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ABSTRACT

Motivation: The use of liquid chromatography coupled to mass spec-

trometry has enabled the high-throughput profiling of the metabolite

composition of biological samples. However, the large amount of data

obtained can be difficult to analyse and often requires computational

processing to understand which metabolites are present in a sample.

This article looks at the dual problem of annotating peaks in a sample

with a metabolite, together with putatively annotating whether a me-

tabolite is present in the sample. The starting point of the approach is

a Bayesian clustering of peaks into groups, each corresponding to

putative adducts and isotopes of a single metabolite.

Results: The Bayesian modelling introduced here combines informa-

tion from the mass-to-charge ratio, retention time and intensity of each

peak, together with a model of the inter-peak dependency structure,

to increase the accuracy of peak annotation. The results inherently

contain a quantitative estimate of confidence in the peak annotations

and allow an accurate trade-off between precision and recall.

Extensive validation experiments using authentic chemical standards

show that this system is able to produce more accurate putative iden-

tifications than other state-of-the-art systems, while at the same time

giving a probabilistic measure of confidence in the annotations.

Availability and implementation: The software has been imple-

mented as part of the mzMatch metabolomics analysis pipeline,

which is available for download at http://mzmatch.sourceforge.net/.

Contact: Ronan.Daly@glasgow.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The metabolome, being the entire set of metabolites in a biolo-

gical system, is a highly informative descriptor of the physio-

logical state of an organism, and understanding the dynamics

of the metabolome is essential for a wide range of biomedical

applications.
Major advances have been made recently in the development

of high-throughput assays to measure the metabolome (Zhou

et al., 2012). One of the most popular methods for this purpose

is mass spectrometry (MS), coupled to a chromatographic sep-

aration, such as liquid chromatography (LC). The output of the

LC–MS process is a set of peaks, characterized by their mass per

unit charge and their chromatographic retention time. For

almost all subsequent analysis to be undertaken, these measured

peaks have to be annotated (i.e. matched to the particular me-

tabolites that produced them). Accurate reliable peak annotation

and metabolite identification is currently the greatest challenge in

high-throughput metabolomics (Dunn et al., 2012). In this

article, the terms ‘identification’ and ‘annotation’ are used in

the sense specified by the chemical analysis working group of

the metabolomics standards initiative, where identification

means a positive comparison with an authentic standard using

two or more measured quantities (e.g. mass and retention time)

and annotation means a positive comparison with compounds

using physicochemical properties or spectral databases (Sumner

et al., 2007).
Tandem MS (or, more generally, MSn) and comparison with

authentic standards are two common approaches to providing

robust metabolite identifications (Sumner et al., 2007). For

global untargeted metabolomics, comparison of each detected

metabolite with an authentic standard rapidly becomes infeasible

(through cost and availability of standards). Fragmentation

methods including MS/MS and MSn are powerful, but rely on

libraries of fragmentation patterns of authentic standards (Horai

et al., 2010; Ridder et al., 2012; Smith et al., 2005). However,

fragment patterns are often similar between isomers of the same

compound. Fragmentation prediction algorithms exist (Wolf

et al., 2010) but are limited in similarity to standards-derived

fragment patterns.

There are three key factors that make peak annotation and

metabolite identification difficult. First, the finite mass accuracy

of the MS equipment and the large number of potential formulas

results in multiple possible mass-matches for each observed peak

(Kind and Fiehn, 2006). Second, each metabolite in the sample

being measured may produce many peaks, including isotopolo-

gues, adducts, molecular fragments and multiply charged ions

(Scheltema et al., 2009). These peaks form a dependency struc-

ture and exacerbate the problem of overlapping database

matches; accounting for them in some manner is needed to

avoid an overwhelming number of false annotations. Finally,

many observed peaks will be the result of impurities and con-

taminants (Keller et al., 2008).*To whom correspondence should be addressed.
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A considerable number of computational methods have

been developed to address the metabolite annotation challenge

(Benton et al., 2008; Brown et al., 2011; Creek et al., 2012; Dunn

et al., 2012; Weber and Viant, 2010). One of the main differences

among existing algorithms is how they treat derivative peaks and

their associated dependency structure. Some methods ignore

these relations altogether and match individual peaks against a

database (Scheltema et al., 2011). Others attempt to annotate

metabolites by first grouping peaks in some manner and then

assigning a putative annotation to the groups (e.g. Kuhl et al.,

2012; Lee et al., 2013). Additional types of data can also help,

e.g. predicted retention times of molecules have recently been

used to help in identification (Creek et al., 2011). There has

also been much work on the use of multistage MS to produce

a ‘fragment tree’ that can be compared against hypothetical frag-

ment trees to contribute to the annotation (Ipsen et al., 2010a;

