CRYSTALOGRAPHIC COMMUNICATIONS

Received 19 July 2017
Accepted 7 August 2017

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; cadmium(II) complex; N, N-diallylldithiocarbamate ligands; bridging dimeric structure.

CCDC reference: 899314
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Bis(μ-N,N-diallyldithiocarbamato)bis[(N,N-diallyldithiocarbamato)cadmium]

Damian C. Onwudiwe, ${ }^{\text {a,b }}$ Madalina Hrubaru, ${ }^{\text {c }}$ Eric C. Hosten ${ }^{\text {d }}$ and Charmaine Arderne ${ }^{\text {e* }}$

Abstract

${ }^{\text {a Department of Chemistry, School of Mathematical and Physical Sciences Faculty of Agriculture, Science and }}$ Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa, ${ }^{\mathbf{b}}$ Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, NorthWest University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa, ${ }^{\text {c C.D. Nenitescu Center of Organic }}$ Chemistry of the Romania Academy, Splaiul Independentei, 2023, Bucharest, Romania, dDepartment of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa, and ${ }^{\mathbf{e}}$ Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa. *Correspondence e-mail: carderne@uj.ac.za

The title compound, $\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{4}\right]$, is a neutral dinuclear cadmium(II) complex bearing four bis N, N-diallyldithiocarbamate ligands coordinating to two $\mathrm{Cd}^{\mathrm{II}}$ cations. In each of the monomeric subunits, there are four S atoms of two dithiocarbamate ligands $[\mathrm{Cd}-\mathrm{S}=2.5558$ (3), 2.8016 (3), 2.6050 (3) and 2.5709 (3) A] that coordinate to one $\mathrm{Cd}^{\mathrm{II}}$ atom in a bidentate mode. The dimers are located over an inversion centre bridged by two additional bridging $\mathrm{Cd}-\mathrm{S}$ bonds [2.6021 (3) Å], leading to a substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. The fivecoordinate environment around each of the $\mathrm{Cd}^{\text {II }}$ ions in the dimer is best described as substantially tetragonally distorted square pyramidal. The dithiocarbamate groups are themselves planar and are also coplanar with the $\mathrm{Cd}^{\mathrm{II}}$ ions. The negative charge on these groups is delocalized by resonance across the S atoms bound to the $\mathrm{Cd}^{\mathrm{II}}$ cation. This delocalization of the π electrons in the dithiocarbamate groups also extends to the $\mathrm{C}-\mathrm{N}$ bonds as they reveal significant double bond character $[\mathrm{C}-\mathrm{N}=1.3213$ (16) and 1.3333 (15) \AA].

1. Chemical context

Interest in the study of metal dithiocarbamates was aroused because of their interesting structural features and diverse applications (Thammakan \& Somsook, 2006). Dithiocarbamate complexes have largely been prepared from the group 12 elements, mostly because they have found wide practical application as additives to pavement asphalt, as antioxidants, and as potent pesticides etc (Subha et al., 2010). The structural chemistry of cadmium dithiocarbamates of the general formula $\mathrm{Cd}\left(\mathrm{S}_{2} \mathrm{CN} R R^{\prime}\right)$ where $R, R^{\prime}=$ alkyl or aryl is dominated by its existence in binuclear form. This common feature has been ascribed to the effect of aggregated species, which they adopt in the solid state, resulting from equal numbers of μ_{2}-tridentate and bidentate (chelating) ligands (Tiekink, 2003; Tan, Halim et al., 2016). Only a few exceptions have been reported where the complex exists in a trinuclear form (Kumar et al., 2014), or as a one-dimensional polymeric motif (Tan et al., 2013, 2016; Ferreira et al., 2016). Bis(N,Ndiallyldithiocarbamato)cadmium compounds have the advantage of having stability similar to that of the zinc complexes, but more favourable stability when compared to the mercury complexes. Cadmium dithiocarbamate complexes have been widely used as single-source precursors for CdS
nanoparticles and thin films, which have application as nonlinear optical materials (Thammakan \& Somsook, 2006). Another important practical application of cadmium dithiocarbamates is their ability to efficiently collect gold from acidic solutions (Rodina et al., 2014). Here we describe the crystal structure of a $\mathrm{Cd}^{\mathrm{II}}$ complex bearing a diallyldithiocarabamate ligand in a chelating and bridging dimeric structure.

