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ABSTRACT

Motivation: Gene regulation commonly involves interaction among
DNA, proteins and biochemical conditions. Using chromatin
immunoprecipitation (ChIP) technologies, protein–DNA interactions
are routinely detected in the genome scale. Computational methods
that detect weak protein-binding signals and simultaneously maintain
a high specificity yet remain to be challenging. An attractive approach
is to incorporate biologically relevant data, such as protein co-
occupancy, to improve the power of protein-binding detection. We
call the additional data related with the target protein binding as
supporting tracks.
Results: We propose a novel but rigorous statistical method to
identify protein occupancy in ChIP data using multiple supporting
tracks (PASS2). We demonstrate that utilizing biologically related
information can significantly increase the discovery of true protein-
binding sites, while still maintaining a desired level of false positive
calls. Applying the method to GATA1 restoration in mouse erythroid
cell line, we detected many new GATA1-binding sites using GATA1
co-occupancy data.
Availability: http://stat.psu.edu/∼yuzhang/pass2.tar
Contact: yuzhang@stat.psu.edu

1 INTRODUCTION
Understanding the association between protein occupancy and the
target gene expression is essential to study the mechanism of
gene regulation. The first step is to identify the protein-binding
sites in the genome. Current chromatin immunoprecipitation (ChIP)
technologies coupled with microarray hybridization (ChIP-chip)
or parallel DNA sequencing (ChIP-seq) enable the identification
of transcription factor-binding sites in vivo in the genome-wide
scale. Many computational methods have been developed to
detect transcription factor occupancy from ChIP-chip and ChIP-
seq data, which we refer to as peak calling. Making choices
of program parameters and choosing significance thresholds to
accurately control genome-wide false positives (FPs), however, is
often difficult. We have previously developed a statistical method
(Zhang, 2008) that can precisely control the expected number of
genome-wide FP peak calls in the context of correlated multiple
comparisons. With FPs controlled, it is further desired to improve
the peak calling methods to reduce false negative instances.

Gene regulation is a complex process that usually involves the
cooperation of multiple transcription factors, which may interact
to form a regulatory module that binds to a DNA segment to
regulate their target gene’s expression. Certain histone modifications
may also play crucial roles in regulatory mechanisms (Heintzman
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et al., 2007; Muller et al., 2002). The binding potential of a target
transcription factor, therefore, can be partially learned from the co-
binding proteins and features that jointly participate in a regulatory
module within the cell. As the prevalent ChIP technologies increase
the need for analyzing ChIP-chip and ChIP-seq data, several studies
have made efforts to utilize multiple biological features into ChIP
data analysis. For example, methods have been developed for
segmenting the genomic regions into active intervals of interest
(Day et al., 2007; Du et al., 2006). Few methods for peak calling,
however, have incorporated the joint effects of related biological
features while detecting binding sites for a target protein. Datta and
Zhao (2008) have proposed a method that uses a log-linear model
to infer co-binding associations between two or more transcription
factors. Their method is a post-processing algorithm that takes the
P-values from existing peak calling algorithms as input, but cannot
incorporate general types of data.

In this article, we propose a novel yet rigorous method that
accounts for the co-binding information and relevant biological
features to detect DNA occupancy of a target protein from ChIP data.
Without assuming distributions of the related biological features,
which we call supporting tracks, we first use a logistic regression
model to describe the correlation between the binding of the target
protein and the supporting tracks. The output is the probability
of each position being potentially occupied by the target protein,
predicted by the supporting tracks. We then introduce a varying
threshold method to call significant peaks from the ChIP data of
interest, where the threshold for each probe is adjusted by its
predicted probability of protein binding. Our approach is similar
to that of a Bayesian method that incorporates prior knowledge of
protein binding into the analysis. Different from Bayesian methods,
we still control the family wise FP rate, or false discovery rate (FDR)
(Benjamini and Hochberg, 1995), at a user-specified level. Our
varying threshold method, called PASS2, is a generalization from
the PASS algorithm (Zhang, 2008), and is related with conditional
test in statistics (Cox and Hinkley, 1979).

