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A B S T R A C T   

We aimed at establishing a risk – score model using pyroptosis-related genes to predict the prognosis of patients 
with head and neck squamous cell carcinoma (HNSCC). A total of 33 pyroptosis-related genes were selected. We 
then evaluated the data of 502 HNSCC patients and 44 normal patients from TCGA database. Gene expression 
was then profiled to detect differentially expressed genes (DEGs). Using the univariate, the least absolute 
shrinkage and selection operator (LASSO) Cox regression analyses, we generated a risk – score model. Tissue 
samples from neoplastic and normal sites of 44 HNSCC patients were collected. qRT-PCR were employed to 
analyze the mRNA level of the samples. Kaplan-Meier method was used to evaluate the overall survival rate (OS). 
Enrichment analysis was performed to elucidate the underlying mechanism of HNSCC patient’s differentially 
survival status from the perspective of tumor immunology. 17 genes were categorized as DEGs. GSDME, IL-6, 
CASP8, CASP6, NLRP1 and NLRP6 were used to establish the risk – score model. Each patient’s risk score in 
the TCGA cohort was calculated using the risk – score formula. The risk score was able to independently predict 
the OS of the HNSCC patients (P = 0.02). The OS analysis showed that the risk score model (P < 0.0001) was 
more reliable than single gene, a phenomenon verified by practical patient cohort. Additionally, enrichment 
analysis indicated more active immune activities in low-risk group than high-risk group. In conclusion, our risk – 
score model has provided novel strategy for the prediction of HNSCC patients’ prognosis.   

Introduction 

Head and neck squamous cell carcinoma (HNSCC) is one of the most 
common malignancies of head and neck, with a propensity for high 
recurrence and low survival rates. HNSCC accounts for an estimated 
incidence of more than 880,000 cases and more than 450,000 deaths 
[1]. 

Despite significant improvement in the treatment of HNSCC, such as 
functional surgery, induction chemotherapy, and adjuvant radiotherapy 
in the past three decades, the estimated 5-year survival rate of patients 
with HNSCC remains low (50 – 55%) [2,3] Thus, there is an urgent need 

for development of more effective molecules, which could help in the 
diagnosis and prediction of prognosis in patients with HNSCC. 

Apoptosis and necrosis are the two main types of cell death that help 
in maintaining cellular homeostasis. However, recent reports have 
shown existence of pyroptosis, a cell death form that is triggered by 
proinflammatory signals [4,5]. Gasdermin family molecules such as 
GSDMA, GSDMB, GSDMC, GSDMD, GSDME and DFNB59, are key 
effector molecules that mediate the occurrence of pyroptosis. For 
instance, GSDMD-mediated pyroptosis requires the activation of caspase 
– 1 and caspase-4/5/11 molecules. The activated caspase – 1/4/5/11 
split the GSDMD into the N-terminal that has perforation effect and the 
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C-terminal that has self -inhibition effect. The N-terminal then binds to 
membrane lipids, phosphatidylinositol and cardiolipin, leading to 
localization into cell membrane pores. Cellular gasdermin family pro
teins have been shown to form 10 to 20 nm pores in the cell membrane, 
and then cytoplasmic contents such as interleukin (IL) – 1B and IL – 18 

are recruited to release inflammatory cells. This cascade of events trig
gers inflammatory responses causing cell pyroptosis [6-8]. Furthermore, 
GSDME – mediated pyroptosis relies on caspase-3 [9]. 

Pyroptosis was initially shown to be key in combating infection [10]. 
However, recent reports have demonstrated that pyroptosis could also 

Fig. 1. Expressions of the 33 pyroptosis-related genes and their interaction. (A) Heatmap (green: low expression level; red: high expression level) of the 
pyroptosis-related genes between the normal (N, brilliant blue) and the tumor tissues (T, red). (B) The correlation network of the pyroptosis-related genes (red line: 
positive correlation; blue line: negative correlation. The depth of the colours reflects the strength of the relevance). 

