In the TLR4-/- apoE-/- mice model fed with cholesterol-rich
diet, the size of aortic plaque was significantly reduced [36].
Interestingly, deficiency of TLR2 in myeloid cells had no influ-
ence in the development of atherosclerosis, suggesting the role
of endothelial TLR2 in atherogenesis [37]. Furthermore, the
development of arterial thrombosis was relative to NOD2,
TLR2, and TLR9 signalling in platelets as well as TLR2 and
TLR4 pathways in endothelial cells [4].

2.2. Energy Metabolism and Homeostasis. Among the numer-
ous risk factors contributing to CVD, abnormal immune
regulation and metabolic disorders represent two major
elements. Metabolic syndromes such as obesity, dyslipidosis,
hyperglycaemia, and insulin resistance are closely related to
the occurrence and development of CVD. In recent years,
the link between gut microbiota, metabolism, and CVD has
gained much attention. For instance, Den and his coworkers
considered SCFAs to carry metabolic benefits for those with
a high-fat diet through inhibition of peroxisome proliferator-
activated receptor gamma (PPARY), converting lipid synthesis
to lipid oxidation [38]. Moreover, a fiber-rich diet upregulates
the levels of SCFAs in the gut, which then promotes intestinal
gluconeogenesis [39]. SCFAs accelerate the production of
GLP-1 by binding to GPR41 and GPR43, therefore facilitating
insulin secretion [39]. In contrast, TMAO aggravates triglycer-
ide accumulation and lipogenesis in the livers of high-fat diet-
fed mice [40]. Propionate was found to induce glycogenolysis
and hyperglycaemia via the upregulation of glucagon and fatty
acid-binding protein 4 (FABP4), thereby hindering the effects
of insulin [41]. In mice with obesity, bile acid promotes GLP-1
secretion via the TGR5 pathway, thereby modulating blood
sugar [42]. Notably, there is multiplicity in the associations
between gut microbiota and their microbiome. For instance,
TMAO could alter the bile acid profile and metabolism, thus
contributing to liver steatosis and atherosclerosis [40, 43],
whereas bile acid stimulates FMO3 expression via FXR, even-
tually resulting in TMAO production (Bennett et al., 2013).

Moreover, butyrate was found to restore bile acid dysregula-
tion and counteract hepatic inflammation [44].

To sum up, the gut microbiota communicates with the
host through diverse manners. To begin with, SCFAs and
secondary bile acids are two of the main products by gut
microbiota. They play their immune-regulatory role either
by directly affecting the proliferation of immune cells or by
stimulating the production of cytokines. Moreover, SCFAs
are involved in both lipid and sugar metabolism. Second,
TMAO that primarily comes from L-carnitine and choline
consumption participates in inflammatory modulation by
promoting IL-18 and IL-18 release or activating
MAPK/NF-«B signalling pathway, thus upregulating the
levels of COX2, IL-6, and ICAMI1. Moreover, MAMPs
including LPS and peptidoglycan serve as another vital con-
tributor in the development of atherosclerosis and arterial
thrombosis, mainly through TLRs and NLRs (Figure 1).

2.3. Programmed Cell Death. Apart from the well-known
immune and inflammation modulation properties of gut
microbiota, accumulating evidence has revealed its potential
in the determination of diverse manners of cell death
(Figure 2).

2.3.1. Apoptosis. Characterized by the formation of a distinc-
tive apoptotic body, apoptosis is one of the most widely inves-
tigated programmed cell deaths. It is often observed in
myocardial infarction, heart failure, and other vascular damage.
Saito et al. found that Bacteroides fragilis (B. fragilis) is able to
protect HT29 cells from apoptosis resulting from Shiga toxin
[45]. Butyrate promotes vascular smooth muscle cell growth
via proliferation arrest as well as apoptosis inhibition [46].
Notably, there are proapoptotic effects as well. Sodium propio-
nate was reported to induce apoptosis in H1299 and H1703
lung cancer cells, as evidenced by increased protein expression
of p21, Bad, and Bax as well as apoptosis markers, including
cleaved PARP and cleaved caspase 3 [47]. According to Nie
et al,, Bifidobacterium (BIF) ameliorates TNF-a-induced cell
apoptosis in Caco-2 cells [48]. Likewise, butyrate causes
apoptosis and cell cycle arrest in kidney epithelial cells [49].