2. Structural commentary

The coordination environment of the $\mathrm{Cd}^{\mathrm{II}}$ cation is observed to have a distorted tetragonal-pyramidal geometry (Fig. 1). The $\mathrm{Cd}^{\mathrm{II}}$ cation is coordinated by four S atoms with distances ranging from 2.5558 (3) to 2.8016 (3) \AA and to a fifth S atom at a distance of 2.6021 (3) \AA; these distances are similar to other complexes found to have been published previously (see Section 4: Database survey). A full geometry check carried out with the Mogul Geometry Check tool (Bruno et al., 2004) within the CSD suite of programs, showed no unusual geometrical parameters. The fifth S atom, $\mathrm{S} 12^{\mathrm{i}}$, is from a third ligand that is in the coordination sphere of a centrosymmetrically related $\mathrm{Cd}^{\mathrm{II}}$ ion [symmetry code: (i) $-x+2,-y,-z+1$]. This means that each bridging S atom simultaneously occupies an equatorial coordination site on one $\mathrm{Cd}^{\mathrm{II}}$ ion and an apical site on the other $\mathrm{Cd}^{\mathrm{II}}$ ion to form an edge-shared tetragonalpyramidal geometry. The $\mathrm{Cd}^{\mathrm{II}}$ ion deviates from the $\mathrm{S} 11-$ S12-S22-S21 mean plane by 0.704016 (17) A towards S12 ${ }^{i}$. The bridging network $\mathrm{Cd} 1-\mathrm{S} 12-\mathrm{Cd} 1^{\mathrm{i}}-\mathrm{S} 12^{\mathrm{i}}$ is completely

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme [symmetry code: (i) $-x+2,-y,-z+1]$. H atoms have been omitted for clarity.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Cd1-S11	2.5558 (3)	S12-C11	1.7532 (13)
Cd1-S22	2.5709 (3)	S21-C21	1.7224 (12)
Cd1-S12 ${ }^{\text {i }}$	2.6021 (3)	S22-C21	1.7263 (12)
Cd1-S21	2.6050 (3)	N1-C11	1.3213 (16)
Cd1-S12	2.8016 (3)	N2-C21	1.3333 (15)
S11-C11	1.7162 (13)		
S11-Cd1-S22	143.705 (13)	S22-Cd1-S12	96.950 (10)
S11-Cd1-S21	108.203 (11)	S12 ${ }^{\text {i }}$ Cd1-S12	96.257 (9)
S22-Cd1-S21	70.264 (10)	S21-Cd1-S12	152.651 (11)
S11-Cd1-S12	67.486 (10)	$\mathrm{Cd} 1^{\text {i }}-\mathrm{S} 12-\mathrm{Cd} 1$	83.743 (9)

Symmetry code: (i) $-x+2,-y,-z+1$.
planar since it lies over the inversion centre with a $\mathrm{Cd} 1 \cdots \mathrm{Cd} 1^{1}$ separation distance of 3.60987 (8) \AA and $\mathrm{S} 12-\mathrm{Cd} 1-\mathrm{S} 12^{\mathrm{i}}$ and $\mathrm{Cd} 1-\mathrm{S} 12-\mathrm{Cd} 1^{\mathrm{i}}$ angles of 96.257 (9) and $83.743(9)^{\circ}$, respectively. There is substantial distortion of the geometry of the monomeric subunit from the expected square-planar geometry. Deviations from the standard 90° angles are evident in the angles of S11-Cd1-S21 [108.203(11) ${ }^{\circ}$]; S22-Cd1S21 [70.264 (10) ${ }^{\circ}$; S22-Cd1-S12 [96.950 (10) ${ }^{\circ}$] and S11-Cd1-S12 [67.486 (10) ${ }^{\circ}$]. Deviations in the standard 180° angles are evident in the angles of $\mathrm{S} 11-\mathrm{Cd} 1-\mathrm{S} 22$ [143.705 (13) ${ }^{\circ}$] and S21-Cd1-S12 [152.651 (11) ${ }^{\circ}$]. The $\mathrm{Cd} 1-\mathrm{S} 12-\mathrm{Cd} 1^{\mathrm{i}}-\mathrm{S} 12^{\mathrm{i}}$ and $\mathrm{S} 11-\mathrm{S} 12-\mathrm{S} 22-\mathrm{S} 21$ mean planes form a dihedral (twist) angle of $84.6228(18)^{\circ}$. The dithiocarbamate groups are planar and each group of the monomeric subunit is coplanar with the $\mathrm{Cd}^{\mathrm{II}}$ ion (r.m.s. deviation is $0.010 \AA$). The mean plane consisting of atoms Cd1, S11, N1, $\mathrm{C} 11, \mathrm{~S} 12$ and the mean plane consisting of atoms Cd1, S22, N2, C21, S21 have a plane-normal-to-plane-normal angle of $37.0291(10)^{\circ}$; a centroid-to-centroid distance of 4.45354 (8) \AA; a plane-to-plane shift of 4.22298 (8) \AA and a plane-to-plane torsion (twist) angle of 8.0304 (12) ${ }^{\circ}$.