Rojas-Cherto et al., 2012).
As well as methods that attempt to improve accuracy by

taking into account inter-peak dependencies, there have also

been attempts to incorporate additional information not con-

tained within the spectra to improve annotation. For example,

Rogers et al. (2009), Silva et al. (2014) and Weber and Viant

(2010) all investigate the use of metabolic pathway information

to improve metabolite annotation.
One aspect that has been largely neglected so far is the inher-

ently uncertain nature of the metabolite annotation task. The

level of confidence in putative annotations will vary across me-

tabolites and datasets. For example, the presence of several high-

quality peaks of an isotopic series at the same retention time that

all unambiguously point towards a particular metabolite should

result in a putative annotation that is given higher confidence

than an annotation from an isolated noisy peak that could have

been produced by any one of a number of metabolites. So far,

there has been little effort in developing metabolite annotation

methods that provide a quantitative assessment of this uncer-

tainty/confidence in their outputs, with work limited to probabil-

istic models of isotope intensities (B €ocker et al., 2009; Ipsen et al.,

2010b), and our previous work (Rogers et al., 2009) (extended by

Silva et al., 2014) that relies on knowledge of active metabolic

pathways and requires every observed peak to be matched to

something in the database.
In this article, we address this shortfall by presenting a method

of putative metabolite annotation (MetAssign) that provides

probabilistic annotations of individual peaks, as well as a prob-

abilistic estimate of the presence/absence of particular metabol-

ites based on the integration of information from multiple peaks

(including isotopes and adducts). The main novelty of this

method is in how it explicitly models (through statistical cluster-

ing) the dependency structure between peaks in a particular ex-

periment. The method, built within the framework of statistical

mixture models, simultaneously groups peaks that are derived

from the same metabolite and provides a putative annotation

of this metabolite. As well as clustering dependant peaks, the

statistical framework of the model provides a natural manner

in which to combine the different sources of evidence contained

within the spectra (mass per charge, retention time and intensity).

MetAssign also opens the door to extensions to other data types,

discussed in Section 5.

Finally, we compare MetAssign with two widely used annota-
tion methods across a range of LC–MS datasets from standard

chemical mixtures, for which the constituents are known, and
demonstrate that the probabilities assigned by MetAssign are
well calibrated (the higher the probability, the more likely the

annotation is correct) and provide competitive putative annota-
tion performance.

2 APPROACH

Our proposed model adopts a Bayesian statistical approach to
peak annotation and metabolite annotation. In particular, we

consider annotation as a clustering problem––peaks are clustered
into groups, each of which explicitly corresponds to a particular

chemical formula. At the peak level, the prior probability of a
particular annotation is computed via a statistical model based

on mass similarity; this is precisely given by the mass likelihood
term below. The closer the measured mass to the theoretical
mass, the higher the probability. The cluster model described

below allows us to convert this prior annotation into a posterior
annotation that takes into account other observed peaks.

Posterior probabilities are given by cluster membership probabil-
ities. Figure 1 gives a diagrammatic illustration of this process.

In the following, we describe the statistical model in more
detail and show how the output of the cluster model can be

interpreted at both the peak annotation and metabolite annota-
tion levels.

2.1 Observed data and parameters

Each data replicate consists of N mass-chromatographic peaks.

Each peak is assumed to have been previously aligned (i.e.
matched up) with its corresponding peaks across all S replicates.