2.3.2. Autophagy. Nie et al. discovered that BIF ameliorates
TNF-a-induced autophagy in Caco-2 cells by suppressing
the level of p62 and inhibiting the expression of autophagy-
related markers such as Beclinl and LC3II [48]. According
to their research, BIF may provide a therapeutic target aimed
at the Kawasaki disease, which is highly related to acquired
heart disease in children. Lannucci and his coworkers proved
that SCFAs induce autophagy in hepatic cells by uncoupling
protein 2 (UCP2) [50]. Accordingly, Qiao et al. demonstrated
that sodium butyrate contributes to the reduction in a-synu-
clein both via the inhibition of the PI3K/Akt/mTOR autoph-
agy pathway and enhancement of Atg5-mediated autophagy,
manifested as elevated LC31II and reduced p62 expression [51].

2.3.3. Pyroptosis. As a type of proinflammatory cell death,
pyroptosis is characterized by swollen cells, subcellular
organelle damage, and the release of cytokines, including
the NLRP3 inflammasome, NLRP6, an apoptosis-associated
speck-like protein containing CARD (ASC), cysteinyl-
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FIGURE 1: Mechanisms involved in gut microbiota-host communication. Short-chain fatty acids (SCFAs), mainly propionate, acetate, and
butyrate, stimulate Fox3+ Tregs and macrophages via GPR43 activation and HDAC inhibition. Fox3+ Tregs subsequently produce the
anti-inflammatory cytokine IL-10, while proinflammatory cytokines such as IL-6 and IL-12 are secreted by macrophages. Moreover, Th17
cells and effector memory T cells were downregulated by SCFAs. By suppressing PPARy, SCFAs promote lipid oxidation. Although
insulin production was enhanced by SCFAs, glycogenolysis and gluconeogenesis were both observed to occur even with SCFA treatment.
L-carnitine and choline consumption contribute to the release of trimethylamine (TMA), which is then converted by FMO into
trimethylamine N-oxide (TMAO). Both SCFAs and TMAO activate the NLRP3 inflammasome, leading to IL-18 and IL-1f release.
Through the MAPK/NF-xB signalling pathway, TMAO increases the levels of COX2, IL-6, and ICAMI1. Secondary bile acids such as
deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are produced in the intestine by gut microbiota and
then participate in inflammatory modulation and blood sugar regulation.

aspartate-specific proteinase 1 (caspase-1), and gasdermin D.
Data have shown that sodium butyrate is capable of breaking
down the gingival epithelial barrier by inducing pyroptosis
[52]. Similarly, TMAO promotes vascular endothelial cell
pyroptosis via ROS production, thus resulting in the develop-
ment of atherosclerosis [53]. However, Gu et al. proved the
antipyroptosis effects of sodium butyrate on renal glomerular
endothelial cells, protecting them from damage caused by
high glucose [54]. From the perspective of the mechanism,
the classic caspase-1-gasdermin D pathway and NF-«xB/IxB-
« signalling may both be involved [54]. Moreover, Cohen
et al. confirmed that Vibrio proteolyticus (VPRH), a Gram-
negative bacterium from the gut of a wood borer, induces
pyroptosis by activating the NLRP3 inflammasome and
caspase-1, thereby resulting in IL-1f secretion, suggesting
that the NLRP3 inflammasome pyroptotic pathway can
benefit the host during infection [55].

2.3.4. Ferroptosis. Induced by lipid reactive oxygen species
accumulation, ferroptosis refers to another distinct kind of
cell death mediated by mitochondria. Studies concerning
whether gut microbiota are implicated in ferroptosis are
rather rare. Until recently, Robert et al. proposed that supple-
mentation of omega-3 polyunsaturated fatty acids (n-3

PUFAs) and butyrate may both facilitate mitochondrial
Ca2+- and Gpx4-dependent ferroptosis [56]. Hopefully, this
hypothesis may shed light on the link between gut microbiota
and ferroptosis as well as accelerate related research.