The S12-C11 bond length [1.7532 (13) A] is longer than the adjacent S11-C11 bond length [1.7162 (13) Å] suggesting that this bond has more double bond character in the dithiocarbamate portion that coordinates to the $\mathrm{Cd}^{\mathrm{II}}$ cation. On the opposite side of the $\mathrm{Cd}^{\mathrm{II}}$ ion, both $\mathrm{S}-\mathrm{C}$ bonds have approximately the same length, where $\mathrm{S} 21-\mathrm{C} 21$ and $\mathrm{S} 22-$ C21 bond lengths are 1.7224 (12) and 1.7263 (12) \AA, respectively, suggesting that the double bond of the dithiocarbamate is spread over the $\mathrm{S}-\mathrm{C}-\mathrm{S}$ bond via resonance. A possible explanation for this may be because of the fact that atom S12 serves as the bridging S atom in the complex. Also, the $\mathrm{N} 1-$ C 11 and $\mathrm{N} 2-\mathrm{C} 21$ distances $[1.3213$ (16) and 1.3333 (15) A., respectively] are shorter compared to the other $\mathrm{N}-\mathrm{C}$ distances indicating considerable double-bond character. The vinyl substituents are also planar and are at an angle of $91.6049(14)^{\circ}$ from the dithiocarbamate plane and at an angle of $150.9196(6)^{\circ}$ from the vinyl group directly opposite from it. This scenario is comparable with the other structures surveyed in the literature (see Section 4: Database survey). All highlighted and discussed geometrical parameters describing the coordination environment are given in Table 1. Weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions are observed (Table 2)

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12B \cdots S11	0.99	2.59	$2.9783(14)$	103
C15-H15A $\cdot \mathrm{S} 12$	0.99	2.50	$3.0438(14)$	115
C22-H22B $\mathrm{S}_{2} 1$	0.99	2.50	$3.0381(13)$	114
C25-H25B \cdots S22	0.99	2.56	$2.9845(14)$	106

3. Supramolecular features

The space group of the crystal is $P \overline{1}$, and the asymmetric unit consists of one-half of the complex molecule, so that the unit cell contains one complete complex molecule. Each half of the asymmetric unit is related by an inversion centre. In the crystal, weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are observed, forming chains along [001] (see Fig. 2 and Table 3).

4. Database survey

A search of the Cambridge Structural Database (version 1.19, May 2017 updates) (Groom et al., 2016) revealed that there are a number of similar types of compounds where in place of the N, N-diallyl side chain, the side-chains substituents are di-n-propyl [CSD refodes BEHNOR (Jian et al., 1999a),

Figure 2
The crystal structure of the title compound constructed from chains formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions (red dashed lines). [Authors: Please add unit cell outline and coordinate axes]

Table 3
$X-\mathrm{H} \cdots \pi$ interactions.
$C g 3$ is the centroid of the $\mathrm{Cd} 1-\mathrm{S} 11-\mathrm{C} 11-\mathrm{S} 12-\mathrm{Cd} 1^{\mathrm{i}}-\mathrm{S} 12^{\mathrm{i}}$ ring.

$\mathrm{C}-\mathrm{H} \cdots C g$	$\mathrm{C}-\mathrm{H}$	$\mathrm{H} \cdots C g$	$\mathrm{C} \cdots C g$	$\mathrm{C}-\mathrm{H} \cdots C g$
$\mathrm{C} 15-\mathrm{H} 15 B \cdots C g 3$	0.99	2.94	$3.9209(17)$	171
$\mathrm{C} 16-\mathrm{H} 16 \cdots C g 3$	0.99	2.90	$3.7648(17)$	152

Symmetry code: (i) $-x+2,-y,-z+1$.