Each peak then consists of the mass-to-charge ratio, xn; the in-
tensity, wn; and the retention time, rn.
As well as data observed from experiments, there are also a

library of m=1 . . .M possible metabolite formulas, from which
exact masses and predicted isotope profiles can be calculated

using a method similar to that described by Snider (2007).
Each profile consists of i=1 . . . Ima isotopic indices, where each

index consists of the isotopic mass, ymai, and the isotopic distri-
bution value, �mai (i.e. the predicted relative intensity based on

natural isotope abundances). In addition, possible adduct masses
and the corresponding isotope profiles can be calculated using a

list of a=1 . . .A possible adduct rules. Each rule is a string such
as 2M+3H, where 2M stands for two copies of the metabolite

(dimer) and+3H stands for an extra 3 Hydrogen atoms (less
3 electrons).

2.2 Model description

The proposed model simultaneously groups related peaks and

assigns molecular formulas to the groups. Inference within the
model is performed via a Bayesian Markov Chain Monte Carlo

sampling scheme, and the resulting posterior probabilities pro-
vide a robust measure of the confidence in particular assign-

ments. An illustration of the state of the model during a
hypothetical inference is shown in Figure 2.
At any point in the sampling scheme, we might have K clus-

ters, each assigned to a molecular formula and having one or
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more measured peaks assigned to it. Let the binary indicator

variable znk=1, if peak n is assigned to cluster k, and znk=0

otherwise. Define ck=
P

n znk to be the total number of peaks

assigned to cluster k.

Within a cluster we must define the dependencies between

peaks, and therefore the exact theoretical peak that a particular

measured peak has been assigned to. For example, to use inten-

sity information, it is important to know which isotope peak a

particular measured peak is putatively assigned to. In addition,

we admit the possibility of multiple adducts in our model and

must therefore keep track of which particular adduct a particular

measured peak is assigned to. We therefore introduce a second

set of indicator variables, vnkai=1, if the nth peak is assigned to

the ith isotope position of the ath adduct in the kth cluster. If

there are a total of I isotope peaks (note that in general this will

depend on the particular chemical formula) and A adducts:

znk=
XA
a=1

XI
i=1

vnkai:

The cluster model takes the form of a mixture model, with a

Dirichlet process (DP) prior (e.g. Rasmussen, 2000) to avoid

having to specify the number of clusters (metabolites) a priori.

The conditional distributions required by the Gibbs sampler to

assign peak n to a current cluster (k) or a new cluster (k�) are

(note that for brevity we omit conditioning on hyperparameters):

Pðznk=1j . . .Þ / ckpðdnjznk=1; . . .Þ ð1Þ

Pðznk�=1j . . .Þ / �pðdnj . . .Þ ð2Þ

where dn=ðxn;wn; rnÞ, ck is the number of peaks currently

assigned to cluster k, � is the DP concentration parameter and

pðdnjznk=1; . . .Þ is obtained by marginalizing over all low-level

assignments possible for the metabolite to which this cluster is

linked:

pðdnjznk=1; . . .Þ=
1

A�k I�k

XI�k
i=1

XA�k
a=1

pðdnjvnkai=1; �k; . . .Þ ð3Þ

where �k=m if cluster k is linked to formula m and we assume

uniform priors over the Am � Im possible adduct and isotope

assignments for formula m. To compute pðdnj . . .Þ for new clus-

ters, we must also marginalize over formulas: see the

Supplementary document for information.
Our model assumes that pðdnjvnkai=1; �k; . . .Þ factorizes across

the three data types. For the mass term, we assume a Gaussian

density on the log of the mass (i.e. mass noise is proportional

to xn):

pðxnjvnkai=1; . . .Þ=Nðlog xnjlog y�kai; �
�1Þ ð4Þ

where y�kai is the theoretical mass of the ith isotope peak of the

ath adduct for the formula assigned to cluster k, � is the expected
precision based on the known accuracy of the specific mass spec-

trometer used in an experiment, Nðb; cÞ denotes a Gaussian

density with mean b and variance c and Nðajb; cÞ denotes that
density evaluated at a.