Using simulation studies and real datasets of GATA1 binding in a
mouse erythroid regulation study (Cheng et al., 2009), we show that
the proposed method can identify many more GATA1-binding sites
than using the target ChIP data alone, when the FDR is controlled
at a common level. Our study shows that the proposed framework
is robust with respect to irrelevant supporting data added to the
model. The additional binding sites detected by incorporating the
related biological features are potentially real GATA1-binding sites,
many of which are either experimentally verified or enriched near
RefSeq Genes (Pruitt et al., 2007). To our best knowledge, the
proposed method is the only algorithm that incorporates multiple
sources of information in peak calling to improve the power of
detecting weak protein-binding signals, and simultaneously, our
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method controls a user-specified FP level adjusting for millions of
correlated comparisons.

2 METHODS
We assume the ChIP data of interest and the supporting tracks are generated
by independent experiments. We first map all tracks of data onto a common
coordinate represented by tiling probes. Here, we use the term ‘probe’ to
represent a short genomic interval (≤100 bp) that corresponds to the probes
used in ChIP-chip experiments. A probe for ChIP-seq experiments and for
other types of data can be arbitrarily defined. To convert each track of data
into probe statistics, we calculate a standardized value (ti) at each probe i by
taking the average value of the original data (xj) within the probe interval,
and dividing the average value by its SD. The SD is calculated as the SD
(σ) of all data in the track divided by the square root of the number of data
points (w) within the probe interval:

ti = 1

σ/
√

w

∑
j=probi

xj/w. (1)

For computational efficiency and model robustness, we further apply
discretization methods to convert the continuous values of supporting tracks
into ordinal bins. We then apply a logistic regression model to compute
the binding probability of each probe being occupied by the target protein,
using the binned supporting data as predictors and a list of known or
highly probable binary binding sites of the protein as the response. We use
permutation to evaluate the relevance of supporting tracks, and we discard
insignificant tracks. We finally calculate a probe-specific threshold for each
probe according to the calculated binding probabilities. We use the probe-
specific thresholds to call significant peaks from the ChIP data of interest. A
flow chart of our method is shown in Figure 1.

2.1 Discretization methods
To efficiently represent a large number of unique values generated by the
genome-wide arrays, we categorized continuous values of supporting tracks
into bins to reduce the size of data matrix. Binning data also improves the
robustness of binding site prediction by reducing the effects of extreme values
in the supporting data. We applied different discretization techniques and
compared their effects on the performance of peak calling. Unsupervised
discretization methods such as equal-width or equal-frequency methods, and
clustering algorithms, require a specified number of bins for discretization.
We evaluated the performance of unsupervised methods using different
number of bins. We also applied an entropy-based discretization method
that utilizes the known binding sites in a supervised manner to determine an
optimal number of bins and assignment of bins based on information content
maximization (Fayyad and Irani, 1993).

2.1.1 Equal-width and equal-freq method let k denote the number of
bins, the ‘Equal-Width’ method partitions the range of continuous values
into k intervals of equal width. The ‘Equal-Freq’ method, on the other hand,
assigns an approximately equal number of continuous values in each bin.

2.1.2 Clustering method a k-means clustering algorithm is used to assign
all continuous values into k bins. For k =2, the minimum and the maximum
values in a supporting track are used as the cluster centroids. For k >2,
the initial k cluster centroids are the values, including the minimum and
maximum values that partition the data into (k−1) bins of equal width.

2.1.3 Entropy method given a sorted array of continuous values S and a
corresponding array of binding status of the target protein, the method finds
a best cut point T that partitions the range of S into two non-overlapping
intervals. A cut point T is the midpoint between two contiguous data points
in the sorted array. For each candidate cut point T , the data are divided into

Fig. 1. Flow chart of the proposed method.

two subsets on each side of T . The class entropy of a subset Sj , where ‘class’
refers to the binding status, is defined as

Ent
(
Sj

)=
c∑

i=1

−pi log2 pi. (2)

here, c denotes the number of classes (c=2), and pi denotes the proportion
of data points in Sj that belong to class i. The entropy of a bi-partition of S
at cut point T is then defined as the weighted average of the class entropies
of subset S1 and S2:

Ent
(
S,T

)= |S1|
|S| Ent

(
S1

)+ |S1|
|S| Ent

(
S2

)
(3)

where |S| denotes the size of array S. The partition that minimizes Ent(S, T )
over all cut points T is selected as the best partition.