2.3.5. Clockophagy. The circadian rhythm, namely, clocko-
phagy, is controlled by a complex circadian clock gene
network including the ARNTL, CLOCK, CRY2, and PER2
genes [57]. The interaction between circadian rhythms and
diverse gut microbiota has been well studied, where the acute
sleep-wake cycle shift alters the functional profiles of gut
microbes. Together, the clock-microbial communities affect
host homeostasis [58]. The circadian rhythm of SCFA
production was observed by Segers et al. to cause rhythmicity
in intestinal movement [59]. However, such effects were
abolished by the deletion of Bmall [59]. Besides, Marques
et al. found that in hypertensive mice, a high-fiber diet
changes the composition of the gut microbiota and restores
gut dysbiosis, which may be partially due to increased levels
of clock genes in the heart and kidney [60]. Additionally, a
negative correlation between the phylum Firmicutes and
Bmall as well as a positive correlation between Bacteroidetes
and Bmall was observed in mice [61].
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FIGURE 2: Manners of cell death induced by gut microbiota. A variety of gut flora have been demonstrated to be effective in regulating cell
death. (a) Muciniphila and (b) fragilis were shown to counteract apoptosis. In contrast, sodium propionate has the ability to induce
apoptosis. Interestingly, the effects of butyrate on apoptosis are controversial, manifesting elevated biomarkers such as P21, Bad, Bax, and
caspase-3. In addition, SCFAs stimulate autophagy, while Bifidobacterium is autophagy-protective, with decreased expression of P62,
Beclinl, and LC3IIL. Sodium butyrate promotes autophagy by inhibiting the PI3K/Akt/mTOR pathway. Additionally, it is involved in
pyroptosis via regulation of the caspase-1/gasdermin D pathway. In addition, TMAO stimulates ROS activation and thus induces
pyroptosis. Along with pyroptosis, the NLRP3/NLRP6 inflammasome and IL-1f3 are produced. Moreover, clockophagy can reverse gut
dysbiosis. For instance, SCFAs are capable of controlling rhythmicity via clock genes such as Bmall.

3. Implications of Gut Microbiota in CVDs

To concisely describe the role of gut microbiota in cardiovas-
cular disease, the positive or negative effects of gut microbi-
ota on CVDs are listed in Table 1.

3.1. Hypertension. Hypertension (HTN) has been a key link
in the occurrence and development of cardiovascular dis-
eases. Although HTN is currently beyond cure, it is prevent-
able and controllable. According to the mosaic theory
advanced by Irvin Page, HTN is induced by multiple factors,
including inheritance, diet, and environment [62]. HTN also
has extensive impacts on various tissues and organs, such as
endothelial cells, the kidneys, and brain. Moreover, in recent
years, the value of gut microbiota in HTN has been widely
investigated.

In the work conducted by Li et al., fecal transplantation
was performed from hypertensive individuals to germ-free
mice. Along with microbiota shift, blood pressure was also
elevated in those mice, indicating the contributing role of
gut microbiota in hypertension [63]. It has been demon-
strated that butyrate-producing bacteria and butyrate levels
are relatively low in patients with HTN, indicating that
imbalanced host-microbiome cross talk is relevant to systolic
blood pressure [64]. Accordingly, in mice pretreated with
angiotensin II, supplementation with butyrate effectively
lowered blood pressure [65]. Interestingly, the same team
found that gut barrier dysfunction is another contributor to
HTN, as evidenced by elevated levels of zonulin, a gut epithe-

lial tight junction protein regulator [65]. However, the same
metabolite may yield contradictory biological effects through
different receptors. For instance, Jennifer et al. found that
propionate may upregulate blood pressure via olfactory
receptor 78 (Olfr78) while exerting hypotensive effects
through activation of Gpr4l [66]. In-depth knowledge
reveals that vascular inflammation and endothelial dysfunc-
tion are two key processes in the development of hyperten-
sion [67]. In mice fed with Western diet, endothelial
dysfunction was associated with decreased proportion of
Bifidobacterium spp., whereas antibiotic administration
helped mitigate such vascular damage [68]. As compared
with germ-free mice, the conventionally raised mice
pretreated with Ang II presented with a higher level of IL-4
and IL-10, indicating a vascular inflammation-prone role of
enteric flora [68]. In a meta-analysis of 8 studies, a higher
circulating TMAO level was positively associated with hyper-
tension risk, which was dose-dependent [69]. Liu and
coworkers identified that administration of the Lactobacillus
rhamnosus GG strain is an effective approach to prevent
exacerbation of HTN, which is in part mediated by reducing
TMAO levels [70]. However, it is worth noting that the
application of TMAO alone would not alter blood pressure
in normotensive rats but prolonged the hypertensive-prone
effects of angiotensin II [71]. More recently, a novel mecha-
nism different from inflammation or immunity regulation
has been presented. In high salt-induced hypertensive mice,
elevated blood pressure is closely related to increased levels
of intestinal-derived corticosterone [72].
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TasBLE 1: The exact role of different gut microbiota in CVDs.