(a) (b) (c)

Fig. 1. An example of improved peak annotation by MetAssign. The peak at m/z=167.996769 has two possible database matches, L-Cysteate (which is

known to be in the sample) and 6-Chloro-1-hydroxybenzotriazole (which is known not to be in the sample). The prior likelihood of choosing L-Cysteate

over 6-Chloro-1-hydroxybenzotriazole is 17 over 83%, and by a nearest match criterion, the later would be selected. However, in the posterior, the ratios

change to 92 over 8%, as the MetAssign algorithm detects the confirming presence of the sulphur-34 isotope peaks in the same cluster

Fig. 2. An illustration of the state the model might be in during inference.

Three clusters have been highlighted, each grouping around a particular

retention time. One of the clusters is made up of two adducts. Each

adduct consists of a number of peaks corresponding to the isotopic dis-

tribution of the compound
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The intensity term is also Gaussian, but the density depends on

the intensities of other peaks currently assigned to this cluster. In

particular, we assume that the intensity of adduct a in cluster k,

�ka, is drawn from a Gaussian prior Nð�0; �
�1
0 Þ. We set �0 to the

mean of observed intensities and �0 to 10–14, resulting in a fairly

flat prior over the region of interest. Individual peak intensities

are then assumed to be drawn from a Gaussian conditioned on

their adduct-isotope assignment wn�N ð��kai�ka; �
�1Þ, where

��kai is the theoretical proportion of total intensity that would

be observed as isotope peak i and �=10�8 is the observation

precision. Based on the peaks currently assigned to cluster k,

we can compute the posterior density over �ka (a Gaussian

with mean �� and precision ��; details in Supplementary docu-

ment) and then marginalize over �ka to obtain the following

conditional density that can be used by the sampler:

pðwnjvnkai=1; . . .Þ=Nðwnj��kai��; �
�1+�2�kai�

�1
� Þ: ð5Þ

For the retention time term, we assume the following genera-

tive model: the cluster retention time, lk, is assumed to be

drawn from Nð�0; 	
�1
0 Þ, where �0 is the mean of the reten-

tion times in the data and 	0 is 10–5. Each peak retention time

is assumed to be lk with additive noise: rn�N ðlk; 

�1Þ, where 


is given as 2:5� 10�1. We can analytically compute the poster-

ior density for lk (a Gaussian with mean �� and preci-

sion 	�; details in Supplementary document) and marginalize lk
to get:

pðrnjvnkai=1; . . .Þ=Nðrnj��; 	
�1
� +
�1Þ ð6Þ

pðdnjznk=1; . . .Þ is then given by the product of Equations (4–6).

The quantity required for a new cluster is computed in a similar

manner, but with the posterior parameters replaced by their prior

counterparts (for rn and wn).
If a peak is assigned to a current cluster, it must then be as-

signed to a particular adduct–isotope pair within that cluster.

The probability of isotope i and adduct a is:

Pðvnkai=1jznk=1; dn; . . .Þ / pðdnjvnkai=1; . . .Þ ð7Þ

which can be decomposed as above. For a new cluster, we must

first assign the cluster to a formula. This is done with:

pð��=mjznk�=1; . . .Þ /

�m
AmIm

XIm
i=1

XAm

a=1

pðdnjvnk�ai=1; ��=m; . . .Þ;
ð8Þ

where �m is the probability that a cluster will be assigned to

metabolitem (�m=1/M in our experiments), and the assignment

to adduct and isotope follows as in the previous case.

The Gibbs sampling algorithm proceeds by starting from a

random assignment of peaks into clusters (and particular assign-

ments therein) and then repeatedly re-sampling the assignment

for each peak with the various posteriors computed by ignoring

the peak being assigned. Note that in practice, the problem

is sparse. For each measured peak, the number of theoretical

peaks that it could be assigned to [i.e. peaks for which

pðxnjvnkai=1; . . .Þ40] is small and implementation can be made

highly efficient.

This model description demonstrated how MetAssign uses the

dependencies present between peaks. To be clustered, peaks must

have similar retention times, explainable masses and correct in-
tensity relationships. This distinguishes the method from our
previous work (Rogers et al., 2009) and its extensions (Silva

et al., 2014) where, for example, peak retention times must be
within some tolerance of a theoretical value but are not con-
strained to be similar to one another.