Define the information gain of a partition at cut point T as

Gain
(
S,T

)=Ent
(
S
)−Ent

(
S,T

)
. (4)

Our goal is to find a best split of data that maximizes the information gain. The
algorithm is applied recursively within each partitioned interval to find sub-
partitions, until some stopping criteria are satisfied. The algorithm uses the
minimum description length (MDL) as a criterion for accepting or rejecting
a given partition. The partition by a cut point T is accepted if and only if
Gain(S′, T ) > MDL(S′), where MDL(S′) is calculated as

MDL (S′ )= log2 ( |S′ |−1 )

|S′ |

+ log2 (3k −2 )−kEnt (S′ )+k1Ent (S′
1 )+k2Ent (S′

2 )

|S′ | .

(5)

here, S′
1 and S′

2 denote a best bipartition of S′, and k, k1, k2 (=1 or 2) denote
the number of distinct classes in S′, S1 and S2, respectively. The algorithm
stops when no more partitions satisfying the MDL constraints can be found.

The supporting tracks were binned individually while running the above
four discretization methods. To use the entropy-based discretization, each
track of data was sorted, and a list of known or predicted binding sites
was mapped to the probe coordinate and used as the class label c of each
data point. We only evaluated the cut points at the boundary between two
classes (boundary of binding sites), because the cut point T that minimizes
the average class entropy Ent(S, T ) is always a value between two data
points of different classes in a sorted array (Fayyad and Irani, 1993).

2.2 Prediction of potential binding
To combine information from the supporting tracks and predict the binding
locations of a target protein, we fit a logistic regression model between a
vector of binary indicators Y = (Y1,Y2,...,Yn) denoting the known binding
status of the target protein at n probes, and a data matrix X of m supporting
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tracks. Each column of X, denoted by Xi = (Xi1,Xi2,...,Xin)’, contains the
converted bin values of the i-th supporting track at n probes, for I =1,...,m.
The vector Y can be constructed from experimentally verified binding
events, previous studies of the target protein occupancy or computationally
detected sites from the current ChIP data at a stringent threshold. When
computationally detecting binding sites as the responses in training data, a
stringent FDR should be controlled so that the fitted regression model will
not be strongly biased towards FPs. We suggest using a FDR no larger than
the FDR allowed at the end of peak-calling. For example, if 10% FDR is
allowed at final peak calling, then the initial peak-calling for training should
be controlled at 10% FDR. The rationale is that, even if training peaks are
FPs, they are still allowed at final peak calling.

We model the binding events Y of the target protein at n probes as
independent Bernoulli random events with parameter π, where π denotes an
n-dim vector of binding probabilities. We model π as a function of supporting
tracks X via a logistic link function as

log

(
π

1−π

)
=β0 +

m∑
i=1

βiXi (6)

and hence

p
(
Y =1|X )=π= 1

1+e
−β0−

m∑
i=1

βiXi

(7)

where β0 denotes the baseline binding coefficient and βi denotes the
additional effect of binding contributed by the supporting data Xi.

The parameters β= (β0,...,βm) were estimated by maximum likelihood
estimation. Since the data points are generally correlated, we used
permutation test to evaluate the empirical significance of the effect of each
supporting track Xi, and we removed insignificant tracks from the model at
0.01 significance level.

2.3 Varying thresholds for peak calling
Given the effects β of supporting tracks, we can calculate a vector π of
binding probabilities of the target protein at all probes in the ChIP data. We
use the same notation π to denote the binding probability of probes in the
ChIP data, for which significant peaks are to be called, where the π used in
the previous section corresponds to the training probes that are used to fit
the logistic regression model.

We generalized the original PASS algorithm (Zhang, 2008) to utilize
the binding information predicted by the supporting tracks. By default, we
assume that the probe values in the ChIP data have been standardized to
follow a normal distribution at unbound regions. A probe (or a window
of probes) is called statistically significant if its statistic (or the average
statistic of a window) is above a threshold. Intuitively, if a probe has a
higher probability to be occupied, we may reduce its peak-calling threshold
so that the probe is easier to be called and hence reduce the chance of false
negatives. The key is to choose the probe-specific thresholds according to
the predicted binding probabilities of probes, and at the same time control
the overall number of FPs at a user-specified level.