BEHNOR01 (Ivanov et al., 2005)], di-isobutyl [LESVEK (Cox \& Tiekink, 1999), LESVEK01 (Glinskaya et al., 1999)] and diisopropyl [SUVTUY (Jian et al., 1999b), SUVTUY01 (Cox \& Tiekink, 1999)].

5. Synthesis and crystallization

A solution of $\mathrm{CdCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.55 \mathrm{~g}, 0.0025 \mathrm{~mol})$ in ethanol $(10 \mathrm{ml})$ was added to a solution of sodium N, N-diallyl dithiocarbamate $(0.98 \mathrm{~g}, 0.005 \mathrm{~mol})$ in ethanol $(10 \mathrm{ml})$, and the resulting suspension was stirred for 45 min at room temperature. This solution was then filtered, and rinsed several times with distilled water (Onwudiwe et al., 2015) and ethanol. Yield: $1.28 \mathrm{~g}, 56 \%$. Analysis found: C, 36.38; H, 4.40; N, 6.50; S, 28.42%. Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{4} \mathrm{Cd}: \mathrm{C}, 36.79 ; \mathrm{H}, 4.41 ; \mathrm{N}$, 6.13; S, 28.06. Crystals suitable for single-crystal X-ray analysis were obtained by recrystallization from chloroform/ethanol. Other analytical data for this material (melting point, IR and

Table 4
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{4}\right]$
M_{r}	913.92
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	200
$a, b, c(\AA)$	$8.0872(2), 9.4146(2), 13.0721(3)$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$75.858(1), 78.460(1), 77.488(1)$
$V\left(\AA^{3}\right)$	$930.75(4)$
Z	1
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.62
Crystal size (mm)	$0.60 \times 0.44 \times 0.17$
Data collection	Bruker APEXII CCD
Diffractometer	Numerical $(S A D A B S ;$ Bruker,
Absorption correction	$2011)$
	$0.824,1.000$
$T_{\text {min }}, T_{\text {max }}$	$16101,4644,4391$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.015
$R_{\text {int }}$	0.669
(sin $\theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.015,0.037,1.15$
No. of reflections	4644
No. of parameters	191
H-atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	$0.28,-0.31$

Computer programs: BIS and APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

NMR data) has been published previously (Onwudiwe et al., 2015).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically and refined isotropically using the riding-model approximation with $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene groups and $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ $U_{\text {eq }}(\mathrm{C})$ for all vinyl groups.

Acknowledgements

The authors wish to acknowledge their respective institutions for their facilities to carry out the synthesis and characterization of the title compound.

Funding information

Funding for this research was provided by: North-West University, South Africa.

References

Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2011). BIS, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. \& Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.

Cox, M. J. \& Tiekink, E. R. T. (1999). Z. Kristallogr. 214, 670-676. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Ferreira, I. P., de Lima, G. M., Paniago, E. B., Pinheiro, C. B., Wardell, J. L. \& Wardell, S. M. S. V. (2016). Inorg. Chim. Acta, 441, 137-145.

Glinskaya, L. A., Zemskova, S. M. \& Klevtsova, R. F. (1999). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 40, 979-983.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Ivanov, A. V., Konzelko, A. A., Gerasimenko, A. V., Ivanov, M. A., Antsutkin, O. N. \& Forsling, W. (2005). Russ. J. Inorg. Chem. 50, 1827.

Jian, F., Wang, Z., Bai, Z., You, X., Fun, H. \& Chinnakali, K. (1999a). J. Chem. Crystallogr. 29, 227-231.

Jian, F.-F., Wang, Z.-X., Fun, H.-K., Bai, Z.-P. \& You, X.-Z. (1999b). Acta Cryst. C55, 174-176.
Kumar, V., Singh, V., Gupta, A. N., Manar, K. K., Drew, M. G. B. \& Singh, N. (2014). CrystEngComm, 16, 6765-6774.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Onwudiwe, D. C., Hrubaru, M. \& Ebenso, E. E. (2015). J. Nanomaterials, 2015, 1-9.
Rodina, T. A., Ivanov, A. V. \& Gerasimenko, A. V. (2014). Russ. J. Coord. Chem. 40, 100-108.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Subha, P. V., Valarmathi, P., Srinivasan, N., Thirumaran, S. \& Saminathan, K. (2010). Polyhedron, 29, 1078-1082.
Tan, Y. S., Halim, S. N. A. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.
Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. \& Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.
Thammakan, N. \& Somsook, E. (2006). Mater. Lett. 60, 1161-1165.
Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.

