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Abstract.  Prostaglandin F2α (PGF2α) induces luteolysis in cows and causes infiltration of immune cells, which resembles 
inflammatory immune response. Since the general immune response is mediated by the lymphatic system, we hypothesized 
that luteolysis is associated with generation of an immune response that involves lymphatic vessels in the bovine corpus 
luteum (CL). The CL was obtained from Holstein cows at the mid-luteal phase (days 10–12, ovulation = day 0) by ovariectomy 
at various time points after PGF2α injection. Lymphatic endothelial cell (LyEC) marker, endothelial hyaluronan receptor 1 
(LYVE1), levels decreased significantly 12 h after PGF2α injection. Podoplanin, another LyEC marker, decreased from 15 
min after PGF2α injection. PGF2α also diminished mRNA expression of lymphangiogenic factors, such as vascular endothelial 
growth factor (VEGF) C, VEGFD and VEGF receptor 3 (VEGFR3). During PGF2α-induced luteolysis, the levels of mRNA 
expression of tumor necrosis factor α (TNFα; the major pro-inflammatory cytokine) and chemokine (C-X-C motif) ligand 
1 (neutrophil chemokine) were increased. On the other hand, chemokine (C-C motif) ligand 21, which regulates outflow of 
immune cells from tissues via the lymphatic vessels during an immune response, was decreased. This study demonstrated that 
the lymphatic network in the CL is disrupted during luteolysis and suggests that during luteolysis, immune cells can induce a 
local immune response in the CL without using the lymphatic vessels.
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The corpus luteum (CL) is a complex ovarian organ consisting 
of vascular endothelial, steroidogenic and immune cells. The 

luteolytic cascade of the bovine CL is primed by the pulsatile release 
of uterine prostaglandin F2α (PGF2α). The decrease in progesterone 
concentrations is closely followed by a structural degeneration of 
vasculature and apoptosis of steroidogenic cells [1, 2]. In the CL, 
the expression of vascular endothelial growth factor (VEGF) A, the 
most common angiogenic factor, was shown to be downregulated by 
PGF2α injection [3, 4], suggesting that PGF2α inhibits the angiogenic 
process in the regressing CL. Additionally, endothelin-1 (EDN1) and 
angiotensin (Ang) II, strong vasoconstrictive factors, were shown to 
be associated with the process of luteal regression in ruminants [5–8]. 
Furthermore, PGF2α upregulated the expression of EDN1 and Ang 
II in vivo and in vitro [5–8], resulting in intensive vasoconstriction 
and disruption of oxygen and nutrient supply during luteolysis.

The immune response also plays an essential role in luteolysis 
[9–11]. Leukocytes such as T lymphocytes, macrophages and neutro-
phils infiltrate the CL and produce different cytokines including tumor 

necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ and 
monocyte chemoattractant protein 1 (MCP1) during CL regression 
[10, 12–21, 22]. TNFα is secreted by activated macrophages and 
has been implicated in neutrophil and monocyte recruitment to 
inflammatory sites [23–27]. Spontaneous or PGF2α-induced luteolysis 
are associated with a significant rise in intraluteal TNFα as shown in 
previous studies by using a CL microdialysis system [28]. Moreover, 
TNFα induces apoptotic death of steroidogenic and endothelial 
cells in vitro [11, 29, 30]. In short, the luteolytic phenomenon is 
an inflammatory-like immune response characterized by a massive 
recruitment of leukocytes and high production of cytokines.

The cardiovascular circulatory system consists of a tree-like 
hierarchy of vessels formed from a primitive vascular network. 
The lymphatic system is a distinct type of vascular system present 
in most organs of the body. Lymphatic endothelial cells (LyECs) 
form the vessels that drain the interstitial fluid from the tissues 
back into venous circulation after passage through the lymph node 
network [30, 31]. The lymphatic system also plays a crucial role in 
an immune response to infectious agents. LyECs act as a gatekeeper 
that controls immune cells, such as dendritic cells and macrophages, 
during migration from tissues to lymph nodes. Lymphatic drainage 
is essential for the recirculation of lymphocytes, allowing access of 
professional antigen-presenting cells to lymph nodes [32, 33]. During 
inflammation and infection, the number of dendritic cells reaching the 
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lymph nodes drastically increases [34–36]. We recently reported the 
expression of lymphatic vessel markers, such as lymphatic endothelial 
hyaluronan receptor 1 (LYVE1) and podoplanin, in the bovine CL 
[37], suggesting that luteolysis involves the immune response by 
increasing the number of immune cells that traverse the lymphatic 
vessels into the CL.