The difficulty of controlling the overall FP rate in peak calling arises from
the fact that the probe values are locally strongly correlated. The original
PASS algorithm (Zhang, 2008) uses a de-clumping method to compensate
the positive correlations among probes, such that the total number of FPs
after de-clumping can be simply computed as a summation of the FP rate of
individual probes. We slightly modified the de-clumping method as follows:
we now call a probe significant if and only if its statistic is above a threshold
and is the maximum among probes within its neighborhood. As a result, for
all probes within any local interval, at most one probe can be called significant
(assuming no ties) under this rule, and hence the positive correlation among
probes is compensated. All theoretical treatments stated in the original PASS
paper (Zhang, 2008) still hold true under this new de-clumping scheme.
Ignoring local interference of negative correlations created by de-clumping,
and based on the fact that a probe being significant by chance is rare, we
can approximate the expected total number of FPs in the entire ChIP data

by summing over the FP rate of individual probes. It further holds true that
the family wise FP rate of peak calling, with or without de-clumping, remain
unchanged (Zhang, 2008), and hence our method can control both family
wise FP rate and FDR.

To utilize the predicted binding probabilities, and to control the overall
number of FPs at a desired level λ, we choose probe-specific thresholds
as follows. For each probe i, we calculate a threshold ti such that probe i
has probability αi =min(1,λπi/|π|) to be a FP by chance after de-clumping,
where |π| denotes to the summation of elements in π. This can be done by
calculating the significance of a range of thresholds at probe i, using the
importance-sampling algorithm proposed in PASS (Zhang, 2008). We then
use interpolation to compute ti that yields αi.

To use the varying thresholds ti in peak calling, we call a probe significant
(occupied by the protein) if its test statistics is greater than or equal to ti and
is the maximum within its neighborhood (500 bp by default). The expected
total number of FPs of all probes can therefore be approximated as∑

i
αi =

∑
i
min

(
1,λπi/|π|)≤λ

∑
i
πi/|π|=λ (8)

As a result, we can control the overall number of FP calls at a user-
defined level λ. At the same time, we gain a substantial amount of power in
detecting genuine protein-binding sites by using a liberal threshold at probes
that are likely to be occupied, as suggested by the supporting data. To control
family wise FP rate at level αFWER, we let λ=−log(1−αFWER) and calculate
varying thresholds with respect to λ at individual probes. To control FDR at α
level, we use a step-down approach as follows: (i) start at λ=α, we calculate
the varying thresholds and report all peaks passing the thresholds; (ii) we
increase λ to λ=kα, where k denotes the total number of peaks detected in
previous iterations, and we recalculate the varying thresholds and call more
peaks; and (iii) we repeat step 2 until no more peaks can be found.

2.4 ChIP data and supporting data
The target ChIP data and the supporting data are generated from the same
mouse erythroid cell line with restoration of GATA1 function (G1E-ER4).
We applied our method to two real studies, one ChIP-chip data and one
ChIP-seq data, to detect GATA1 occupancy in the mouse genome. GATA1 is
a transcription factor that regulates erythroid genes. The ChIP-chip data was
obtained from a hybridized GATA1 ChIP sample to the NimbleGen HD2
tiling array for the mouse genome (mm8 assembly). The ChIP-seq data was
obtained from a different GATA1 biological sample sequenced by Illumina
GAII technology, with 23 million 36 bp reads uniquely mapped to the mouse
genome (mm8 assembly) (Cheng et al., 2009).

We further obtained four additional datasets that are related with GATA1
binding and are used as supporting tracks: (i) DNase-seq open chromatin data
from F-Seq (Boyle et al., 2008a, b); (ii) ChIP-seq data of TAL1 (also known
as SCL) that often co-binds with GATA1, LDB1 and LMO2 to form a multi-
protein complex (Wadman et al., 1997); (iii) ChIP-seq data of trimethylation
of lysine 4 of histone H3 (H3K4me3) associated with active promoters
(Heintzman et al., 2007); and (iv) ChIP-seq data of trimethylation of histone
H3K27 (H3k27me3) associated with down-regulation (Muller et al., 2002).
The data tracks used in this study contained 883 758 probes in a previously
reported 66 Mb region on mouse chromosome 7. This region contains a
large number of experimentally verified GATA1-binding sites (Cheng et al.,
2008), and hence servers as a good example to demonstrate our method.