2.3 Annotation probabilities

The output of the Gibbs sampling algorithm is a set of assign-
ments of peaks to a particular mass–adduct–index combination

(mai)—one for each sample iteration. Based on this, it is straight-
forward to compute the sample-based approximation to the mar-
ginal posterior probability that a measured peak is assigned to

any formula/adduct/isotope combination (described here as an
annotation). This output may be further adapted to get a better
measure of the probability that a measured peak was produced

by a chemical compound and was not merely noise. The way in
which this idea was implemented in MetAssign was as follows:

following each iteration of the Gibbs sampling scheme, we have a
series of clusters, each consisting of one or more peaks. For each
peak n, such that n is currently assigned to cluster k, an indicator

variable gn 2 f0; 1g is calculated as follows:

gn=

1 if gi=1 for all i in k that have

a higher isotopic prevalance

0 otherwise

8>><
>>:

Thus, a peak is unlikely to be derived from a true metabolite if it

is assigned to be an isotopologue peak, but other expected peaks
of higher predicted abundance, e.g. the monoisotopic peak, are

not detected. In this case, these peaks can be ignored during
analysis, by simply using gn as the peak to metabolite
assignments.

On top of the peak sample output, our sampling scheme
allows us to produce highly interpretable probabilities of the
presence/absence of metabolites with particular chemical for-

mulas. By looking at clusters assigned to a particular formula,
we can provide a score for each formula at each sampling step.
These can then be averaged over the complete run of samples to

provide an overall confidence that this particular formula is pre-
sent in the data. In the MetAssign program, this behaviour was
implemented as follows: at each sample, for each formula m, the

support for m is given as Sm=
P

i2m gi, that is, the support is the
number of ‘good’ peaks assigned to m. We then say that a for-

mula is supported at Level l if Sm� l. Intuitively, the more peaks
are assigned to a formula (e.g. as isotopologues or adducts),
the greater the chance that a metabolite with this formula is

present.

2.4 Using the MetAssign algorithm

Although the description of the statistical model and associated

inference algorithm used in MetAssign might seem daunting, the
use of the system and interpretation of the output is easy. For
each peak in a dataset, a probability that that peak comes from a

particular metabolite–adduct–isotope is given. Also, for each
compound in a putative database of compounds, the probability
that the compound is present in the measured sample is given.

The use of probabilities as opposed to definite (yes/no) results
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might seem to complicate analysis, but in fact this gives a prac-
titioner extremely useful information that allows much greater

control in an analysis situation. For example, the user could sum

over all adducts and isotopes to find the probability that a peak

comes from a particular metabolite, or they could use the max-

imum a posteriori assignment.
One particular scenario that MetAssign has been designed to

perform well in is in large untargeted scans, where a sample

contains a large number of metabolites and is being checked

against a large database. In situations such as these, common
annotation routines end up assigning many compounds to

many peaks, and extensive manual intervention is needed

(often on a peak-by-peak basis) to resolve inconsistencies that

occur. Coupled to this problem is the inverse problem of taking

annotations of peaks and deciding whether a compound is pre-

sent. MetAssign works in this situation by producing groups of

peaks that together give more confidence in peak annotations
and putative annotations. In situations where there is genuine

ambiguity about the annotation of a peak, the probabilities

returned will give a measure that can be used directly by the

analyst. For example, the user might decide to report only

compound matches with probability480%, or to focus special

attention in follow-up experiments on peak groups where two
alternative metabolites (formulas) have probabilities close

to 50%.

3 EXPERIMENTAL METHODS

To examine the behaviour of the annotation algorithm, various experi-

ments were run and the output used to produce summary measures of

performance. These experiments included tests of the internal properties

of the algorithm (such as robustness and convergence, shown in

the Supplementary document) and comparisons of the algorithm

against other annotation software packages. The tests were run under

different experimental conditions and examined various output properties

to produce a robust estimate of how the algorithm would perform in real-

life scenarios. The performance of the algorithm was also tested

against the performance of two widely used similar metabolite annotation

systems, mzMatch and CAMERA (Kuhl et al., 2012; Scheltema et al.,

2011).