CVDs

. Atherosclerosis
Species

Myocardial infarction Heart failure Arrhythmia

Enterobacteriaceae Negative

Ruminococcus gnavus Negative
Eggerthella lenta Negative
Roseburia intestinalis Positive
Faecalibacterium cf. prausnitzii Positive
Synergistetes phylum

Lachnospiraceae family

Spirochaetes phylum

Syntrophomonadaceae family

Tissierella and Soehngenia genera

Lactobacillus plantarum 299v

Faecalibacterium prausnitzii

Bacteroides fragilis

Ruminococcus

Streptococcus

Enterococcus

Faecalibacterium

Alistipes

Oscillibacter

Bilophila

Negative
Negative
Negative
Negative
Negative
Positive
Positive
Positive
Negative
Negative
Negative
Positive
Positive
Positive

Positive

Taken together, these results established that the gut
microbiota is involved in blood pressure regulation. However,
the underlying mechanisms still await further validation.

3.2. Atherosclerosis and Arterial Thrombosis. Initially related
to dyslipidaemia, abnormal accumulation of macrophages,
and massive production of inflammatory cytokines, athero-
sclerosis is considered a chronic inflammatory disease that
underlies end-stage CVDs such as myocardial infarction or
heart failure. In recent years, people have started to consider
gut microbiota potent regulators during the development of
atherosclerotic lesions. Koren et al. first identified bacterial
DNA in atherosclerotic plaques, and the amount of DNA
was associated with the infiltration of leukocytes in the
plaques [73]. Moreover, the altered composition of the gut
microbiome was confirmed in a metagenome-wide associa-
tion study encompassing 218 individuals with atherosclerosis
and 187 healthy controls. Specifically, the abundances of
Enterobacteriaceae, Ruminococcus gnavus, and Eggerthella
lenta were significantly increased in those with atherosclerosis,
whereas Roseburia intestinalis and Faecalibacterium cf. praus-
nitzii, both butyrate-yielding bacteria, were reduced [74]. The
above findings strongly suggest correlations between gut
microbiota and atherosclerosis.

With the use of atherosclerosis-prone germ-free mice and
antibiotic treatments, the role of gut microbiota in atheroscle-
rosis development was further elucidated (Table 2). First
people suggested that bacterial or viral infection is necessary
for the initiation of atherosclerosis. However, such hypothesis
was overturned by Samuel and his colleagues’ work [75].

Apolipoprotein (apo) E-/- murine model was often adopted
for atherosclerosis research given the self-driven ability of
atherosclerotic plaque formation. Samuel et al. compared the
atherosclerosis lesion in germ-free apoE-/- animals with those
raised in conventional environment, and they found no
evident difference [75]. Alternatively, with the help of antibi-
otics to suppress gut microflora, choline-enhanced atheroscle-
rosis in aorta was off-set along with reduced macrophage and
scavenger receptor CD36 [76]. However, given the complexity
of enteric flora, the pro- or antiatherosclerosis role of gut
microbiota depends. Kasahara and his colleagues demon-
strated that Roseburia intestinalis is capable of ameliorating
atherosclerosis by shaping gene expression, enhancing fatty
acid metabolism, and reducing the inflammatory response
[77]. However, treatment with butyrate markedly mitigates
the formation of atherosclerotic plaques via the upregulation
of ABCA1 and subsequent cholesterol efflux [78]. In contrast,
the production of TMAO by gut microbiota yields negative
effects on atherosclerosis [79].