Fig. 2. Construction of risk score model in the TCGA cohort. (A) Univariate Cox regression analysis of OS for each pyroptosis-related gene, and 7 genes with P <
0.05. (B) LASSO regression of the 7 OS-related genes. (C) Cross-validation for tuning the parameter selection in the LASSO regression. (D) Distribution of patients 
based on the risk score. (E) PCA plot for HNSCCs based on the risk score. (F) The survival status for each patient (low-risk population: on the left side of the dotted 
line; high-risk population: on the right side of the dotted line). 
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play an important role in the development of tumors. For instance, 
Akino et al. reported that about 52% of 89 gastric cancer tissue samples 
showed abnormal methylation in the GSDME promoter [11]. Besides, 
Kim et al. treated three colorectal cancer cell lines: HCT116, HT29 and 
DLD-1 with demethylation inhibitor 5-Azad C and showed upregulation 
of GSDME gene expression. Furthermore, there was increased methyl
ation of the GSDME gene promoter in colorectal and breast tumor tis
sues, compared to normal colorectal tissues [12,13]. 

Whereas pyroptosis plays an important role in oncogenesis and 
anticancer processes, there is limited data on the significance of 
pyroptosis in HNSCC lesions. Here we performed a systematic study to 
determine the expression profile of pyroptosis-related genes in normal 
and HNSCC tissues. We then developed a novel risk-score model to 
predict the prognosis of HNSCC patients. 

Material and methods 

Database and patients 

We obtained RNA sequencing (RNA-seq) data of 502 HNSCC patients 
and 44 normal human head and neck samples as well as their corre
sponding clinical features from The Cancer Genome Atlas (TCGA) 
database (https://portal.gdc.cancer.gov/repository). Fresh HNSCC and 
normal tissues from 44 human patients (collected postoperatively from 
April 2010 to October 2014), the same cohort with our previous study, 
were collected by the Department of Oral and Maxillofacial Head and 
Neck Oncology, Shanghai Ninth People’s Hospital [14]. During opera
tions, frozen sections of the tissue at the surgical margins were examined 
at the time when the expanded resection was finished. If the patholog
ical results were positive, the expanded resection was continued until 
the surgical margins in all directions were negative, and the normal 
tissue were resected from surrounding area. Patients were diagnosed 

through pathological examination by pathologists at Department of 
Pathology, Shanghai Ninth People’s Hospital. All cases were clinically 
staged according to the 8th Edition TNM Classification for Head and 
Neck Cancer developed by the Union for International Cancer Control 
(UICC) and the American Joint Committee on Cancer (AJCC) [15]. The 
clinical patients’ data was shown in Table S1. All of the 44 patients with 
HNSCC were followed up by telephone survey until October 2019. This 
study was approved by the Human Research Ethics Committee of the 
Ninth People’s Hospital, Shanghai JiaoTong University School of Med
icine (Shanghai, China). Given the retrospective nature of this study, 
informed consent was not available. 

Identification of differentially expressed pyroptosis-related genes 

We screend and extracted 33 pyroptosis-related genes from previous 
studies (Table S2) [16-19]. We then normalized the expression data in 
TCGA database to fragment per kilobase million (FPKM) values prior to 
comparison. The “limma” package was used to identify the DEGs with | 
log2FC| ≥ 0.5 and FDR < 0.05. 

Establishment of the prognostic risk-model 

To assess the prognostic value of the pyroptosis-related genes, we 
employed univariate Cox regression analysis to evaluate the correlation 
between each gene and survival status in the TCGA cohort. To prevent 
omissions, we set 0.05 as the cut-off P-value, and then identified 17 
survival-related genes for subsequent analysis. The least absolute 
shrinkage and selection operator (LASSO) Cox regression model (R 
package “glmnet”) was then utilized to narrow down the candidate 
genes and develop the prognostic model. A total of six genes and their 
coefficients were retained through multivariate Cox regression analysis, 
and then the penalty parameter (λ) was decided by minimum criteria. In 

Fig. 3. OS analysis and ROC analysis based on each single gene and risk score. (A) Kaplan-Meier curve based on GSDME. (B) Kaplan-Meier curve based on IL-6. 
(C) Kaplan-Meier curve based on NLRP1. (D) ROC analysis based on GSDME. (E) ROC analysis based on IL-6. (F) ROC analysis based on NLRP1. (G) Kaplan-Meier 
curve based on CASP8 (H) Kaplan-Meier curve based on NLRP6 (I) Kaplan-Meier curve based on CASP6 (J) ROC analysis based on CASP8 (K) ROC analysis based on 
NLRP6 (L) ROC analysis based on CASP6 (M) Kaplan-Meier curve based on risk score. (N) ROC analysis based on risk score. 
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addition, we calcuated the risk score after centralization and standard
ization (applying the “scale” function in R) of the TCGA expression data, 
using the risk score formula(X: coefficients, Y: gene expression level): 

Risk Score =
∑n

i
Xi × Yi 

The HNSCC patients in the TCGA cohort were divided into low- and 
high-risk subgroups according to the median risk score, and then the 
overall survival (OS) time was compared between the two subgroups via 
Kaplan–Meier analysis. Principal component analysis (PCA) based on 
the 6-gene model was performed by the “prcomp” function in the“stats” 
R package. The “survival”, “survminer” and “timeROC” R packages were 
used to perform a 5-year ROC curve analysis. 

