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Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that directly bind to the 3’ untranslated
region (3’-UTR) of the target mRNAs to inhibit their expression. The miRNA-29s (miR-29s) are
suggested to be either tumor suppressors or oncogenic miRNAs that are strongly dysregulated in
various types of cancer. Their dysregulation alters the expression of their target genes, thereby
exerting influence on different cellular pathways including cell proliferation, apoptosis, migration,
and invasion, thereby contributing to carcinogenesis. In the present review, we aimed to provide an
overview of the current knowledge on the miR-29s biological network and its functions in cancer,
as well as its current and potential applications as a diagnostic and prognostic biomarker and/or a
therapeutic target in major types of human cancer.
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1. Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) with ap-
proximately 18–24 nucleotides in length. The miRNAs control gene expression post-
transcriptionally by binding to the 3′-untranslated region (3′-UTR) of its targeted messenger
RNAs (mRNAs), resulting in mRNA cleavage or translation repression [1,2]. Noticeably,
miRNAs have been indicated to be involved in all cancer stages from tumor initiation to
metastasis [3], suggesting that miRNA could potentially be used as a diagnostic and/or
prognostic biomarker or a therapeutic target in cancer treatments [4]. Among dozens of
miRNAs that are abnormally expressed in cancer, miR-29s have been recognized as the
critical one that acts as both oncogenic and tumor-suppressor regulators in cancer [5].

The miR-29 family consists of two clusters namely miR-29a/miR-29b-1 and miR-
29c/miR-29b-2 located on chromosome 7q32.3 and 1q32.2, respectively [6]. Mature miR-29s
in humans, mice, and rats share a common seed region [7] that plays a role in determining
their target mRNAs. However, miR-29s exhibit differential expression and regulation
in various cases. The miR-29a is the most abundantly expressed at all stages of the cell
cycle; whereas, miR-29b exhibits low-level expression, rapid degradation, and becomes
stable during mitosis; and miR-29c is undetectable [8]. Pulse-chase experiments have
indicated that the miR-29a mimic has greater stability compared to miR-29b in Hela cells [9].
Besides, a deep sequencing miRNAs analysis revealed that miR-29s had distinct subcellular
distributions [10]. While miR-29a is more prevalent in the cytoplasm, miR-29b is mostly
localized in the nucleus [10]. The nuclear localization of miR-29b is mostly due to six
nucleotides (nts) localized at the end of its sequences [8] (Figure 1A). Additionally, miR-
29b-specific knock-out disrupts the tertiary structure of miRNA clusters and changes
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the sequence or structure of promoters, resulting in lower expression of miR-29a and
miR-29c [11]. These results indicated that miR-29s may function differently in different
conditions in both corporative and separate manner.
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Figure 1. The miR-29 family members and their potential targets. (A) Mature sequences and
chromosomal locations of miR-29s. MiR-29a/miR-29b-1 cluster is located in chr7q32, whereas miR-
29b-2/miR-29c is in chr1q32. The mature miR-29s share a common seed region (agcacc) but are
different at the cytosine position in miR-29a and a nucleotide sequence at the end of miR-29b (aguguu)
which is known for nuclear localization. (B) The potential targets of miR-29s. The visualization is
based on miR-29s’ experimental targets of the miRNet platform (https://www.mirnet.ca, accessed
on 24 July 2022). Each dot represents a gene. The yellow dots indicate the target genes involved in
cancer pathways.

The miR-29s play an important role in a multitude of pathophysiological processes.
According to the miRNet database, 677 human genes have been identified as potential
targets of the hsa-miR-29 family (https://www.mirnet.ca; accessed on 27 November 2021),
and many of them are involved in cancer pathways (Figure 1B). Several studies have
revealed a strong antifibrotic property of miR-29s in multiple organs, such as heart [12],
liver [13], lung [14], and kidney [15]. Specifically, the miR-29s negatively regulated multiple
extracellular matrix (ECM) proteins [16–18], which are essential for matrix deposition,
epithelial-mesenchymal transition (EMT) [14], and the progression of fibrosis. Additionally,
dysregulated miR-29s were also identified in various conditions in liver fibrosis [13,19,20],
cardiovascular diseases [12,21], and hepatitis C virus infection [13,19,22]. Intravenous injec-
tion of miR-29 mimics may reduce collagen biosynthesis and reverse pulmonary fibrosis [23].