Rupture of the atherosclerotic plaque would likely cause
arterial thrombus elsewhere, resulting in detrimental conse-
quences. For one, the LPS-TLR pathway is a m4ajor contrib-
utor in thrombosis formation. Both TLR2 and TLR4 were
found expressed on endothelial cells and platelets. Activation
of TLR2 and TLR4 pathway would facilitate the release of
VWEF and factor VIII expression, contributing to platelet-
proinflammatory cell aggregation [80]. For another, gut
microbiota metabolites take part in arterial thrombosis as
well. Feces transplantation of TMAO-rich gut microbiota
into germ-free mice would promote platelet function and
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TABLE 2: Researches of gut microbiota in CVDs.
Diseases Sample Observations Mechanism Ref.
HTN patients Decreased butyrate-producing bacteria and butyrate level SCFA-dependent [62]
Ang-II Reduced BP after butyrate administration; increased SCFA-dependent; gut barrier
pretreated . . [65]
. zonulin level dysfunction
mice
Hypertension Mice Increased BP after propionate treatment Olfr78-dependent [66]
Mice Decreased BP after propionate treatment Gpr41-dependent [66]
Lactobacillus rhamnosus GG prevents HTN development Reduced TMAO levels [70]
Mice High salt-induced HTN Increased 1ptest1nal—der1ved (72]
corticosterone
Patients Bacterial DNA observed in atherosclerotic plagues / (73]
Alter gene expression, induce fatty
Roseburia intestinalis ameliorates atherosclerosis acid metabolism, and reduce [77]
inflammation response
Atherosclerosis  apoE-/- mice Con}parable athelhrosclerosmllesmn in .germ-free apoE-/- / [75]
animals and their conventionally raised counterparts
Choline-enhanced atherosclerosis in aorta was off-set by ~ Reduced macrophage and scavenger [76]
antibiotics receptor CD36
apoE-/- mice i . . Upregulation of ABCAI and
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arterial thrombosis [81]. Recently, another gut microbial
metabolite, Phenylacetylglutamine (PAGIn), was shown to
induce hyperreactivity of platelet via adrenergic receptors [82].

3.3. Myocardial Infarction. The connection between intesti-
nal flora and myocardial infarction (MI) has been supported
by a growing body of literature. In a rat model of acute
myocardial infarction (AMI), enrichment of the Synergistetes
phylum, Lachnospiraceae family, Spirochaetes phylum,
Syntrophomonadaceae family, and Tissierella and Soehngenia
genera was observed compared with the sham group, which
is in parallel with gut barrier impairment [83]. In patients
with ST-elevation myocardial infarction (STEMI), systemic
microbiome alteration was also observed. Over 12% of
plasma bacteria were identified to originate from the gut after
STEMI, which is partially associated with the inflammatory
response [84]. Accordingly, reduced cardiac damage and
decreased inflammation were noticed following the abroga-
tion of bacterial translocation [84]. Of clinical value, plasma
TMAO levels may be potential markers to predict the risks
of incident cardiovascular events in patients presenting with
chest pain [85]. Such potency may in part be explained by
TMAO-related proinflammatory monocyte augmentation
[85]. Moreover, Tang et al. demonstrated that gut microbiota-
derived SCFAs would benefit cardiac repair and improve
post-MI outcome though modulation of immune composition
[86]. With the administration of the probiotic Lactobacillus
plantarum 299v, the leptin level in blood was reduced, leading
to enhancement of ischemic tolerance in the myocardium and
alleviation of acute cardiac injury after MI [87].

3.4. Heart Failure. As an irreversible end-stage disease, heart
failure (HF) is characterized by oedema and dyspnoea, with a
five-year mortality rate of over 50% [88]. At present, a grow-
ing body of research has confirmed the “gut hypothesis of
heart failure” [89, 90]. That is, decreased cardiac output in
HF leads to intestinal mucosa barrier damage and dysbacter-
iosis, with elevated levels of pathogenic bacteria such as
Candida [91] and reduced levels of anti-inflammatory bacte-
ria such as Faecalibacterium prausnitzii [3]. Reciprocally,
intestinal flora promotes HF development by participating
in mucosal immunity modulation [3]. Segmented filamen-
tous bacteria can stimulate the secretion of IL-6 and IL-23
and then promote the differentiation of Th17 cells. Bacter-
oides fragilis increases the abundance of Foxp3+ Treg cells
and induces the secretion of anti-inflammatory cytokines,
which have been found to reduce ventricular remodelling in
MI mice [92].