The ChIP-seq data contained discrete counts of short reads mapped to
consecutive positions in the genome. To apply our method, we converted the
GATA1 ChIP-seq read counts to probe statistics as follows: (i) calculate the
sum of read counts according to a defined probe coordinate; (ii) with top 1%
probes of large read counts removed, model the background distribution of
read counts by a negative binomial distribution, NB(r, p), and estimate the
two parameters p and r by maximum likelihood estimation; (iii) compute
the P-value of each probe from the assumed background distribution and
converted the P-values to Z-scores. Our method allows the user to specify
the probe size and ‘tiling’ resolution. In general, larger distance between
probes (e.g. 100 bp) may lose ChIP-seq signals and therefore reduce the
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power of peak detection. Conversely, smaller distance between probes (e.g.
1 bp) will not compromise mapping resolution, but could be computationally
intensive. Probe size should not be too small so that it contains enough tag
counts. By default, we use a probe size of 30 bp tiled at every 10 bp distance
for ChIP-seq data, and we recommend using a window of 2–5 probes to call
peaks. Users can change these values in our program.

3 RESULTS

3.1 Simulation study
We first performed simulation study to evaluate the power and the
robustness of our method. We generated random ChIP-chip data
containing 883 758 probes, among which 300 randomly selected
probes corresponded to protein-binding sites. For probes at the
binding and non-binding sites, we simulated the probe intensities
from a normal distribution with mean 8 and 0, respectively, and
variance 1. To further introduce correlation among probes, each
probe value was replaced by a weighted average within its 500 bp
window, calculated as

x∗
i =

∑{
j:d(

i,j
)≤250bp

}xjwj√∑{
j:d(

i,j
)≤250bp

}w2
j

(9)

where w=1 when i= j, w=0.8 when d(i, j)≤125 bp and w=0.4
when d(i, j)>125 bp.

The signals in the simulated data ranged from −5.28 to 8.13 with
mean 0.0046 and variance 1.02. This is comparable with the ChIP-
chip HD2 data (ranged from −11.77 to 8.29 after normalization).
Since the simulated binding sites were randomly placed, they were
independent with the four supporting tracks. We therefore can
evaluate the impact of using irrelevant supporting tracks in peak
calling. In particular, we did not remove the unrelated supporting
tracks when calculating the binding probabilities, and we checked
whether using the irrelevant information can increase the number of
FPs by our method. We used the ‘Equal-Freq’ method to discretize
each supporting data into k =7 bins, and we called significant peaks
at 10% FDR level. We further compared our method with an existing
method, MPeak (Zheng et al., 2007, trimming P-value set at 1e-05)
on the same datasets.

As shown in Figure 2, the estimated FDR (number of FPs/number
of detected peaks) level of our method was accurately controlled
at the specified 10% level, and the FDR level remained invariant
before and after incorporating irrelevant supporting information. In
each simulated dataset, our method detected an average of 240 (out
of 300) true peaks. As we expected, the number of peaks detected
before and after using irrelevant data remained almost unchanged

Fig. 2. Comparison of FDRs in 10 simulated datasets. Our method with and
without using supporting tracks (prior) is controlled at 10% FDR level. We
cannot specify FDR level for MPeak.

(first column in Fig. 3). This result indicates that our method
can accurately control FPs with and without using additional
information, and the method is robust to irrelevant data added to
the model. In comparison, MPeak reported an average of 210 peaks
per dataset, among which only 135 were true peaks, pertaining to
∼36% FPs.

We next evaluated the power of our method by introducing
correlation between the binding sites and the supporting data.
Out of 300 binding sites in each simulation study, x% binding
sites were randomly placed at locations of previously identified
GATA1-binding sites from real GATA1 ChIP-chip HD2 data (Cheng
et al., 2009). The remaining (100−x)% binding sites were placed
at random locations. We varied x from 0% to 100% with a 20%
increment. For each x value, we generated 10 ChIP-chip datasets
using the method described above. Since the four supporting tracks
were significantly correlated with GATA1 binding, they were
correlated with the simulated binding sites at varying levels.

We applied our method to each simulated dataset, with
insignificant supporting features removed by permutations, except
for x=0%, and we called significant peaks at 10% FDR level. As
shown in Figure 3A, we observed that the actual FDR level for
each simulated datasets remained around 10% or less at varying
concordance levels. As shown in Figure 3B, after incorporating
supporting features in peak calling, our method detected many
more (up to an additional 20%) true peaks that were missed by
conventional methods. The gain of power is an increasing function
with respect to the absolute correlation between the protein-binding
data and the supporting data.