Moreover, the expression of the miR-29 family was reduced in various types of cancer,
suggesting their tumor-suppressing capacity as well as their potential role as a diagnostic
and prognostic marker in these cancer types. Several studies have indicated that miR-

https://www.mirnet.ca
https://www.mirnet.ca
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29s can negatively regulate DNA methyl transferase proteins (DNMT3A/3B) in the lung,
gastric, and liver cancer [24–26]. Additionally, miR-29s have also been found to sup-
press the expression of histone deacetylases (HDAC4) [27,28], thymine DNA glycosylase
(TDG), and ten-eleven translocation 1 (TET1) [29]. Furthermore, miR-29s could act as
pro-apoptotic, anti-proliferative, anti-metastatic/EMT, and immunomodulatory factors by
directly binding to 3′-UTR of the target genes such as myeloid cell leukemia 1 (MCL1) [30],
cyclin-dependent kinase 6 (CDK6) [31], cell division cycle 42 (CDC42) [32] and matrix met-
alloproteinase 2 (MMP2) [17] in human cancers. Therefore, miR-29-targeted interventions
can be used as a therapeutic approach to inhibit tumorigenesis and invasion in different
types of cancer. In contrast, miR-29s were also upregulated in several types of cancer. For
example, miR-29a was upregulated in colorectal cancer metastasis [33], breast cancer [34],
and in the urine of bladder cancer (BC) patients [35], while miR-29c-5p was significantly
increased in the advanced stage of BC serum samples [36]. These studies suggested an
oncogenic role of miR-29s and the potential link between the dysregulation of miR-29s and
the carcinogenesis in these cancer types.

In the current review, we summarize and discuss the function of miR-29s across human
cancers and the use of miR-29s as diagnostic, prognostic, and therapeutic biomarkers.

2. miR-29 Functions in Cancers

The miR-29s play a central role in the transcriptome networks, in which miR-29c was
the most frequently reported one for its function in regulation of transcription factors. It has
been reported that all three miR-29s were regulated by c-Myc, Yin and Yang 1 (YY1), and
CCAAT/enhancer-binding protein-α (CEBPA). Particularly, c-Myc suppressed miR-29s
transcription through a co-repressor complex with histone deacetylase 3 (HDAC3) and En-
hancer of zeste homolog 2 (EZH2); and combined inhibition of HDAC3 and EZH2 restored
miR-29s expression levels, which, in turn, caused lymphoma growth suppression [37].
Nuclear factor kappa B (NF-kB)-activated YY1 also inhibited miR-29s expression in myo-
genesis and rhabdomyosarcoma [38]. The CBEPA, on the other hand, selectively induced
the transcription of miR-29a/b-1, but not miR-29b-2/c [39]. In addition, miR-29s have also
been reported to be involved in the modulation of a set of transcription factors (Figure 2A),
including tumor suppressors and oncogenic genes that are involved in different cancer
biological pathways (Figure 2B).

The DNA methylation is a well-studied epigenetic gene silencing mechanism in
mammalian cells and organisms [40]. Promoter hypermethylation of a tumor suppressor
gene causes gene inactivation and thus may lead to cancer development. Numerous
tumor suppressor genes were hypermethylated in various human cancers, such as BRCA1
in early breast cancer, MLH1 (mutL homolog (1) gene in colorectal cancer (CRC), and
VHL (von Hippel–Lindau) gene in renal cell cancer [41]. The miR-29s directly suppress
DNA methyltransferase enzymes and two other DNA methylation proteins, Thymine
DNA Glycosylase (TDG) and Tet Methylcytosine Dioxygenase (TET1) [29,42]. According to
Morita and colleagues, miR-29s protect cells from tumorigenesis by maintaining the existing
DNA methylation profiles. In lung cancer, miR-29s induced silencing of DNMT3A/3B
by binding to their 3′-UTR, thereby promoting tumor growth [24]. In multiple myeloma,
miR-29b mimics reduced HDAC4 expression and myeloma cell migration, while increasing
histone H4 acetylation and apoptosis [28].

Cyclin-dependent kinases (CDKs) were known for their central roles in cell cycle
regulation. The CDK6 complexes promoted cancer cells to enter the S phase, thereby
enhancing cell proliferation and growth. Numerous studies have reported that miR-29s
suppressed the proliferation and invasion of cancer cells by inhibiting the expression
of CDK6 in different types of malignancies, including osteosarcoma [31], and gastric
carcinoma [43,44], and bladder cancer [45]. Additionally, miR-29s have also been shown to
arrest the cell cycle at G0/G1 phases in gliomas [32] and breast cancer [46], and the G1-S
phase in acute myeloid leukemia (AML) [47] by targeting cell division cycle 42 (CDC42) and
cyclin D2 (CCND2), respectively; or to suppress tumor growth by repressing angiogenesis
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genes such as vascular endothelial growth factor (VEGF) [48,49] and insulin-like growth
factor 1 (IGF-1) [50] in osteosarcoma and gastric cancer cells.
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The visualization is based on miR-29s in transcriptome networks of the TransmiR v2.0 platform
(cuilab/cn/transmir). The red dots represent has-mir-29a, -29b, and -29c from left to right, respectively,
while the blue dots represent different cancer-related transcription factors. (B) cancer-related miR-29s
targets. MiR-29s can act as both tumor suppressor and tumor inducer genes by contributing to
different cancer pathways such as cancer cell apoptosis, cancerogenic process, proliferation, fibrosis,
and metastasis.