Independent prognostic analysis of the risk score 

We extracted the clinical data of 502 HNSCC patients in the TCGA 
cohort. We then analyses the variables against the risk score in our 
regression model. Univariate and multivariate Cox regression models 
were employed for the analysis. 

Total RNA extraction and reverse transcription 

The clinical specimens of 44 patients with HNSCC were collected 
during surgeries and the specimens were immersed into the RNAlater 
Solution (Invitrogen, USA) immediately and then used for RNA extrac
tion or stored at − 80 ◦C. Total RNA was extracted from the fresh tissues 
using TRIzol Reagent (Invitrogen) and cDNA was synthesized from 10 μg 
of total mRNA by using High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems) following manufacturers’ instructions. 

qRT-PCR analysis and RNA sequencing 

qRT-PCR was performed by using FastStart Universal SYBR Green 
Master Mix (Roche) and QuantStudio™ 6 Flex (Applied Biosystems). 
Primers used for the qRT-PCR were showed in Table S3. We performed 
RNA-seq analysis using the NovelBrain Cloud Analysis Platform, China. 
In brief, after total RNA was extracted, the cDNA libraries were con
structed for each pooled RNA sample using the VAHTSTM Total RNA- 
seq (H/M/R). The gene expression level was determined by the FPKM 
method. 

Immune function analysis between the low- and high-risk groups 

The HNSCC patients in the TCGA cohort were stratified into two 
subgroups according to the median risk score. The “gsva” package was 
utilized to perform single-sample gene set enrichment analysis (ssGSEA) 
and then calculate the scores of infiltrating immune cells to evaluate the 
activity of immune-related pathways. 

Statistical analysis 

Single-factor analysis of variance was used to compare the gene 
expression between the normal tissues and HNSCC tissues, while the 
Pearson chi-square test was used to compare the categorical variables. 
To compare the OS of the patients between subgroups, we employed the 
Kaplan – Meier method with a two – sided log – rank test. We used 
univariate and multivariate Cox regression models to assess the inde
pendent prognostic value of the risk – score model. In addition, we used 
the Mann–Whitney test to compare immune cell infiltration and immune 
pathway activation between the two groups. All statistical analyses were 
performed in R software (v4.0.2) and Graphpad Prism 8.0. A P < 0.05 
was considered statistically significant. 

Results 

Identification of DEGs between normal and HNSCC tissues 

The 33 pyroptosis-related gene expression levels from 44 normal and 
502 HNSCC tissues were compared in The Cancer Genome Atlas (TCGA), 
and a total of 17 DEGs were identified (all |log2FC| ≥ 0.5 and FDR <
0.05). The analysis showed that 3 genes (ELANE, IL-18, IL-6) were 
downregulated while 14 genes (GSDMD, PLCG1, IL1B, GSDME, 
PYCARD, NLRP1, CASP8, IL18, IL6, NLRP6, NLRC4, AIM2, GSDMB and 
CASP6) were enriched in the tumor group (Fig. S1). In addition, we 
profiled the RNA expression of these genes as shown in heatmaps 
(Fig. 1A). To further explore the interactions among the pyroptosis- 
related genes, we conducted a correlation network analysis with all 
the pyroptosis-related genes (Fig. 1B). 

Table 1 
Univariate and multivariate analyses of clinical characteristics for overall sur
vival in patients with HNSCC (TCGA cohort).  