This study aimed to evaluate the lymphatic system, including 
lymphatic vessel-related factors and cytokines in the CL, at different 
time points following PGF2α-induced luteolysis.

Materials and Methods

CL collection was conducted at the Clinic for Cattle of the 
University of Veterinary Medicine Hannover, Germany. The ex-
perimental procedures complied with the guidelines of the Ethics 
Committee on Animal Rights Protection of Oldenburg, Germany, 
in accordance with the German legislation on animal rights and 
welfare. The protocol was approved by the committee on the Ethics 
of Animal Experiments of the University of Veterinary Medicine 
Hannover (permit number: 33.9-42502-04-07/1275).

PGF2α-induced luteolysis
For collecting CLs during luteolysis, 29 normal cyclic German 

Holstein cows were used in this study. The day of estrus was designated 
Day 0. Cows (n = 4–5 for each time point) at the mid-luteal phase 
(days, 10–12) were injected with PGF2α via the intramuscular route (0 
min; 0.5 mg of cloprostenol, 2.0 ml EstrumateTM, Essex Tierarznei, 
Munich, Germany), and ovaries were collected by ovariectomy [3] 
through the vagina before PGF2α injection (0 min), and at 15 min, 
30 min, 2 h and 12 h after injection.

Processing of the corpus luteum
The CL was enucleated from the ovary and dissected, free of 

connective tissues, as described previously [38]. The CL tissue samples 
were then minced, immediately placed into a 1.5-ml microcentrifuge 
tube with or without 0.4 ml of TRIzol reagent (Invitrogen, Karlsruhe, 
Germany) and stored at –80 C until analysis.

RNA extraction, cDNA synthesis and reverse-transcription 
quantitative PCR

Total RNA was extracted from the CL following the protocol of 
Chomczynski and Sacchi [39] using TRIzol reagent, treated with 
DNase using a commercial kit (Promega, Madison, WI, USA) and 
frozen at –20 C in THE RNA Storage Solution (Ambion, Austin, 
TX, USA). The cDNA was synthesized as previously described [40]. 
The levels of mRNA expression of LYVE1, podoplanin, VEGFR3, 
VEGFC, VEGFD, TNFα, CXCL1, CCL21 and β-actin were quantified 
by reverse-transcription quantitative polymerase chain reaction 
(RT-qPCR) as previously described [40]. RT-qPCR reactions were 
performed in duplicate in a final volume of 10 μl containing 5 μl of 
QuantiTectTM SYBR Green PCR Buffer (QIAGEN GmbH, Hilden, 
Germany), 2.8 μl of H2O (Sigma, St. Louis, MO, USA), 0.1 μl of 
50 μM forward and reverse primers (Table 1 lists primer sequences 
and accession numbers) and 2 μl of cDNA template or water (as a 
non-template negative control). RT-qPCR conditions were 10 min at 
95 C, followed by 40 cycles of 95 C for 15 sec, 56 C for 30 sec and 

72 C for 30 sec using a LightCycler (Roche Diagnostics, Mannheim, 
Germany). The PCR products were resolved by electrophoresis, and 
the target bands were cut out and purified using a DNA purification 
kit (SUPRECTM-01, Takara Bio, Otsu, Japan). The mRNA expres-
sion levels in the CL were normalized using β-actin as an internal 
standard. Each PCR amplification product was sequenced using an 
Applied Biosystems 3730 × l DNA Analyzer (Applied Biosystems, 
Foster City, CA, USA).