Not surprisingly, metabolites of intestinal flora are also
important for HF. Although studies concerning SCFAs and
HF are limited, it has been proven that SCFAs are beneficial
for the intestinal mucosa [3]. The depletion of SCFAs would
result in intestinal barrier destruction, which then facilitates
the translocation of endotoxin into blood circulation and
finally leads to HF [93, 94].

However, the level of TMAO has long been recognized as
a risk factor. Savi et al. found that TMAO promotes the
release of calcium ions in cardiac muscle cells of healthy mice
and thus alters their contractility [95, 96]. Recently, the in-
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depth work carried out by Jin et al. showed that TMAO
confers detrimental effects on adult cardiomyocytes by
inducing T-tubule network damage and Ca handling dys-
function [97]. When TMAO was administered to HF mice,
Organ et al. found that mouse cardiac function deteriorated
significantly, characterized by pulmonary oedema, cardiac
enlargement, and decreased ejection fraction [98]. Schuett
et al. proved that TMAO could enhance patient susceptibility
to HF by increasing myocardial fibrosis [99]. Likewise, Wang
and his team proved that 3,3-dimethyl-1-butanol (DMB)
ameliorates adverse cardiac structural remodelling in
overload-induced HF mice by downregulating TMAO levels
[100]. Given the critical role of TMAO in HF, it may serve as
a potential therapeutic target.

3.5. Arrhythmia. Arrhythmia, including atrial fibrillation
(AF), ventricular arrhythmia (VA), and atrioventricular
block, is emerging as intractable CVD that contributes to
heart failure or sudden cardiac death. Up-to-date studies
have shown that anticancer therapies may induce cardiotoxi-
cities, such as corrected QT interval prolongation and
arrhythmia [101]. Additionally, Vahdatpour et al. found that
atrial arrhythmia can be secondary to chronic lung disease-
associated pulmonary hypertension [102]. Due to its preva-
lence and accompanying adverse events, investigation about
arrhythmia has deepened, and we are now looking at the
implications between gut microbiota and arrhythmia.

Zuo et al. previously identified variable metabolic patterns
as well as imbalanced gut microbiota composition in patients
with AF in which Ruminococcus, Streptococcus, and Enterococ-
cus significantly increased while Faecalibacterium, Alistipes,
Oscillibacter, and Bilophila obviously reduced [103]. Later,
they found that patients with persistent AF (psAF) shared a
great proportion of common features of gut microbiota
dysbiosis [104]. In their latest study, the fecal microbiota from
patients with psAF and those with paroxysmal AF were
investigated, verifying a similar pattern of gut microbiota, with
similar ratios of Firmicutes to Bacteroidetes [105].

Svingen et al. conducted a study in thousands of patients
with suspected stable angina and proposed that plasma
TMAO levels are definitely related to AF [106]. It is well
known that thrombi can easily take place in the left atrial
appendage of patients with AF, which then leads to embo-
lism. Gong et al. found that in patients with AF, elevated
TMAO levels are related to thrombus formation, manifested
as platelet hyperreactivity [107]. It has been confirmed that
the cardiac autonomic nervous system (CANS) can regulate
the pathophysiology of AF or VA [108]. Meng et al. first
proposed that preserving dysbacteriosis or modulating
metabolites such as TMAO may be a target to treat arrhyth-
mia due to the ability of TMAO to stimulate CANS and
deteriorate ischaemia-induced VA by releasing proinflam-
matory markers such as IL-1 and TNF-« [109]. Similarly,
according to the experiment of Yu et al.,, gut microbes have
the ability to counteract AF progression by producing TMAO
and can thus activate CANS in a rapid atrial pacing-induced
canine AF model [110]. Likewise, in a propionate-treated
hypertensive mouse model, the susceptibility to cardiac
ventricular arrhythmias was significantly reduced, indicating
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possible links between SCFAs and arrhythmia development
[22]. Although the connection between gut microbiota and
arrhythmia has been established, the precise underlying mech-
anisms still await further investigation (Table 2).