3.1 Comparative evaluation

For the comparative tests, three different standard mixtures of chemical

compounds were run as described in the Supplementary Material.

Various properties of the output were examined and summarized to

produce a quantitative measure of the relative performance of the

three algorithms compared. A good algorithm will have the ability to

correctly annotate most of the peaks or compounds present in a sample.

It will also have the ability to give a low amount of spurious annota-

tions of substances that are not present. There are various statistics that

can be used for the comparison: in this article, the measures used will be

the recall and precision for analyzing peak annotations, and true-posi-

tive rate (TPR, which is the same as recall) and false-positive rate (FPR)

for analyzing formula annotations. An algorithm with a high precision

and high recall (or, alternatively, high TPR and low FPR) is performing

well, though there is normally a trade-off between the two measures.

This trade-off can be formalized by combining the measures in some

way, e.g. by using the F1 score. To calculate these values, four other

quantities are needed: true positive (TP) (annotated and in the sample),

false positive (FP) (annotated and not in the sample), true negative

(TN) (not annotated and not in the sample) and false negative (FN)

(not annotated but in the sample). The performance descriptors can

then be calculated as:

Recall or TPR=
TP

TP+FN
Precision=

TP

TP+FP

FPR=
FP

FP+TN
F1=2 �

Precision �Recall

Precision+Recall

3.1.1 Treatment of output The output of the mzMatch and

CAMERA pipelines consist of possibly multiple compound annotations

for each of the peaks in a spectrum. To provide a range of performance

values over precision and recall, the distribution of support of a peak for

each of the formulas can then be given as 1=jAj, where jAj is the number

of annotations on that peak. In terms of metabolite annotation, the

output of the mzMatch and CAMERA pipelines does not directly anno-

tate which metabolites are present in a sample. However, given the sup-

port distribution on each peak, simply summing the support distribution

over all peaks will give a support distribution on each compound. Each

compound will then have a vote total between 0 and N. Consequently, a

threshold can be set, such that all metabolites with votes below the thresh-

old are considered ‘not annotated’ and all with votes equal to and above

the threshold are ‘annotated’. A typical value for the threshold would be

1, as this would correspond to at least a single peak uniquely matching a

formula.

Because the annotations on MetAssign are probabilistic, there is a

natural operating range (from 0 to 1) on which the threshold can be

set. This also allows an operating point to be naturally chosen.

3.1.2 Peak annotations Putative annotation of LC–MS data are nor-

mally achieved through the assignment of peaks to one or several com-

pounds. Because, in the analysis described in this article, the compounds

in the samples are known, it is possible to create a measure of whether a

particular peak is explainable by the sample. If a peak matches a known

present compound, this is evidence for a good annotation. If a peak

matches a known absent compound, this is evidence against a good an-

notation. If a peak matches neither a present nor absent compound, this

is evidence of noise. From these ideas, the precision and recall can be

calculated from a set of annotations of peaks as follows.

For each peak n, let pn be the sum of the support for compounds that

are present and let an be the sum of the support for compounds that are

absent. Discard any values of pn or an that are 0. There then exists a

distribution of values that show the relative support for each peak from

the annotation database. A threshold can be chosen such that those

values above the threshold are positive and those below it are negative.

From this, pn values above the threshold are TP, an values above the

threshold are FP, pn values below the threshold are FN and an values

below the threshold are TN.

In the case of comparing multiple algorithms, the steps above are fol-

lowed, but instead of discarding all 0 values, only those 0 values for which

pn or an are 0 over all algorithms are discarded. This ensures the number of

items being dealt with (TP+FP+FN+TN) are the same for each

algorithm.

3.2 Testing conditions

To test the performance of each algorithm at different levels of difficulty

of the task, a set of compound databases were used. Each database con-

sisted of the compounds that were known to be present in the sample that

was run, plus an extra number of compounds that were not present in the

sample. These decoy compounds were chosen to be similar to the com-

pounds in the sample, by finding matches to the compound mass in

PubChem within a tolerance of 3 ppm. Database sizes of 100, 600 and

1000 compounds were used. The dataset was pre-filtered at a peak inten-

sity level of 5000. MetAssign was set to output annotations at support
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levels l=1 to l=5; the set of possible adducts used is given in the

Supplementary Material.