Western blotting
The CL tissue samples were homogenized in lysis buffer contain-

ing 25 mM Tris-HCl (pH 7.4), 0.3 M sucrose, 2 mM Na2EDTA 
and cOmplete Protease Inhibitor Cocktail (Roche Diagnostics, 
Mannheim, Germany), and then filtered with a 70-µm filter (Cell 
Strainer, REF 352350, BD Falcon, Franklin Lakes, NJ, USA). The 
proteins were dissolved in sample buffer (0.5 M Tris-HCl [pH 6.8], 
glycerol, 10% SDS and 0.5% bromophenol blue) and steamed for 5 
min. The entire samples were subjected to electrophoresis on 10% 
SDS-PAGE gels for 50 min at 200 V. The proteins were transferred 
to PVDF membranes (Bio-Rad Laboratories, Hercules, CA, USA) 
for 2 h at 60 V. The membranes were blocked with 4% Block Ace 
Powder (DS Pharma Biomedical, Osaka, Japan) in TBS with 0.5% 
Tween-20 (Sigma) for 1 h at room temperature. The membranes were 
next incubated with a rabbit anti-mouse-LYVE1 polyclonal antibody 
(1:500 dilution, Abcam, Cambridge, UK) and a mouse anti-β-actin 
monoclonal clone AC-15 antibody (1:10,000 dilution, Sigma) at 4 
C overnight. The membranes were then washed 3 times in TBS with 
0.5% Tween-20, incubated with HRP-conjugated anti-rabbit (1:10,000 
dilution, Rockland Immunochemicals, Gilbertsville, PA, USA) or 
anti-mouse (1:10,000 dilution, GE Healthcare, Buckinghamshire, 
UK) IgG antibodies for 1 h at room temperature, and washed 3 times 
with TBS with 0.5% Tween-20. The signals were detected using 
an ECL Western Blotting Detection System (GE Healthcare). The 
optical densities of the immunospecific bands were quantified using 
an NIH Image computer-assisted analysis system.

Statistical analysis
All data are presented as means ± standard error of the mean (SEM). 

The statistical significance of differences was assessed by one-way 
analysis of variance (ANOVA) followed by Bonferroni’s multiple 
comparison. A P value less than 0.05 was considered significant.

Results

mRNA expression of LYVE1 and podoplanin and LYVE1 
protein expression in the bovine CL during PGF2α-induced 
luteolysis

Figure 1 shows the mRNA expression of LYVE1 and podoplanin 
(markers of LyECs) and LYVE1 protein expression in the bovine 
CL during PGF2α-induced luteolysis (15 min, 30 min, 2 h and 12 h 
after PGF2α injection). The level of LYVE1 mRNA expression did 
not change from 0 min to 2 h, but decreased at 12 h compared with 
those at 15 min and 2 h after PGF2α injection (Fig. 1A; P<0.05). 
Lowered expression of LYVE1 protein was found for the first 2 h 
(P<0.1), and the expression was decreased 12 h after PGF2α injection 
(Fig. 1B; P<0.05). Lowered Podoplanin mRNA expression was 
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Table 1. Primer sequences for the investigated genes

Gene Primer sequence Accession No. Product size (bp)
LYVE1 FWD AGG TTG AAG AAG CAC GGA AA NM_205815 231