supporting information

Bis($\mu-N, N$-diallyldithiocarbamato)bis[(N,N-diallyldithiocarbamato)cadmium]

Damian C. Onwudiwe, Madalina Hrubaru, Eric C. Hosten and Charmaine Arderne

Computing details

Data collection: BIS (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Bis(μ - N, N-diallyldithiocarbamato)bis[(N,N-diallyldithiocarbamato)cadmium]

Crystal data

$\left[\mathrm{Cd}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{4}\right]$
$M_{r}=913.92$
Triclinic, $P \overline{1}$
$a=8.0872$ (2) \AA
$b=9.4146(2) \AA$
$c=13.0721(3) \AA$
$\alpha=75.858(1)^{\circ}$
$\beta=78.460(1)^{\circ}$
$\gamma=77.488(1)^{\circ}$
$V=930.75(4) \AA^{3}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 8.3333 pixels mm^{-1}
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2011)
$T_{\min }=0.824, T_{\text {max }}=1.000$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.037$
$S=1.15$
4644 reflections
191 parameters
0 restraints
Primary atom site location: dual

$$
Z=1
$$

$$
F(000)=460
$$

$D_{\mathrm{x}}=1.631 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9892 reflections
$\theta=3.1-28.4^{\circ}$
$\mu=1.62 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Platelet, colourless
$0.60 \times 0.44 \times 0.17 \mathrm{~mm}$

16101 measured reflections
4644 independent reflections
4391 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-16 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0111 P)^{2}+0.3546 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}

Extinction correction: SHELXL2017
(Sheldrick, 2015),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0173 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to $1.2 U_{\text {eq }}(\mathrm{C})$.
Two reflections with large differences between their observed and calculated intensity were omitted. This is probably due to obstruction by the beam stop.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
Cd1	$0.89235(2)$	$-0.00613(2)$	$0.63560(2)$	$0.02744(4)$
S11	$0.78076(5)$	$-0.22154(4)$	$0.60114(3)$	$0.03471(8)$
S12	$0.78142(4)$	$0.06086(3)$	$0.43671(3)$	$0.02551(7)$
S21	$0.84065(5)$	$-0.02186(4)$	$0.84095(3)$	$0.03026(7)$
S22	$0.80123(4)$	$0.25713(4)$	$0.67413(2)$	$0.02688(7)$
N1	$0.66681(14)$	$-0.17652(12)$	$0.41751(9)$	$0.0263(2)$
N2	$0.76538(14)$	$0.25083(12)$	$0.88135(8)$	$0.0252(2)$
C11	$0.73731(15)$	$-0.12060(14)$	$0.47817(10)$	$0.0234(2)$
C12	$0.61897(18)$	$-0.32572(16)$	$0.45381(11)$	$0.0323(3)$
H12A	0.522086	-0.328088	0.418787	0.039^{*}
H12B	0.579076	-0.343192	0.531802	0.039^{*}
C13	$0.7621(2)$	$-0.44839(16)$	$0.43028(13)$	$0.0402(3)$
H13	0.865773	-0.457570	0.456951	0.048^{*}
C14	$0.7529(3)$	$-0.54414(18)$	$0.37491(16)$	$0.0535(5)$
H14A	0.650843	-0.537598	0.347257	0.064^{*}
H14B	0.848334	-0.620204	0.362346	0.064^{*}
C15	$0.6278(2)$	$-0.09675(16)$	$0.31078(11)$	$0.0342(3)$
H15A	0.641253	0.008254	0.299629	0.041^{*}
H15B	0.506864	-0.097581	0.307348	0.041^{*}
C16	$0.74035(18)$	$-0.16349(18)$	$0.22396(11)$	$0.0367(3)$
H16	0.860609	-0.180714	0.223617	0.044^{*}
C17	$0.6869(2)$	$-0.2001(2)$	$0.14846(13)$	$0.0468(4)$
H17A	0.567516	-0.184585	0.146136	0.056^{*}
H17B	0.767061	-0.242477	0.095478	0.056^{*}
C21	$0.79907(15)$	$0.16963(13)$	$0.80674(10)$	$0.0221(2)$
C22	$0.78373(18)$	$0.18663(15)$	$0.99407(10)$	$0.0302(3)$
H22A	0.861484	0.238077	1.015705	0.036^{*}
H22B	0.836930	0.080256	1.001404	0.036^{*}
C23	$0.6172(2)$	$0.19957(18)$	$1.06666(12)$	$0.0420(4)$
H23	0.528018	0.158623	1.053323	0.050^{*}
C24	$0.5865(3)$	$0.2647(2)$	$1.14844(14)$	$0.0635(6)$