The dysregulation of ECM remodeling proteins is a high-risk factor for cancer. Fibrosis
is a complex process involved in the deposition and reorganization of the matrix, leading
to the EMT and thus metastasis of cancer cells. Transforming growth factor beta (TGF-β)
receptor binding induced the phosphorylation of the downstream transcription factors
SMAD2/3 to stimulate fibrogenic gene expression, including COL1A1, COL1A2, and
COL3A1 [51]. The miR-29s have been reported to be significantly downregulated by TGF-
β/SMAD signaling in renal fibrosis [15,52]. Overexpression of miR-29s, however, can
inhibit the expression of TGF-β1 and SMAD through a feedback loop, thus protecting cells
from fibrosis development [53]. Besides, miR-29s also have negatively regulated other
ECM-related genes such as laminins, integrins, MMPs, and ADAMs, strongly indicating its
anti-fibrotic activity [16,17,54,55].

The miR-29s have also been linked to cancer metastasis, an indicator of poor prognosis.
It has been reported that the expression of miR-29s were induced in chemo drugs-treated
gastric cancer and that increased expression of miR-29c suppressed gastric cancer cell



Biomedicines 2022, 10, 2121 5 of 17

migration and invasion by negatively regulated δ-catenin [56]. Similarly, a strong downreg-
ulation of miR-29c has also been observed in pancreatic cancer, which was accompanied by
hyperactivation of Wingless-related integration site (Wnt) signaling pathways [57]. Over-
expression of miR-29c inhibited the Wnt/β-catenin signaling by down-regulating Wnt’s
upstream regulators, resulting in reduced invasion and metastasis in pancreatic cancer [57].
Membrane-bound mucin (MUC1), a stabilizer of β-catenin and Wnt/β-catenin signaling,
has also been identified to be inhibited by miR-29a [58]. Another group of metastasis-
induced proteins is the MMP family which has also been reported as a direct target of
miR-29s. Particularly, miR-29b negatively regulated MMP2/9 by binding to its 3′-UTR,
causing cell migration suppression in gastric cancer [17], or osteosarcoma cells [59].

Moreover, miR-29s induced apoptosis in cancer cells by negatively regulating anti-
apoptotic proteins such as MCL-1 [30], VDAC1/2 [60], and CDC42/p85 complex [61].
Specifically, miR-29s elevated p53 levels and promoted the p53-dependent apoptotic path-
way by directly suppressing two p53 inhibitors, p85 alpha and CDC42 [61]. Besides, by
inhibiting the expression of MCL-1, an anti-apoptotic protein, and VDAC1/2 that is essen-
tial for the release of cytochrome C from mitochondria to the cytoplasm, miR-29a promoted
apoptosis in cancer cells [30,60].

Lastly, some other studies have reported a contradictory role of miR-29s, which
functioned as an oncogene in several types of human cancers. In osteosarcoma, for instance,
miR-29s were shown to be an oncogenic factor where their downregulation resulted in
significantly reduced cell growth and colony formation of osteosarcoma MG-63 cells,
probably via miR-29/TGF-β1/PUMA (p53 upregulated modulator of apoptosis) axis [62].
Knockdown of PUMA in these cells, however, reversed miR-29s-induced cell growth
suppression and apoptosis [62], due to its ability to induce mitochondrial translocation of
Bax (Bcl-2 Associated X-protein) [63]. In addition, miR-29a was upregulated in estrogen
receptor-negative (ER-) breast cancer that was strongly associated with tumor metastasis
and shorter OS (overall survival) in patients with breast cancer [62]. The MiR-29a was
proposed as a tumor activator that induces cell proliferation and migration by targeting
and inhibiting TET1 [64]. Moreover, overexpression of miR-29s caused a reduction of
Phosphatase and Tensin-Like Protein (PTEN), a tumor suppressor, resulting in a restoration
of proliferation and migration in osteosarcoma cells [65]. In some cases, the functions of
miR-29s have not been identified [66], suggesting that miR-29s can function as either an
oncogene or a tumor suppressor depending on specific cellular contexts.

3. MiR-29s as Biomarkers

The miR-29s have been repeatedly reported for their abnormal expression across
human cancers, suggesting their roles in cancer initiation and progression as well as their
potential to be used as diagnostic and/or prognostic biomarkers in cancers. In this part, we
summarized the potential use of miR-29s as biomarkers in major types of human cancer.