Characteristics Amount 
(%) 

Univariate 
P 1value 

HR2 

(95% 
CI3) 

Multivariate 
P 1value 

HR2 

(95% 
CI3) 

Age  0.02*  0.31  
≤60 246 

(49.0%)  
1.352  1.252 

> 60 256 
(51.0%)  

(1.056 
– 
1.639)  

(0.956 
–1.639) 

Gender  0.066    
Male 368 

(73.3%)  
0.764   

Female 134 
(26.7%)  

(0.574 
– 
1.018)   

Smoking 
history  

0.618    

Present 381 
(77.4%)  

1.089   

Absent 111 
(22.6%)  

(0.778 
– 
1.525)   

Alcohol 
history  

0.733    

Present 333 
(67.8%)  

0.952   

Absent 158 
(32.2%)  

(0.716 
– 
1.265)   

T stage  0.037*  0.12  
T1& T2 319 

(63.5%)  
1.245  1.245 

T3& T4 183 
(36.5%)  

(1.132 
– 
1.361)  

(0.932 
–1.661) 

Clinical stage  0.238    
StageI&II 388 

(77.3%)  
1.217   

StageIII&Ⅳ 114 
(22.7%)  

(0.878 
– 
1.688)   

Radiation 
therapy  

0.002**  0.03*  

Present 288 
(57.4%)  

0.613  0.672 

Absent 214 
(42.6%)  

(0.452 
– 
0.831)  

(0.483 
–0.840) 

Risk score  0.002**  0.02*  
Low 251 

(50%)  
1.275  1.525 

High 251 
(50%)  

(1.118 
– 
1.358)  

(1.278 
–1.712)  

1 All statistical tests were 2-sided. 2HR, Hazard ratio. 3CI, confdence interval. 
*= P < 0.05; **= P < 0.01. 
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Development of a prognostic gene risk-model in the TCGA cohort 

A total of 502 HNSCC samples were matched with the corresponding 
patients who had complete survival data. Univariate Cox regression 
analysis was used for primary screening of the survival-related genes. 
Out of the 7 genes (GSDME, IL-6, IL-1B, NLRP1, CASP8, NLRP6, and 
CASP6) that had a P < 0.05, 5 genes (GSDME, IL-6, IL-1B, CASP8 and 
CASP6) were associated with increased cancer risk with HRs >1, while 
the other 2 genes (NLRP1and NLRP6) were protective genes with HRs 
<1 (Fig. 2A). In addition, the LASSO Cox regression analysis yielded 6 
genes that were used to construct a 6 – gene model according to the 
optimum λ value (Fig. 2B, C). The risk score was calculated as follows: 
risk score = (9.95×10− 4* expression level of GSDME) + (2.96×10− 5* 
expression level of IL6) + (− 2.67×10− 5* expression level of NLRP1) +
(2.65×10− 4* expression level of CASP8) + (− 0.11* expression level of 
NLRP6) + (2.75×10− 3* expression level of CASP6). 

Based on the median score, the HNSCC patients were randomly and 
equally divided into low- and high-risk subgroups (Fig. 2D). PCA showed 
efficient discrimination of patients with different risks into two clusters 
(Fig. 2E). Furthermore, t-distributed stochastic neighbor embedding 
(tSNE) was performed to validate the PCA result (Fig. S2). Patients in the 
high-risk group had a higher death rate and shorter survival compared to 
those in the low-risk group (Fig. 2F). 

Survival analysis based on risk-score model in comparison with single gene 

HNSCC patients were equally and randomly divided into low- and 
high - expression subgroups on the expression profile of the six pivotal 
genes to perform single gene survival analysis. However, there is only 
difference in OS between the low-and high-expression groups based on 
NLRP1 (P = 0.022, Fig. 3C), all of other genes were nonsignificant 

(Fig. 3A, B, G-I). It is worth noting that there was a remarkable differ
ence between low-and high-risk groups in survival analysis (P < 0.0001, 
Fig. 3M). ROC analysis was applied to evaluate the sensitivity and 
specificity of the prognostic model, and we found that the area under the 
ROC curve (AUC) was 0.869 for 1-year, 0.759 for 3- year, and 0.757 for 
5-year survival (Fig. 3N). But the result of the single genes’ ROC analysis 
fell short of our expectation when compared with the result of risk-score, 
which demonstrated that our risk-score model yielded better perfor
mances on the survial analysis of TCGA cohort (Fig 3 D-F, J-L). 

Independent prognostic value of the risk-model 

Next, we used univariate and multivariate Cox regression analyses to 
evaluate whether the risk scores derived from the gene model could 
serve as an independent prognostic marker for prognosis in HNSCC 
patients. The univariate Cox regression analysis indicated that the T 
stage, patient’s age, use of radiotherapy and risk score affect the HNSCC 
patients’ survival time (all P < 0.05, Table 1). Through the multivariate 
analysis, we showed that the risk score could serve as an independent 
prognostic marker in patients with HNSCC (P = 0.02, Table 1). 