REV AGG GAT CAT CGG TGG TGA TA
Podoplanin FWD TGG CTA CGG AGC TTT TTC AT ENSBTAT 291

REV CAC ACC CAG GGT TGT TTT CT 0000002341
VEGFR3 FWD TGA GGA TAA AGG CAG CAT GGA AF030379 66

REV CCC AGA AAA AGA CAG CGA TGA
VEGFC FWD CTC AAG GCC CCA AAC CAG T NM_174488 71

REV CAT CCA GCT TAG ACA TGC ATC G
VEGFD FWD GGA GAA TGC CTT TTG AAC CA NM_001101043 272

REV CCA GTC CTC GAA GTG TGT GA XM_590821
TNFα FWD TAA CAA GCC GGT AGC CCA CG K_00622 221

REV GCA AGG GCT CTT GAT GGC AGA
CXCL1 FWD CTA TTT TTG GGG AGA GGG TAT TCC U66096 94

REV CGT GAC CTA TCT GTT TGC TTG AAAC C
CCL21 FWD AGT TGC GCT ATG CCA GCT AT NM_001038076.2 184

REV TTC CCT TCT TGC CAG ACT TG
β-actin FWD CCA AGG CCA ACC GTG AGA AGA T K00622 256

REV CCA CGT TCC GTG AGG ATC TTC A

Fig. 1. mRNA expression of LYVE1 and podoplanin and LYVE1 protein in the bovine CL during PGF2α-induced 
luteolysis. LYVE1 mRNA expression decreased in the CL at 12 h as compared with 15 min and 2 h after PGF2α 
injection (A). LYVE1 protein expression also decreased at 12 h compared with that at 0 min after PGF2α injection 
(B). Podoplanin mRNA expression was decreased in the CL at all points after PGF2α injection (C). All values are 
shown as means ± standard error of the mean (SEM; n = 4–5 in each time). *,** Significant difference (P<0.05 
or P<0.01 compared with control) as determined by Bonferroni’s multiple comparison test. # Tendency for a 
difference (P<0.1) as determined by Bonferroni’s multiple comparison test.
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found at 15 min, but the expression tended to recover after that up 
until 12 h after PGF2α injection (Fig. 1C; P<0.01, P<0.05 or P<0.1).

mRNA expression of lymphangiogenic factors in the bovine CL 
during PGF2α-induced luteolysis

Changes in the transcripts of lymphangiogenic factors (VEGFC, 
VEGFD and VEGFR3) in the CL during PGF2α-induced luteolysis 
are shown in Fig. 2. The levels of VEGFC and VEGFR3 mRNA 
expression were continuously suppressed after PGF2α injection (Figs. 
2A and C; P<0.01 or 0.05). VEGFD mRNA expression decreased at 15 
min to 2 h as compared with 0 min after PGF2α injection (P<0.1) and 
decreased significantly 12 h after PGF2α injection (Fig. 2B; P<0.05).

mRNA expression of TNFα, CXCL1 and CCL21 in the bovine 
CL during PGF2α-induced luteolysis

TNFα mRNA expression increased significantly in the CL at 15 and 
30 min and 2 h as compared with 0 min after PGF2α injection (Fig. 
3A; P<0.01 or 0.05). Chemokine (C-X-C motif) ligand 1 (CXCL1) 
enhances the recruitment of neutrophils and acts as a mediator of 
inflammation during the early wound healing process [41, 42]. 
CXCL1 mRNA expression also increased at 15 min (P<0.1) and 
was higher at 30 min and 2 h (P<0.01 or 0.05) as compared with 0 
min after PGF2α injection (Fig. 3B).

Chemokine (C-C motif) ligand 21 (CCL21) is involved in modula-
tion of inflammatory responses and may play a role in the migration 
of leukocytes from peripheral tissues through afferent lymphatic 
vessels. CCL21 mRNA expression decreased at 15 min, 2 h and 12 
h after PGF2α injection compared with the expression level at 0 min 
(Fig. 3C; P<0.1 or P<0.05).