3.1. MiR-29s as Biomarkers in Colorectal Cancer

Integrative bioinformatics analysis has revealed the biological functions of the miR-29
family in CRC (colorectal cancer) occurrence and development [67]. Accordingly, pathway
enrichment analysis indicated that the miR-29s-targeted genes were associated with the
PI3K-AKT signaling pathway, p53-mediated apoptosis, cell cycle, FOXO (forkhead box
transcription factors) signaling pathway, and miRNAs in cancer (Figure 3). Thus, miR-29s
have been previously proposed to be used as potential biomarkers for CRC diagnosis and
prognosis [68–72]. The testing samples ranged from serum, plasma, feces, and tissues
were used to measure the levels of miR-29s in CRC. For quantitative measurement of the
diagnosis accuracy, each study has calculated the area under the curve (AUC) of summary
receiver operating characteristic (ROC), sensitivity, and specificity, which are listed in
Table 1. Recently, a systemic meta-analysis based on a hundred single studies revealed that
it was valuable to use miR-29s expression alone or in combination with other biomarkers to
diagnose or prognoses CRC. Using the miR-29s alone method, however, had lower accuracy
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than combination methods, with AUC, sensitivity, and specificity of 0.82, 70%, 81%, and
0.86, 78%, and 91%, respectively [67]. The expression of miR-29s was mostly downregulated
in CRC in all stages and higher in CRC patients with metastasis as compared to those
without. In addition, CRC patients with higher miR-29s expression levels exhibited to have
better survival outcomes with lower recurrence and metastasis rates [67]. Together, these
results suggested the significant role of miR-29s as diagnostic and prognostic biomarkers
in CRC.
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Table 1. The potential use of miR-29s as biomarkers in colorectal cancer.

Sample Sample Size Outcome Results Ref.

Venous blood
114 CRC patients (58 patients
with and 56 patients without

metastasis)

MiR-29a was significantly increased in CRC
patients with metastasis than in those without.

AUC: 80.3%
Sensitivity: 75%
Specificity: 75%

[73]

Serum 55 CRC patients and
55 normal controls

The serum level of miR-29b was lower in CRC as
compared to the normal controls and inversely

correlated with the advanced tumor stages.

AUC: 87%
Sensitivity: 77%
Specificity: 75%

[68]

Tissue
Plasma

200 CRC patients and
400 normal controls

The level of miR-29b in plasma and tissue was
highly correlated and significantly lower in CRC

versus the normal controls.

Tissue:
AUC: 88.3%

Sensitivity: 81.6%
Specificity: 84.9%

Plasma:
AUC: 74.3%

Sensitivity: 61.4%
Specificity: 72.5%

[69]
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Table 1. Cont.

Sample Sample Size Outcome Results Ref.

Feces 80 CRC patients and
51 normal controls

The level of miR-29a in feces was significantly
lower in CRC versus the normal controls.

AUC: 77.7%
Sensitivity: 85%
Specificity: 61%

[71]

Serum 160 colorectal neoplasms
patients and 77 normal controls

The level of miR-29a in serum was significantly
lower in colorectal neoplasms AUC: 74.1% [70]

Tissues
245 CRC patients (34 stages I,
63 stages II, 104 stage III, and

44 stages IV)

MiR-29b expression was significantly decreased
in tumor versus normal tissues

Higher miR-29b is associated with
higher 5-year DFS and OS. [74]

Tissues 110 CRC patients (51 stages I
and 59 stages II)

The level of miR-29a was a positive predictive
factor for non-recurrence in stage II CRC.

Higher miR-29a is associated with
longer DFS.

Sensitivity: 67%
Specificity: 88%

[75]

CRC: colorectal cancer; AUC: area under the curve; OS: overall survival; DFS: disease-free survival.

3.2. miR-29s as Biomarkers in Bladder Cancer

Several studies have suggested that urinary miRNAs could be used as potential
biomarkers for the noninvasive diagnosis of BC [35,36,76]. Noticeably, the expression of the
miR-29 family members was largely varied in BC. For example, miR-29c was significantly
increased in the advanced stage of BC serum samples [36]; and miR-29a was up-regulated
in urine samples of BC patients [35]. Additionally, after tumor removal, the level of miR-29a
in urine samples was significantly decreased, suggesting a correlation between the level
of miR-29a in urine and bladder tumor status [35]. Similarly, another study revealed that
miR-29b-1 and miR-29c were upregulated in BC T24 cells as compared to normal cells; and
knockdown of one of the two miR-29b-1/-29c caused growth suppression in T24 cells [77].
These data indicated the oncogenic role of miR-29s in this type of cancer.