3.2 Performance of discretization methods
To evaluate the peaks detected by our method in real data analysis,
we constructed a positive set of 99 true GATA1 occupied segments
validated by qPCR in G1E-ER4 cells in a previous study (Zhang
et al., 2009). The ChIP data used to identify those 99 validated peaks
(VPs) was different from the ChIP-chip HD2 data analyzed in this
article, and hence the VPs do not necessarily show strong signals in
our HD2 data. In fact, we observed that the ChIP-chip HD2 intensity
of the 99 VPs ranged from 0.32 to 4.07, where the entire ChIP-chip
HD2 signals ranged from −5.76 to 4.07. The wide range of signals
observed from the VPs provides us a good reference set to evaluate

Fig. 3. (A) FDR and (B) detection power comparison of our method before
(black) and after (colored) using supporting tracks at different levels of
concordance. Box-plot of 10 datasets at each concordance level is shown.
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our method. We further partitioned the VPs into three groups: (i) high
VPs: 53 true sites with probe intensities >2 in ChIP-chip HD2 data;
(ii) medium VPs: 24 true sites with probe intensities between 1.5
and 2; and (iii) low VPs: 22 true sites with probe intensities <1.5.
We also constructed a negative set of 83 FPs-binding sites that failed
the previous validation of qPCR (Cheng et al., 2008; Zhang et al.,
2009). Some of these 83 FPs, however, showed large signals in our
ChIP-chip HD2 data and hence may be weak GATA1-binding sites.
In addition to those positive and negative validation peaks, we also
compared our results with results obtained using existing methods
on the same ChIP-chip and ChIP-seq data (Cheng et al., 2009).

We first evaluated the impacts of discretization methods on peak
calling. We conducted independent peak-calling experiments on the
ChIP-chip HD2 data using various discretization methods on the
four supporting tracks. We first ran the PASS program (Zhang,

A

B

C

Fig. 4. Comparison of peak-calling performance using six different
discretization methods on supporting tracks: Equal-Width, Equal-Freq,
Clustering (k =2∼8), Entropy, Round and SmoothRound. The traditional
peak-calling method without using supporting tracks (no prior) is shown as
a comparison. (A) The total number of detected peaks. (B) The total number
of detected true peaks with medium intensity (1.5–2.0). (C) The total number
of detected peaks overlapping with previously identified ChIP-seq peaks.

2008) to detect peaks at 10% FDR level. We then fit the output
to a logistic regression model with the four supporting tracks as
covariates. The following methods were used to discretize the
supporting data: (i) round each probe value to the nearest integer
(‘Round’); (ii) calculate the average value (ti) of a 1000 bp window
of each probe and round the value to integer (‘SmoothRound’);
(iii) use the four methods (‘Equal-Width’, ‘Equal-Freq’, ‘Clustering’
and ‘Entropy’) described in Section 2.

As shown in Figure 4, when evaluated at the same FDR level,
‘Entropy’ and ‘Equal-Freq’ outperformed other methods in terms of
the number of detected peaks, medium VPs and peaks overlapping
with previously identified ChIP-seq peaks (Cheng et al., 2009).
‘Equal-Width’ performed the worst, but still slightly outperformed
the conventional method. The results of Round, SmoothRound and
Clustering were better than the conventional method, but worse than
Entropy and Equal-Freq methods. Our results indicated that a proper
choice of discretization method is important, as it have significant
impacts on peak-calling results.

3.3 Novel peaks detected by supporting tracks
By incorporating the 4 GATA1-related supporting tracks, we
identified a total of 125 novel GATA1-binding sites, of which 66
sites were identified from the ChIP-chip data and 63 sites were
identified from the ChIP-seq data (Table 1). Before using supporting
tracks, 14 out of 24 VPs with medium intensity were detected by the
original PASS program at 10% FDR level. Two additional VPs with
medium intensity lied within 400 bp of the PASS detected peaks.
After using supporting data, our method captured four (out of the
remaining eight) more VPs with medium intensity. The other four
missing VPs were hard to detect from the ChIP-chip HD2 data and
were also missed by the previous ChIP-chip analysis (Cheng et al.,
2009). They were only detected from the ChIP-seq data (Cheng
et al., 2009).