Expression difference of pivotal genes in practical patients 

We performed the qRT-PCR to detect the mRNA level of six funda
mental genes of our risk-score model in each patients’ fresh HNSCC 
tissue and normal tissue. The expression difference of GSDME, IL-6, 
NLRP1, CASP 8, NLRP6, CASP6 between neoplastic and normal tissue 
in practical patients cohort were in accordance with that of TCGA 
cohort. (Fig. 4A-D, F: P < 0.001, Fig. 4E: P < 0.01). 

Fig. 4. qRT – PCR analyses of six fundamental genes between HNSCC and normal tissue. (A) Relative mRNA level of GSDME. (B) Relative mRNA level of IL-6. 
(C) Relative mRNA level of NLRP1. (D) Relative mRNA level of CASP8. (E) Relative mRNA level of NLRP6. (F) Relative mRNA level of CASP6. ** = P < 0.01, *** = P 
< 0.001. 
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Validation of the risk-model in practical application 

Next, we applied the RNA-seq to patient’s HNSCC tissue in order to 
obtain each patient’s gene expression level. We applied this part of data 

to the risk score formula to get each patient’s risk score. 44 HNSCC 
patients were divided into two groups according to median score 
(Fig. 5A). Finally, we connected the risk score with patients’ prognostic 
status in order to see if the risk-model is applicable in practical use. 

Fig. 5. Validation of risk score model in the practical patient cohort. (A) Distribution of patients based on the risk score. (B) PCA plot for HNSCCs based on the 
risk score. (C) The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the dotted line). 
(D) Kaplan – Meier curve based on risk score. (E) ROC analysis based on risk score. 

Fig. 6. Comparison of the ssGSEA scores for immune cells and immune pathways. (A) Comparison of the enrichment scores of 16 types of immune cells between 
low- (blue box) and high-risk (red box) group in the TCGA cohort. (B) Comparison of the enrichment scores of 13 immune-related pathways between low- (blue box) 
and high-risk (red box) group in the TCGA cohort. P values were showed as: ns not significant. *P = < 0.05; **P = < 0.01; ***P = < 0.001. 
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Patients from low-risk group enjoyed longer survival time and better 
prognosis than those from high-risk group (Fig. 5B-D). Furthermore, in 
practical patient cohort, our risk-score model was a promising method 
for predicting HNSCC patients’ prognosis (Fig. 5E). 

Comparison of the immune activity between the subgroups 

Given that pyroptosis plays a critical role in the immune processes in 
human cells, especially in the tumor microenvironment, we employed 
single-sample gene set enrichment analysis (ssGSEA) to compare the 
enrichment scores of 16 types of immune cells and the activity of 13 
immune-related pathways between the low and high-risk groups in 
TCGA cohort [20-22]. As shown in Fig. 6A, the high-risk subgroup had 
lower infiltration of immune cells, especially macrophages, neutrophils 
or T helper (Th) cells compared to the low-risk subgroup. In addition, 
patients from the low-risk subgroup had significantly higher activation 
of chemotactic cytokines receptors (CCR) pathway, human leukocyte 
antigen (HLA) pathway and typeIIFN reponse pathway compared to 
patients in high-risk subgroup (Fig. 6B). 

Discussion 

Given the low survival rate as a result of local recurrence and 
lymphatic metastasis, head and neck squamous cell carcinoma (HNSCC) 
presents great treatment challenges [23]. Besides, there is no standard 
diagnostic or prognostic tools in oncology. We previously demonstrated 
that NUDT1, a hydrolase, could independently predict survival of pa
tients with oral squamous cell carcinoma [3]. Despite the promising 
data, prediction of prognosis using a single gene or factor could be un
reliable. Here, we developed a novel model for the prediction of prog
nosis using risk score formula generated from multiple genes. 

Pyroptosis, a form of pattern of cell death that is triggered by 
proinflammatory signals maintains homeostasis, eliminates abnormal 
cells and controls the human immune system [10]. In this study, we 
collected 33 pyroptosis – realated genes, and then screened for differ
entially expressed genes (DEGs) in the HNSCC and normal tissues. 
Through the univariate and LASSO Cox regression analysis, 6 of the 
DEGs (GSDME, IL-6, NLRP1, CASP8, NLRP6, and CASP6) were shown to 
be pivotal in generation of a risk-score model. Just as mentioned above, 
single prognostic factor was vulnerable to external influences, multi
factor prognostic model may cover this shortage. In present study, only 
NLRP1 met the requirement to evaluate HNSCC patients’ survival status 
independently, nevertheless, its distinguishing ability of prediction 
model was not eligible by ROC analyzing (Fig. 3C, F). Our risk score 
model based on several pyroptosis – realated genes demonstrated more 
reliability compared to the use of a single factor both in the TCGA cohort 
and practical patients cohort. 