The miR-29c, however, was significantly downregulated in BC samples [45,78–80].
Overexpression of miR-29c caused inhibition of cell growth, cell cycle, and cell mobility
while induction of apoptosis in T24 cells [45,78]. Additionally, BC cells exposed to exosome-
derived miR-29c are more likely to undergo apoptosis, which is achieved by inhibiting
BCL-2 and MCL-1 [81]. These contradictory investigations on the roles of miR-29s in
BC suggested their importance in biological pathways and their potential to be used as
biomarkers for this type of cancer (Table 2). However, identifying whether they function
as tumor suppressors or oncogenes in a typical condition of BC is necessary for better
understanding their mechanism of action as well as their future applications in prognosis
and diagnosis.

Table 2. miR-29s as biomarkers in bladder cancer.

Sample Sample Size & Methods Outcomes Results Ref.

Serum
- 392 BC samples and

100 normal controls
- Bioinformatic analysis

MiR-29c was overexpressed in serum samples
MiR-29c was correlated to the

advanced stage and OS time in
BC patients.

[36]

Urine
- 276 BC samples:

276 normal controls
- MiSeq and qRT-PCR

MiR-29a was upregulated in BC patients.

MiR-29a-3p in combination with
six other miRNAs was used for

the diagnosis of BC.
AUC: 92.3%

Sensitivity: 82%
Specificity: 96%

[35]

Tissue
- 30 BC samples and

30 normal controls
- qRT-PCR

MiR-29c was downregulated in BC.
MiR-29c inhibited cell proliferation,

migration, and cell cycle progression, and
induce apoptosis through AKT signaling.

MiR-29c was inversely associated
with bladder tumor stages. [78]
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Table 2. Cont.

Sample Sample Size & Methods Outcomes Results Ref.

Tissue

- 106 BC samples and
11 normal samples.

- Spotted locked nucleic acid-base
oligonucleotide microarrays

MiR-29b and miR-29c were downregulated in
BC tumors

Higher miR-29c levels were
correlated with longer DFS. [79]

Specimen
- 108 bladder carcinomas and

29 carcinomas invading the bladder
- Microarrays

MiR-29c was significantly under-expressed in
progressed tumors.

High expression of miR-29c was
associated with a better prognosis. [80]

BC: bladder cancer; qRT-PCR: quantitative real-time PCR; AUC: area under the curve; OS: overall survival; DFS:
disease-free survival.

3.3. miR-29s as Biomarkers in Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common cancer in the liver, with a high
incidence and mortality rate [82]. The treatment strategy for HCC patients commonly
depends on the tumor stage, but curative options are only available for patients with
early stages of HCC [83]. Due to the limitation in early diagnosis, one-third of HCC
patients cannot receive the appropriate therapy, and another one-third of those experience
therapeutic delay, leading to significantly lower OS in HCC patients [84]. This fact suggests
an urgent need for novel biomarkers for early and effective diagnosis and prognosis of
HCC. As a tumor suppressor, miR-29s have been considered a potential diagnostic and
prognostic biomarker for HCC (Table 3). The RNA from different sources such as serum
and frozen tissues have been extracted and quantitatively measured by using the qRT-PCR
method. Among miR-29 family members, miR-29a exhibited major functions in the liver as
well as HCC tissues [85]. The miR-29a was significantly lower expressed in HCC tissues
as compared to the controls and overexpression of miR-29a suppressed HCC cell growth
by inhibiting the SPARC (Secreted protein acidic, rich in cysteine)-AKT pathway [85]. In
hepatocytes, overexpression of miR-29a inhibited PTEN expression, leading to activation
of the PI3K/AKT pathway that eventually induced cell migration [86]. The miRNA profile
analysis of exosomes isolated from fast- and slow-migrated HCC patient-derived cells
(PDCs) revealed a set of differentially expressed miRNAs that were further validated in
HCC samples. The results showed a significant downregulation of miR-29b-3p gene in fast-
growing PDCs as compared to slow-growing cells, suggesting its role as in metastasis and
OS. Consequently, this cluster of miRNAs may serve as a biomarker for the proliferation
of HCC cells [87]. Additionally, there is a statistically significant difference in the levels
of miR-29c expression in HCC-derived exosomes amongst HCC, hepatitis B virus (HBV)
infection, and cirrhosis patients [88]. It was indicated that TLR3 (Toll-like receptor 3)
activated macrophages produced exosomes containing miRNA-29s that were proved to
be able to prevent hepatitis C virus (HCV) replication in HCC cell line, suggesting the
potential use of exosomes comprising miR-29 family members as a therapy to control
HCV replication in infected hepatocytes [89]. Additionally, one other study reported that
higher expression of miR-29a-3p was associated with a poorer prognosis, shorter OS, and
disease-free survival (DFS) in HCC patients [90].
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Table 3. MiR-29s as biomarkers in hepatocellular carcinoma.