H24A	0.673453	0.306597	1.163574	0.076^{*}
H24B	0.477492	0.269906	1.192382	0.076^{*}
C25	$0.72097(18)$	$0.41463(14)$	$0.85522(11)$	$0.0307(3)$
H25A	0.640375	0.449151	0.915541	0.037^{*}
H25B	0.662323	0.445861	0.791634	0.037^{*}
C26	$0.8754(2)$	$0.48598(16)$	$0.83349(13)$	$0.0407(3)$
H26	0.964495	0.461004	0.777955	0.049^{*}
C27	$0.8956(3)$	$0.5809(2)$	$0.88618(19)$	$0.0629(5)$
H27A	0.808789	0.608066	0.942160	0.075^{*}
H27B	0.997242	0.622596	0.868496	0.075^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.02830(6)$	$0.03364(6)$	$0.02419(6)$	$-0.00931(4)$	$-0.00001(4)$	$-0.01311(4)$
S11	$0.0509(2)$	$0.03708(18)$	$0.02178(15)$	$-0.02237(16)$	$-0.00800(14)$	$-0.00194(13)$
S12	$0.02576(15)$	$0.02429(14)$	$0.02685(15)$	$-0.00332(11)$	$-0.00321(12)$	$-0.00771(11)$
S21	$0.04427(19)$	$0.02305(14)$	$0.02257(15)$	$-0.00670(13)$	$-0.00156(13)$	$-0.00538(11)$
S22	$0.03366(16)$	$0.02749(15)$	$0.02034(14)$	$-0.00547(12)$	$-0.00683(12)$	$-0.00441(11)$
N1	$0.0255(5)$	$0.0302(5)$	$0.0262(5)$	$-0.0061(4)$	$-0.0051(4)$	$-0.0093(4)$
N2	$0.0296(5)$	$0.0239(5)$	$0.0214(5)$	$0.0007(4)$	$-0.0052(4)$	$-0.0070(4)$
C11	$0.0198(5)$	$0.0288(6)$	$0.0225(5)$	$-0.0051(4)$	$0.0005(4)$	$-0.0093(5)$
C12	$0.0311(7)$	$0.0389(7)$	$0.0328(7)$	$-0.0180(6)$	$-0.0036(5)$	$-0.0096(6)$
C13	$0.0388(8)$	$0.0292(7)$	$0.0493(9)$	$-0.0108(6)$	$-0.0098(7)$	$0.0045(6)$
C14	$0.0623(11)$	$0.0312(8)$	$0.0604(11)$	$-0.0166(7)$	$0.0138(9)$	$-0.0086(7)$
C15	$0.0404(8)$	$0.0328(7)$	$0.0330(7)$	$0.0007(6)$	$-0.0179(6)$	$-0.0098(6)$
C16	$0.0267(6)$	$0.0527(9)$	$0.0279(7)$	$-0.0097(6)$	$-0.0037(5)$	$-0.0010(6)$
C17	$0.0537(10)$	$0.0539(10)$	$0.0336(8)$	$-0.0058(8)$	$-0.0040(7)$	$-0.0163(7)$
C21	$0.0188(5)$	$0.0252(6)$	$0.0227(5)$	$-0.0039(4)$	$-0.0028(4)$	$-0.0064(4)$
C22	$0.0365(7)$	$0.0318(6)$	$0.0212(6)$	$0.0017(5)$	$-0.0062(5)$	$-0.0089(5)$
C23	$0.0427(8)$	$0.0414(8)$	$0.0309(7)$	$-0.0007(7)$	$0.0002(6)$	$0.0023(6)$
C24	$0.0823(14)$	$0.0469(10)$	$0.0345(9)$	$0.0170(10)$	$0.0156(9)$	$-0.0033(7)$
C25	$0.0376(7)$	$0.0243(6)$	$0.0286(6)$	$0.0035(5)$	$-0.0072(5)$	$-0.0091(5)$
C26	$0.0487(9)$	$0.0285(7)$	$0.0445(9)$	$-0.0070(6)$	$-0.0074(7)$	$-0.0067(6)$
C27	$0.0769(14)$	$0.0452(10)$	$0.0796(14)$	$-0.0149(9)$	$-0.0308(12)$	$-0.0187(10)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Cd} 1-\mathrm{S} 11$	$2.5558(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.483(2)$
$\mathrm{Cd} 1-\mathrm{S} 22$	$2.5709(3)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~A}$	0.9900
$\mathrm{Cd} 1 — \mathrm{~S} 12^{\mathrm{i}}$	$2.6021(3)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9900
$\mathrm{Cd} 1-\mathrm{S} 21$	$2.6050(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.297(2)$
$\mathrm{Cd} 1-\mathrm{S} 12$	$2.8016(3)$	$\mathrm{C} 16-\mathrm{H} 16$	0.9500
$\mathrm{~S} 11-\mathrm{C} 11$	$1.7162(13)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	0.9500
$\mathrm{~S} 12-\mathrm{C} 11$	$1.7532(13)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B}$	0.9500
$\mathrm{~S} 21-\mathrm{C} 21$	$1.7224(12)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.484(2)$
$\mathrm{S} 22-\mathrm{C} 21$	$1.7263(12)$	$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	0.9900
$\mathrm{~N} 1-\mathrm{C} 11$	$1.3213(16)$	$\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	0.9900