Discussion

It is well known that cell death of luteal endothelial cells is induced 
during luteolysis, which is called structural luteolysis. The treatment 
with PGF2α resulted in a downregulation of fibroblast growth factor 
(FGF)-2 mRNA expression and mRNA and protein expression of 
VEGFA, which are potent angiogenic factors in the CL [3, 4]. In 
the CL, PGF2α decreased angiopoietin (ANPT) 1 mRNA expression 
[43] and stimulated a high level of angiopoietin ANPT 2 in relation 
to ANPT1, inducing the destabilization of blood vessels [3]. The 
presence of VEGFA may also define the fate of destabilized blood 
vessels [44], and thus a deficiency in VEGFA may result in the 
disruptive destabilization of blood vessels after PGF2α injection. The 
lymphatic vascular system has a role in the body’s circulation system 
together with blood vessels, but there have been no studies about the 
changes of the lymphatic network in the CL during luteolysis. This 
study showed for the first time that lymphatic vessel markers, such 
as LYVE1 and podoplanin, and lymphangiogenic factors, such as 
VEGFC, VEGFD and VEGFR3, were downregulated in luteolysis. 
Interestingly, VEGFA and FGF2 have potent lymphangiogenic activity 
[45, 46]. Additionally, ANPT-1 resulted in lymphatic endothelial cell 
proliferation, lymphatic vessel enlargement, sprouting and branching 
in vivo [47] and promoted survival and proliferation of LyECs in vitro 
[48]. Thus, these findings suggest that luteolytic PGF2α downregulates 
the production of vascular-related factors, resulting in destruction of 
the vascular system through angiolysis and lymphangiolysis in the 

CL during luteolysis. Berisha et al. [49] showed that the number of 
VEGFR-3-immunostained large luteal cells significantly decreased 
in the bovine CL during regression (day>18). Immunohistochemical 
observation of lymphatic vessels markers in the CL after luteolysis 
is required to clarify how the luteal lymphatic structures disintegrate 
during PGF2α-induced luteolysis.

During luteolysis, leukocytes, especially neutrophils, macrophages 
and T lymphocytes, significantly increase in number in the CL [10, 
14, 21, 22, 50]. Pro-inflammatory cytokines such as TNFα, IL-1β 

Fig. 2. mRNA expression of VEGFC, VEGFD and VEGFR3 
in the bovine CL during PGF2α-induced luteolysis. 
mRNA expressions of VEGFC (A), VEGFD (B) and 
VEGFR3 (C) started to decrease at 15 min after PGF2α 
injection and then remained at, then kept low levels. 
All values are shown as means ± standard error of the 
mean (SEM; n = 4–5 in each time). *,**Significant 
difference (P<0.05 or P<0.01 compared with control) 
as determined by Bonferroni’s multiple comparison 
test. #Tendency for a difference (P<0.1) as determined 
by Bonferroni’s multiple comparison test.
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and IFNγ and chemokines such as MCP1 and IL-8 are associated 
with luteal regression [3, 13, 14, 51, 52]. These findings suggest 
that the luteolytic phenomenon is an inflammatory-like immune 
response. Accordingly, we hypothesized that various immune cells 
promote an immune response involving the lymphatic vessels 
during luteolysis in the CL. The immune cells that enter sites of 
inflammation, such as neutrophils, dendritic cells and macrophages, 
migrate from tissues and travel to lymph nodes through peripheral 
afferent lymphatic vessels [33, 34, 36, 53–55]. In the lymph nodes, 
dendritic cells present antigens to T cells, and in the case of immune 

response, this leads to the clonal expansion and differentiation of 
antigen-specific T cells. These T cells recirculate from the lymph 
nodes to inflammatory peripheral tissues through the blood vessels, 
resulting in an effective immune response through the lymphatic 
vessels and lymph nodes, which is called lymphocyte homing. In 
this process, the homeostatic chemokine CCL21 plays an important 
role of regulating outflow of immune cells from tissue. With regard 
to the exit of leukocytes from peripheral tissues through afferent 
lymphatic vessels, the expression of homeostatic chemokine CCL21 
by dermal afferent lymphatic vessels is essential in guiding naïve T 
cells, dendritic cells and neutrophils [32, 56, 57]. In the CL during 
luteolysis, CCL21 mRNA expression was decreased. Additionally, 
the decrease in the expression of lymphatic vessel-related factors 
suggests the loss of lymphatic vessels in the CL during luteolysis. 
Thus, luteolysis may be a local, not systemic, inflammatory-immune 
response that does not utilize lymphatic vessels and lymph nodes.

In summary, expression of lymphatic cell markers and lymphan-
giogenic factors dramatically decreased in the CL during luteolysis, 
suggesting that the lymphatic network is disrupted in the CL during 
luteolysis, as well as the vascular structure.
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