Sample Sample
Size & Methods Outcome Results Refs

Serum
- 58 NAFLD and 34 normal control
- qRT-PCR

MiR-29a: lower in NAFLD patient
MiR-29c: unchanged

MiR-29b: undetectable

For miR-29a:
AUC: 0.679

Sensitivity: 60.87%
Specificity: 82.35%

[91]

Tissue
- 266 HCC
- Taqman Low-Density Arrays

qRT-PCR
MiR-29a-5p was associated with early
HCC recurrence, resulting in lower OS

AUC: 0.708
Sensitivity: 74.2%
Specificity: 68.2%

[92]

Venous
blood

- 174 HCC
- qRT-PCR

MiR-29a-3p was higher in both early and
late stages of HCC

AUC: 0.71
(95%CI = 0.62–0.78) [90]

Tissue
- 55 HCC and 55 normal control
- qRT-PCR

MiR-29a was downregulated in HCC
samples

MiR-29a targeted SIRT1 and suppressed
the HCC cell cycle and proliferation.

Lower miR-29a is associated with
higher tumor size, vascular

invasion, poor DFS
[93]

Specimen
- 110 HCC
- qRT-PCR

MiR-29a was dramatically decreased in
HCC tissues

miR-29a targeted to SPARC,
downstream of AKT/mTOR to

suppress cell growth.
[94]

HCC: hepatocellular carcinoma; NAFLD: Non-alcoholic fatty liver disease; AUC: area under the curve, qRT-PCR:
quantitative real-time PCR; OS: overall survival; DFS: disease-free survival.

3.4. miR-29s as Biomarkers in Pancreatic Cancer

The miR-29a has been validated to be upregulated in tissue samples from patients
with pancreatic ductal adenocarcinoma (PDAC) and was considered a potential diagnostic
biomarker for this type of cancer [95]. A recent study comparing 38 patients with PDAC and
11 controls revealed that miR-29c-3p was typically downregulated in PDAC as compared
to both normal pancreatic tissues and chronic pancreatitis [96]. Similarly, a study that
employed high throughput screen figured out 42 candidate miRNAs that were significantly
different between pancreatic cancer (PC) and healthy group, and, the miR-29b was noted to
be downregulated 2.1 folds in PC samples [97]. Even though the fold-change and significant
level of miR-29s were not high enough in both studies, miR-29s were not tested in the
validated group and their role as crucial biomarkers in PC has not been confirmed. In
one study, Humeau et al. used qRT-PCR to examine the change of 90 miRNAs in PC and
identified four significant candidate miRNAs in saliva samples, including miR-29c [98].
However, the sample size (4 controls, 4 pancreatitis, and 7 PC samples) of the study
was relatively small, making its finding of miR-29 as a biomarker for PC remains to be
further confirmed.

Chemotherapy plays a significant role in the treatment of PC. Gemcitabine (GEM),
an inhibitor of DNA synthesis and ribonucleotide reductase, has become a gold standard
chemotherapeutic agent for PC [99,100]. Molecularly, miRNA-29a is involved in a PC cell’s
response to GEM by regulating the Wnt/β-catenin signaling pathway [101,102]. Wnt3a, an
important ligand of the Wnt/β-catenin signaling pathway, has been shown to induce GEM-
resistance in PC cells, probably by activating Wnt/β-catenin signaling in these cells [102].
Additionally, miR-29a was detected to be upregulated in PC tissues and cell lines, and its
expression level was positively associated with metastasis [103]. Induced expression of
miR-29a caused downregulation of tristetraprolin (TTP), thereby elevating the expression
of pro-inflammatory factors and EMT markers. Ectopic overexpression of TTP decreased
tumor growth and migration in vivo [103].

3.5. miR-29s as Diagnostic Biomarkers in Lung Cancer

Histologically, lung cancer is comprised of 85% of non-small-cell lung cancer (NSCLC)
and 15% are small-cell lung cancer (SCLC) [104]. Despite recent advances in diagnosis,
late diagnosis is still the main reason for poor prognosis and outcomes in lung cancer.
It has been noted that miR-29c was overexpressed in the serum of NSCLC patients as
compared to the normal controls [105,106]. Similarly, miR-29a was also found to be up-
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regulated in peripheral blood of lung cancer patients as compared to the healthy control
individuals [107]. These findings suggested that miR-29a and miR-29c could be used as
potential diagnostic biomarkers for lung cancer. Additionally, Liu et al. reported that
miR-29a was strongly downregulated in lung cancer tissues as compared to paired normal
tissues and that induced expression of miR-29a suppressed cell proliferation and colony
formation of lung cancer cells by targeting and negatively regulating the expression of
NRAS (neuroblastoma ras viral oncogene homolog) oncogene. The study has also revealed
that miR-29a increased the sensitivity of lung cancer cells to cisplatin treatment and that a
combination of miR-29a and cisplatin-induced apoptosis in lung cancer cells, suggesting
the potential role of miR-29a as a prognostic biomarker for lung cancer [108]. Recently, it
was indicated that NSCLC generated exosomes that contain miR-29a. This miRNA can
attach to TLRs in immune cells and elicit protumoral inflammation, hence increasing tumor
growth and metastasis [109].