N1-C15	1.4735 (17)
N1-C12	1.4779 (17)
N2-C21	1.3333 (15)
N2-C22	1.4738 (16)
N2-C25	1.4749 (16)
C12-C13	1.490 (2)
C12-H12A	0.9900
C12-H12B	0.9900
C13-C14	1.308 (2)
C13-H13	0.9500
C14-H14A	0.9500
C14-H14B	0.9500
S11-Cd1-S22	143.705 (13)
$\mathrm{S} 11-\mathrm{Cd} 1-\mathrm{S} 12^{\text {i }}$	103.129 (12)
S22-Cd1-S12 ${ }^{\text {i }}$	111.289 (11)
S11-Cd1-S21	108.203 (11)
S22-Cd1-S21	70.264 (10)
S12-Cd1-S21	110.826 (11)
S11-Cd1-S12	67.486 (10)
S22-Cd1-S12	96.950 (10)
S12-Cd1-S12	96.257 (9)
S21-Cd1-S12	152.651 (11)
C11-S11-Cd1	91.26 (4)
C11-S12-Cd1 ${ }^{\text {i }}$	100.48 (4)
C11-S12-Cd1	82.68 (4)
Cd1 ${ }^{\text {i }}$-S12-Cd1	83.743 (9)
C21-S21-Cd1	84.58 (4)
C21-S22-Cd1	85.57 (4)
C11-N1-C15	123.59 (11)
C11-N1-C12	121.48 (11)
C15-N1-C12	114.93 (11)
C21-N2-C22	123.16 (10)
C21-N2-C25	122.11 (11)
C22-N2-C25	114.53 (10)
N1-C11-S11	120.74 (10)
N1-C11-S12	120.64 (10)
S11-C11-S12	118.58 (7)
N1-C12-C13	113.50 (11)
N1-C12-H12A	108.9
C13-C12-H12A	108.9
N1-C12-H12B	108.9
C13-C12-H12B	108.9
H12A-C12-H12B	107.7
C14-C13-C12	123.61 (16)
C14-C13-H13	118.2
C12-C13-H13	118.2
C13-C14-H14A	120.0

$\mathrm{C} 23-\mathrm{C} 24$	$1.315(3)$
$\mathrm{C} 23-\mathrm{H} 23$	0.9500
$\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	0.9500
$\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B}$	0.9500
$\mathrm{C} 25-\mathrm{C} 26$	$1.490(2)$
$\mathrm{C} 25-\mathrm{H} 25 \mathrm{~A}$	0.9900
$\mathrm{C} 25-\mathrm{H} 25 \mathrm{~B}$	0.9900
$\mathrm{C} 26-\mathrm{C} 27$	$1.307(2)$
$\mathrm{C} 26-\mathrm{H} 26$	0.9500
$\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}$	0.9500
$\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B}$	0.9500