For VPs of high intensity in the ChIP-chip data, our method
with and without using supporting tracks performed equally—51
out of 53 VPs overlapped with our detected peaks. For VPs of weak
intensity, none were detected by our method with or without using
supporting tracks. From the ChIP-seq data, however, we detected

Table 1. Predicted GATA1-binding sites enrichment in true binding regions, RefSeq Gene and predicted peaks by Cheng et al. (2009)

Dataset Number of
peaks

Number of
high VPs

Number of
medium VPs

Number of
low VPs

Total VPs Number of
FP

ChIP-chip
peaks

ChIP-Seq
peaks

Union of
peaks

RefSeq
genes

53 24 22 99 83 311a 780a 890a 1176

ChIP-chip peaks
PASS—no prior 317 51 14 0 65 4 251 221 292 198/149
PASS2—additional 66 0 4 0 4 1 19 33 44 43/38
MPeaks 147 45 8 0 53 2 142 112 145 91/74
TMAL (L1) 139 40 9 1 50 1 134 97 137 84/41

ChIP-seq peaks
PASS—no prior 554 45 16 13 74 4 177 463 467 325/186
PASS2—additional 63 0 0 0 0 0 5 35 35 36/33

aComputationally identified peaks by Cheng et al. (2009).
VPs, validated peaks by q-PCR (Cheng et al., 2008; Zhang et al., 2009); RefSeq Genes, RefSeq genes from the UCSC browser in the 66 Mb region on chromosome 7 in the mouse
genome (mm8). Overlapping entries are merged. The overlapping intervals between RefSeq genes and the detected peaks have P-value <0.05 from 100 permutations.
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Table 2. Estimated effects and P-values of the supporting tracks

ChIP-chip ChIP-seq

β P-value β P-value

Intercept −1.25e+01 0 −1.14e+01 0
Open chromatin 2.42e−02 6.73e−01 6.70e−01 5.26e−48
H3K27me3 −2.63e−01 9.78e−06 −1.51e+00 1.25e−12
H3K4me3 1.79e+00 1.36e−106 1.18e+00 9.45e−34
TAL1 7.99e−01 2.46e−67 1.51e+00 3.26e−246

β is the regression coefficient in the logistic regression model.

13 VPs (60%) of low intensity. Although we found more GATA1-
binding sites from the ChIP-seq data than from the ChIP-chip data,
it is worthy of noting that the true peaks found in ChIP-chip data
were not completely captured by the ChIP-seq data, and vice versa.

To further evaluate the novel peaks found by the supporting
tracks, we compared our results with peaks found in a previous
study (Cheng et al., 2009). Of the 66 additional ChIP-chip peaks,
50% (33/66) overlapped with the previously identified ChIP-seq
peaks, 65% (43/66) overlapped with 38 RefSeq Genes. Similar
results were observed in the 63 additional ChIP-seq peaks. We also
compared our results with MPeak and TAMALPAIS (Bieda et al.
2006). The two programs, however, do not directly provide FDR
control. For MPeak, we used its P-value in the output to compute
FDR assuming independence between tests. At 10% FDR threshold,
MPeak detected 147 peaks when their P-value cutoff is around
1.6e-05. For TAMALPAIS, we used the most stringent threshold
(L1) and detected 139 peaks. Compared to PASS2, MPeak and
TAMALPAIS (L1) were both conservative.

For the effects of the four supporting tracks, as shown in Table 2,
the open chromatin, H3k4me3 and TAL1 all had positive effects
on GATA1 binding, where H3K27me3 as a repressor had negative
effect on GATA1 binding. We observed that the effect of the open
chromatin data and the GATA1-binding status in the ChIP-chip was
different from that in the ChIP-seq data. The inconsistency may be
attributable to the difference in noise levels and the bias in ChIP-chip
and ChIP-seq experiments.

Among the 554 ChIP-seq peaks that were originally detected by
PASS, three peaks were redefined by our method at shifted nearby
locations (Fig. 5A). The raw ChIP-seq data around the three sites
showed double-peak distributions. As suggested by the supporting
data, the new binding sites defined by PASS2 were more likely to be
occupied by GATA1.We show in Figure 5B one example of the novel
peaks found by our method. The GATA1 occupied segment in this
region was validated by qPCR and had a max ChIP-chip intensity
of 1.77. The region, however, was missed by a previous study using
both ChIP-chip HD2 data and ChIP-seq data (Cheng et al., 2009).
The original PASS program also missed this region. This GATA1
occupied segment is located within gene ‘Tjp1’, which is depleted
of H3K27me3 but enriched with open chromatin and H3K4me3
signals. After incorporating the related feature tracks, we recovered
this true GATA1-binding site using the proposed method.