Lung adenocarcinoma (LAC) is a highly aggressive tumor though little is known
about its underlying molecular mechanisms. Liu et al. discovered that downregulation of
miR-29c was strongly correlated with unfavorable prognosis in stage IIIA LAC patients.
The MiR-29c suppressed cell growth, migration, and invasion in human LAC cell lines by
directly targeting vascular endothelial growth factor A (VEGFA) [110]. Therefore, miR-29c
has been concluded as a tumor suppressor and may be considered a promising prognostic
and therapeutic biomarker for LAC [110].

3.6. miR-29s as Biomarkers in Leukemia and Lymphoma

Serum miRNAs have been suggested as promising biomarkers for diffuse large
B cell lymphoma [111]. Notably, miR-29a and miR-142-3p have been identified to be
consistently under-expressed in AML and may act cooperatively in granulopoiesis and
monopoiesis [112]. Therefore, dual evaluation of miR-29a and miR-142-3p is more effective
for the diagnosis of AML. Additionally, downregulation of miR-29c was identified as a
signature for chronic lymphocytic leukemia (CLL) [113], which was greatly correlated
with disease progression in CLL patients harboring the 17p deletion [113]. Moreover,
miR-29a was significantly downregulated in the bone marrow of pediatric AML patients
as compared to the normal controls. The low expression of miR-29a was strongly corre-
lated with shorter relapse-free and OS in these patients [114]. The study suggested that
downregulation of miR-29a may be used as a prognostic marker in pediatric AML.

3.7. miR-29s as Biomarkers in Kidney Cancer

The miR-29s regulate genes that are closely related to the molecular pathogenesis of
renal cell carcinoma (RCC). Serpin family H member 1 (SERPINH1), a direct target of miR-
29, was noted to be overexpressed in RCC clinical samples and tyrosine kinase inhibitor
failure autopsy specimens. Overexpression of SERPINH1 was significantly associated with
advanced tumor stage, pathological grade, and poor prognosis, mostly due to its ability
to induce cancer cell migration and invasion [115]. In addition, it was supported with
evidence that miR-29b acted as an oncomiR and could be a potential prognostic marker for
RCC. The miR-29b promoted proliferation and invasion in SN12-PM6 cells, which inhibited
cell apoptosis by directly suppressing the expression of kinesin family member 1B, a tumor
suppressor gene that induces cell apoptosis. Upregulation of miR-29b in both cell lines
and clinical samples was significantly associated with tumor node metastasis and OS of
RCC [116]. These studies suggested the clinical roles of miR-29s in RCC and its potential
use as prognostic biomarkers in this type of cancer.

3.8. miR-29s as Biomarkers in Breast Cancer

Globally, breast cancer is regarded as one of the most diagnosed and deadly cancers,
particularly in the case of women [117,118]. However, the prognosis of breast cancer is not
satisfactory, and the 5-year survival rate is lower than 25% [119]. All these phenomena urge
the discovery of novel biomarkers for the early diagnosis, and proper therapy of breast
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cancer. The miR-29s have been studied and suggested as a tumor suppressor in breast
cancer [117,120,121]. Wu et al. illustrated that miR-29a was significantly downregulated
in breast cancer cells, and its overexpression inhibited cancer cell growth which was
achieved by repressing the expression of transcription factor B-Myb [117]. Additionally,
overexpression of miR-29a resulted in cell cycle arrest at the G0/G1 phase. The findings
denoted the partiality of miR-29a which exerts its tumor suppressor role in breast cancer
cell lines by cessation of the cell cycle through negative regulation of CDC42 [46]. Later,
Shinden and collaborators investigated the clinicopathological significance of miR-29b in
breast cancer cases and illustrated that miR-29b acted as a tumor suppressive miRNA [121],
suggesting it is a prominent biomarker for recurrence and metastasis in breast cancer
patients. Moreover, overexpression of miR-29b-1/a significantly suppressed proliferation
of Tamoxifen (TAM)-resistant breast cancer cells, indicating that miR-29b-1/a functions as a
tumor suppressor in these cells [122]. Additionally, BRCA1 (Breast Cancer 1) was reported
to bind to a specific region of the promoter and regulate the expression of miR-29b-1-5p.
The higher significant level of miR-29b-1-5p as a prognostic marker than other widely used
biomarkers signified the potential of this miRNA as a biomarker for BRCA1 deficiency
and survival in breast cancer [123]. Consequently, miR-29s are significantly elevated in the
whole blood, serum, and tissues samples from breast cancer patients (Table 4).