N1-C15-H15A	109.1
C16-C15-H15A	109.1
N1-C15-H15B	109.1
C16-C15-H15B	109.1
H15A-C15-H15B	107.8
C17-C16-C15	124.89 (14)
C17-C16-H16	117.6
C15-C16-H16	117.6
C16-C17-H17A	120.0
C16-C17-H17B	120.0
H17A-C17-H17B	120.0
N2-C21-S21	120.81 (9)
N2-C21-S22	119.72 (9)
S21-C21-S22	119.47 (7)
N2-C22-C23	112.57 (11)
N2-C22-H22A	109.1
C23-C22-H22A	109.1
N2-C22-H22B	109.1
C23-C22-H22B	109.1
H22A-C22-H22B	107.8
C24-C23-C22	123.46 (19)
C24-C23-H23	118.3
C22-C23-H23	118.3
C23-C24-H24A	120.0
C23-C24-H24B	120.0
H24A-C24-H24B	120.0
N2-C25-C26	111.95 (11)
N2-C25-H25A	109.2
C26-C25-H25A	109.2
N2-C25-H25B	109.2
C26-C25-H25B	109.2
H25A-C25-H25B	107.9
C27-C26-C25	123.99 (18)
C27-C26-H26	118.0
C25-C26-H26	118.0

supporting information

C13-C14-H14B	120.0	C26-C27-H27A	120.0
H14A-C14-H14B	120.0	C26-C27-H27B	120.0
N1-C15-C16	112.59 (12)	H27A - $\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B}$	120.0
C15-N1-C11-S11	-179.31 (10)	N1-C15-C16-C17	128.82 (17)
C12-N1-C11-S11	1.48 (17)	C22-N2-C21-S21	8.51 (17)
C15-N1-C11-S12	2.97 (17)	C25-N2-C21-S21	-176.94 (10)
C12-N1-C11-S12	-176.24 (9)	$\mathrm{C} 22-\mathrm{N} 2-\mathrm{C} 21-\mathrm{S} 22$	-171.47 (10)
Cd1-S11-C11-N1	-178.09 (10)	C25-N2-C21-S22	3.08 (17)
Cd1-S11-C11-S12	-0.33 (7)	$\mathrm{Cd} 1-\mathrm{S} 21-\mathrm{C} 21-\mathrm{N} 2$	-176.69 (10)
Cd1- $\mathrm{S}_{12}-\mathrm{C} 11-\mathrm{N} 1$	-99.72 (10)	$\mathrm{Cd} 1-\mathrm{S} 21-\mathrm{C} 21-\mathrm{S} 22$	3.29 (6)
$\mathrm{Cd} 1-\mathrm{S} 12-\mathrm{C} 11-\mathrm{N} 1$	178.07 (10)	$\mathrm{Cd} 1-\mathrm{S} 22-\mathrm{C} 21-\mathrm{N} 2$	176.65 (10)
Cd1- ${ }^{\text {i }} 12-\mathrm{C} 11-\mathrm{S} 11$	82.51 (7)	Cd1-S22-C21-S21	-3.33 (7)
Cd1-S12-C11-S11	0.30 (6)	$\mathrm{C} 21-\mathrm{N} 2-\mathrm{C} 22-\mathrm{C} 23$	-114.38 (14)
C11-N1-C12-C13	-86.54 (16)	C25-N2-C22-C23	70.69 (16)
C15-N1-C12-C13	94.18 (15)	N2-C22-C23-C24	-123.84 (16)
N1-C12-C13-C14	-123.54 (16)	C21-N2-C25-C26	-91.28 (15)
C11-N1-C15-C16	110.28 (15)	C22-N2-C25-C26	83.71 (15)
C12-N1-C15-C16	-70.47 (16)	N2-C25-C26-C27	-122.19 (18)

Symmetry code: (i) $-x+2,-y,-z+1$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{~S} 11$	0.99	2.59	$2.9783(14)$	103
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{~S} 12$	0.99	2.50	$3.0438(14)$	115
C22-H22B $\cdots \mathrm{S} 21$	0.99	2.50	$3.0381(13)$	114
C25-H25B $\cdots \mathrm{S} 22$	0.99	2.56	$2.9845(14)$	106