4. Microorganism-Targeted Therapies

4.1. Fecal Microbiota Transplantation. As an effective
approach to directly introduce intestinal flora, fecal microbiota
transplantation (FMT) has gained much attention. The thera-
peutic value of FMT in gastrointestinal diseases, neurological
and psychiatric disorders, and immunology regulation has
been extensively examined [22, 111, 112]. However, studies
concerning its application in CVDs are limited. Although oral
supplementation of resveratrol has been proven to improve
glucose homeostasis by altering gut microbiota, in the work
of Kim and his colleagues [113], FMT from resveratrol-fed
mice to obese mice was found to yield better results than oral
administration of resveratrol alone, indicating that FMT is
more straightforward and direct. Moreover, Hu et al. showed
that FMT could abolish the increased proportion of Firmicu-
tes/Bacteroidetes, diminish inflammatory infiltration in cardi-
omyocytes, and thereby attenuate myocarditis in mice [5].
However, in a double-blind trial involving 20 patients, the
composition of intestinal flora was altered in the recipients
after FMT from vegetarians, whereas the vasculitis indicators
presented no improvement [114]. There are also disadvan-
tages to FMT. For instance, endotoxins are transferred along
with the donor microbiome. How to weigh the pros and cons
of actual practice is still an issue to be addressed. To guarantee
the reliable and smooth application of FMT in clinical use, the
establishment of stool banks is on its way.

4.2. Probiotic Administration. Among the numerous bacteria
residing in the host intestine, some are beneficial. An extra
boost of these bacteria would probably bring positive results,
thus leading to the application of probiotics. In a meta-
analysis involving 846 individuals with hypertension, mild
reductions in blood pressure, body mass index (BMI), and
blood glucose levels were observed after probiotic administra-
tion, supporting the beneficial role of probiotics in blood
pressure control [115]. Similarly, in other studies with sponta-
neously hypertensive rats, the probiotics Bifidobacterium breve
and Lactobacillus fermentum were found to elicit antihyper-
tensive effects by restoring gut microbiota balance and
preventing endothelial dysfunction [116], whereas long-term
supplementation with kefir ameliorated high blood pressure
via improvement in intestinal integrity [117]. Moreover, in
apoE-/- mice fed with HFD, supplementation with Lactobacil-
lus rhamnosus GR-1 markedly reduced atherosclerotic lesion
size by alleviating oxidative stress and inflammation [118].
Likewise, Lactobacillus plantarum ZDY04 has been shown to
downregulate serum TMAO levels, which is a critical factor
contributing to atherosclerosis development [119].

4.3. Herbal Medicine. Traditional Chinese medicine (TCM),
which mainly utilizes herbs and their extracts, has recently
been demonstrated to treat CVDs via intestinal microbial
modulation. Ou et al. reviewed and summarized the mecha-

nisms of gut flora in TCM’s theory of “stasis of intermingled
phlegm and blood stasis” [120]. For example, the fact that
TMAO promotes thrombosis might be one of the major
causes of CVDs [121]. Anlu et al. showed that berberine
originating from the Chinese herb Coptis chinensis has the
ability to regulate the “microbiota-metabolism-immunity”
axis [122]. Moreover, resveratrol derived from Polygonum
cuspidatum was demonstrated to attenuate TMAO-induced
atherosclerosis in apoE-/- mice by remodelling microbiota
as well as decreasing TMAO and BA levels [123]. In addition,
Ghosh et al. found that curcumin, a phytochemical compo-
nent of Curcuma longa, attenuates atherosclerosis in LDLR-
/- mice by regulating intestinal barrier function [124]. Anwar
et al. showed that Trigonelline, which is purified from the
seeds of Trigonella foenum-graecum, can inhibit the growth
of Citrobacter freundii and subsequently decrease the
production of TMAOQ in mice [125].

5. Conclusion

Evidence from a compilation of studies of animals and
humans indicates that the implications of gut microbiota
and their metabolites in CVDs are well established. With
high-throughput technologies, verification of the intestinal
flora composition and in-depth mechanistic exploration are
accessible. However, the links between gut microbiota and
disease development are so complex that they involve
immune regulation, the inflammatory response, gut barrier
integrity, metabolic homeostasis, etc. Further investigations
into the specific mechanisms are needed, which then share
the possibility of being transferred into clinical practice.
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