Furthermore, overexpressed miR-29s were testified both in tumor tissues and serum
of breast cancer patients in comparison to that of healthy individuals [34]. Recently, it
was reported that GATA binding protein 3 (GATA3), a transcription factor, elevated the
miR-29b level in breast cancer whereas the destruction of miR-29b enhanced metastasis
and accelerated EMT. Being a tumor-suppressor gene, the damage of GATA3 in breast
cancer resulted in a poor prognosis [124]. A recent study revealed that miR-29a abated cell
proliferation and promoted apoptosis in the MCF-7 (Michigan Cancer Foundation-7) cell
line by negatively controlling NF-kB (nuclear factor-kappa B) and the levels of cyclinD1
and Bcl-2 proteins [125]. Additionally, the other study revealed that overexpression of miR-
29a inhibited cell migration and invasion by negatively regulating Robo1 (Roundabout
1) in breast cancer cells, highlighting the significant role of miR-29a in carcinogenesis
breast cancer [126]. Moreover, upregulation of miR-29a induced adriamycin resistance in
MCF-7 breast cancer cells, possibly by inhibiting the PTEN/AKT/GSK3β pathway [127].
Treatment with progestin reduced migration and invasion in breast cancer cells, via the
miR-29/ATP1B1(ATPase Na+/K+ transporting β1 polypeptide) axis [128].

Table 4. miR-29s as biomarkers in breast cancer.

Samples Sample
Size & Methods Outcome Results Ref.

Blood
samples

- 54 patients with Luminal A-like
breast cancer and 56 healthy controls

- qRT-PCR

MiR-29a was significantly down-regulated
in the blood of patients with Luminal A-like
breast tumors compared to healthy controls.

Combined miR-29a, miR-181a and
miR-652 (AUC: 0.80, sensitivity: 77%

and specificity: 74%)
[129]

Serum
sample

- 76 breast cancer patients and
52 healthy controls.

- SdM-qRT-PCR
MiR-2 was significantly higher in breast

cancer patients compared to healthy controls.

MiR-29c
AUC: 0.724

(95% CI 0.638–0.810)
[46]

Serum
- 20 breast cancer patients and

20 controls
- SOLiD Sequencing (qRT-PCR)

MiR-29a was significantly elevated in the
serum of breast cancer patients (p < 0.05).

MiR-29a was elevated more than
5-folds by

SOLiD sequencing.
[130]

Tissue
samples

- 15 breast cancer patients and
15 healthy controls

- qRT-PCR

MiR-29a was significantly upregulated in
breast cancer as compared with their

respective healthy controls (p < 0.001).

MiR-29a
(AUC:0.969, Sensitivity: 93.3%,

specificity: 91.1%)
[131]

CI: confidence interval; AUC: area under the curve, qRT-PCR: quantitative real-time PCR.

4. Conclusions and Perspectives

The miR-29s are crucial regulators in numerous types of human cancer, which can
act as either tumor suppressors or inducers. By regulating multiple target genes, they are
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indirectly involved in controlling different cellular pathways including cell proliferation,
apoptosis, migration and invasion, and chemotherapeutic sensitivity, thereby contributing
to cancer progression, metastasis, and drug resistance. The profound dysregulation of
miR-29s in numerous types of cancer and their correlation to the patients’ OS and metastasis
have strongly signified them as potential diagnostic and prognostic biomarkers for specific
types of cancer. However, due to its flexibility, the application of miR-29s as biomarkers
and the development of miR-29s-based therapies need to be verified further for each type
and stage of cancer specifically.

Fortunately, the recent advances in sequencing technologies (next generation of se-
quencing and long-read sequencing) and genome editing allows better validation of the
target genes of miR-29s as well as an understanding of the roles of miR-29s in each can-
cer type. In addition, the rapid adoption of exosomes for the miRNA’s delivery could
also support the development of miR-29s for miR-29s-based therapies. In summary, exo-
somes have several desirable characteristics for delivering miRNAs including small sizes
(30–200 nm), being able to cross the blood barriers, being specific to the target cells, and
being relatively easy to be engineered. Consequently, the delivery by exosomes of miR-29s
to unhealthy/abnormal cells will be adapted for a potential therapeutic approach.
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