4 DISCUSSION
We introduced a new statistical method to improve the power of
detecting protein binding in ChIP data by combining additional

A

B

Fig. 5. (A) Venn diagram of the ChIP-chip and ChIP-seq peaks identified
with and without the supporting tracks. (B) An example of a novel GATA1-
occupied segment within Tjp1 identified by our method. It was missed by
previous HD2 ChIP-chip and ChIP-seq analysis (Cheng et al., 2009). This
region also shows depleted H3K27me3 and enriched H3K4me3 signals.
Horizontal black lines indicate signal means.

biological features. The proposed method not only improves the
sensitivity of peak calling than traditional methods, but also
precisely controls a user-specified level of FP rate or FDR. The
additional sites detected by our method are those regions with
medium- or low-binding signals, which cannot pass the genome-
wide statistical significance control. After taking into account of
the correlation between the binding sites and biologically related
supporting features, regions coincide with strong supporting signals
will become detectable by our method.

Using both simulation and real data analysis, we observed that
our method can effectively detect 20% more true binding sites than
traditional peak-calling methods. Under all scenarios we tested, our
method also precisely controlled the proportion of FP calls at 10%
FDR level. We further observed that the proposed method is robust
to irrelevant data tracks added to the model.

Our method does neither assume any distributions on the
supporting data nor it attempts to estimate data distributions
empirically. Such assumptions and estimation procedures may
introduce unwanted bias and uncertainty in peak calling. Our method
is flexible to incorporate any types of biological information that
overlap with the ChIP regions. By converting continuous data into
bins, the binding probabilities computed from our logistic regression
model will be robust to outliers and extreme values. Our analysis
showed that a proper discretization method applied to supporting
tracks can also have significant impact on peak calling results.
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Instead of applying discretization to individual supporting tracks
(univariate discretization), multi-variate discretization methods that
take into account of the interaction among features could be used
to capture the missing patterns from univariate approaches (Bay,
2001).

The real data analysis we performed in this study was based
on ChIP-chip data and a ChIP-seq data in 66 Mb region on the
mouse chromosome 7. This region contained a substantial amount of
GATA1- and TAL1-binding sites compared to other regions (Cheng
et al., 2008). This is a focal region for investigating the interaction
between proteins and is a best region to test our method. We used
GATA1 peaks detected at a stringent threshold to train the model
parameters to avoid using many FPs in fitting the logistic regression
model. It is possible that the fitted regression model may be biased
towards strong binding sites. The underlying assumption of our
method, therefore, is that the fitted model from strong peaks will
have predictive power to weak binding sites. The worst scenario will
occur when weak binding sites have completely opposite supporting
data distribution compared to that of strong binding sites, in which
case the fitted regression model will predict against the weak binding
sites. This is a common issue that will occur to all methods that
rely on training data, if the training data and the testing data are
heterogeneous. In our method, we attempted to alleviate this problem
by repeating the process of peak-calling, fitting regression and peak-
calling again, iteratively, such that if weak binding sites are detected
at some iteration, their information will be included in the training of
regression model, and a new iteration of peak-calling will be applied.
The novel peaks found by our method was a set of candidate peaks of
weaker binding events. It is still unclear whether the binding strength
of a transcription factor can affect gene regulation. The weak peaks
detected by our method therefore provide a source of information
for investigating this association. The logistical regression model we
fitted in this region can be further applied to predict genome-wide
GATA1 occupancy.

There are currently a large number of computational methods
developed for detecting protein–DNA interactions in ChIP
experiments. Most methods did not provide a rigorous means to
control FP detections. The PASS algorithm (Zhang, 2008) solved
this problem in the context of correlated multiple comparisons. The
detected statistically significant binding intervals, however, may not
correspond well to the real biological binding sites. The method
proposed in this study attempts to improve both sensitivity and
specificity of peak calling by incorporating biologically related
information. The proposed framework is flexible in terms of
accommodating various types of data as supporting tracks, and
is also flexible in terms of the methods used at each step of
the algorithm. Instead of using a logistic regression model to
predict binding of the target protein, statistical or machine-learning
classifiers can be used to measure the potential of protein binding
at each probe from the supporting data. We then fit the predicted
binding potentials into the varying threshold framework to determine
probe-specific thresholds.

With the advancement of next-generation sequencing tech-
nologies, researchers are now able to generate a huge amount of
data of various biological features of interest, including ChIP data
for multiple transcription factors, histone modifications, nucleosome
positioning and RNA-seq. These feature tracks are usually highly
correlated and jointly provide valuable information for answering
some of the fundamental questions in gene regulation. The proposed
method is an example of integrating such information to increase the
power and specificity in peak detection.
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