In present study, NLRP6 possessed the largest absolute value of co
efficient among the six fundamental genes of the risk score formula, not 
only suggesting NLRP6 could be served as the tumor suppressing gene in 
HNSCC, but indicating that the expression level of NLRP6 in HNSCC 
patients affects the final score predominantly. Our findings were in 
accordance with previous study that NLRP6 exerts as a tumor suppressor 
by interaction with GRP78 and mediating its degradation in gastric 
cancer [24]. Moreover, NLRP6 deficiency has been implicated in the 
aggravation of chemical-induced colitis and subsequent tumorigenesis 
[25]. An interesting study by Normand et al. reported that NLRP6 per
forms essential functions in the regulation of tissue repair necessary for 
protection against chemically induced colorectal carcinogenesis. This 
study showed that NLRP6 deficiency led to dysregulated colonocyte 
proliferation and migration, thereby facilitating tumor formation [26]. 
Together, these observations established NLRP6 as a negative regulator 
of colorectal cancer and suggest that modulation of NLRP6 may be a 
promising therapeutic alternative for its treatment. Although there were 
not enough reports shed light on the specific function of NLRP6 in 
tumorigenesis of HNSCC, it has provided new angle to discover the 

correlation between cell pyroptosis and HNSCC based on NLRP6 func
tions in our further studies. 

Furthermore, the strong inflammatory effect of cell pyroptosis sug
gests that it may be dominant in the regulation of tumor immune 
microenvironment [27-30]. Thus, we performed enrichment analysis to 
evaluate whether the low-risk patients were associated with better 
survival due to higher respone of the immune system. Interestingly, on 
the macro level, low – risk patients were shown to recruit more immune 
cells and trigger higher activation of inmmune pathways compared to 
the high – risk patients. This phenomenon was associated with the fact 
that macrophages and T helper (Th) cells (Th1 cells, not Th2 cells) are 
essential in the HNSCC microenvironment in the regulation of the in
flammatory reactions caused by pyroptosis (Fig. 6A). Monocyte 
chemotactic protein-1 (MCP-1, also CCL2), which is secreted by tumor 
cells and tumor microenvironment, can bind to receptor CCR2 and re
cruit CCR2+Ly6chigh monocytes. The latter is thought to be precursor 
cells of tumor-associated macrophages (TAMs) [31]. CCL2 can not only 
recruit monocytes, but initiate the transformation from CCR2+Ly6chigh 

monocytes to TAMs and the polarization process of TAMs [32]. There 
are two main types of polarization of TAMS in the tumor micro
environement under the influence of chemokines: M1 and M2 macro
phages. M1 macrophages are involved in the classic activation of the 
Th1 cell responses and are able to suppress tumor development by 
releasing NO (nitric oxide), ROS (reactive oxygen species) and other 
tumor killing factors [33,34]. On the other hand, M2 macrophages are 
involved in alternative activation pathway in the Th2 cell response. The 
M2 macrophages secrete interleukin-10 (IL-10), transforming growth 
factor-β (TGF-β), prostaglandin-E2 (PGE2), vascular endothelial growth 
factor (VEGF) and matrix metalloproteinases (MMPs) which facilitate 
tumor genesis and angiogenesis [35,36]. Thus, the evidences account for 
the high level of macrophages, T helper (Th) cells, especially Th1 cells 
and CCR pathway activation in the low – risk subgroup (Fig. 6B). 

Finally, by putting forward our pyroptosis-related prognostic model, 
we hope it could aid in determining HNSCC treatment regimens and 
allocating theraputic resources appropriately. 

Conclusions 

Taken together, our findings demonstrate that there is differential 
expression of pyroptosis – related genes between the normal and HNSCC 
tissues. The differentially expressed pyroptosis – related genes were used 
to successfully generate a risk – score model that could independently 
predict prognosis in HNSCC patients. Since, there was a strong corre
lation between our risk – score model and cellular immune activities, 
there is need to study underlying mechnisms of pyroptosis in tumor 
immunology. 
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