In addition, the dataset was pre-filtered at peak intensity levels of 0,

5000, 10000, 15 000 and 20000, to vary the amount of chemical noise in

the data; results for these experiments are given in the Supplementary

Material.

For each condition and for each algorithm, the precision and recall for

the peaks and the TPR and FPR for the compounds were calculated. This

was done over a range of thresholds, to produce precision–recall and

Receiver Operating Characteristic (ROC) curves.

4 RESULTS

To assess the performance of peak annotations, three measures

were used, precision, recall and their harmonic mean, the F1

score. As in all classification algorithms, there is a trade-off

between precision and recall, with good procedures trying to

maximize both. With comprehensive results given in the

Supplementary Material, Figure 3 shows an example of this

trade-off. In these figures, ‘Prior’ means the prior probability

of peaks being assigned to metabolites, ‘Posterior’ means the

raw posterior probability and ‘MetAssign’ means the posterior

probability calculated as described in Section 2.3. As can be

seen from these results, MetAssign performs best, with the best

precision while recalling the majority of peaks, the target it was

designed to achieve. In this circumstance, mzMatch struggles to

recall half the peaks, with a precision of 0.5, while CAMERA is

extremely selective and annotates only a tiny fraction of the input

data, albeit with high precision.
To see the systematic behaviour of the algorithms, Table 1

shows how the F1 score changes as the size of the decoy database

is varied. For the smallest databases, the prior assignment based

on the best match of the mass-to-charge ratio performs best, but

as the database grows to more and more realistic sizes, the

MetAssign algorithm becomes the best performing method.

For the metabolite annotation task, the results are presented in

terms of the TPR and FPR. An example analysis of this task is

shown in the form of a ROC curve in Figure 4. Although the

MetAssign output dominates the other methods over most parts

of the curve, the operating point will be at a level from 0 to 5%

FPR, and it is here that the behaviour is of interest. At this level

the number of false positives returned by an algorithm would be

Fig. 3. Precision–recall curve for dataset Standard 1, run in negative

mode, matched against a database of 1000 decoy compounds. Best pos-

sible performance has a precision and recall of 1.0 (top right of figure).

The lines run over the useful range of the output (05threshold � 1), with

the marks showing thresholds of 1.0, 0.95, 0.75, 0.5 and 0.0. The lines on

the graph show that the behaviour of MetAssign is tuneable to obtain an

intended precision/recall value. The behaviour of mzMatch and

CAMERA is less tuneable; the default behaviour of these algorithms is

given by the rightmost mark on their lines

Table 1. Variation of the F1 measure over database size and dataset

Dataset DB

size

Prior Posterior MetAssign mzMatch CAMERA

std1.NEG 100 0.93 0.93 0.90 0.68 0.17

600 0.71 0.74 0.81 0.56 0.16

1000 0.57 0.63 0.76 0.49 0.16

std1.POS 100 0.80 0.79 0.73 0.53 0.15

600 0.42 0.48 0.55 0.34 0.13

1000 0.29 0.38 0.50 0.27 0.13

std2.NEG 100 0.90 0.88 0.83 0.61 0.11

600 0.64 0.67 0.70 0.47 0.11

1000 0.52 0.58 0.65 0.40 0.11

std2.POS 100 0.85 0.85 0.83 0.66 0.10

600 0.35 0.44 0.52 0.32 0.09

1000 0.24 0.34 0.44 0.24 0.08

std3.NEG 100 0.66 0.67 0.69 0.39 0.15

600 0.29 0.35 0.40 0.21 0.13

1000 0.22 0.29 0.34 0.15 0.13

std3.POS 100 0.51 0.53 0.54 0.47 0.18

600 0.11 0.17 0.21 0.11 0.16

1000 0.06 0.12 0.17 0.06 0.15

Bold values indicate best performance.

Fig. 4. ROC curve for dataset Standard 1, run in positive mode, with an

intensity pre-filtering of 5000, matched against a database of 1000 decoy

compounds. Best possible performance has a TPR of 1.0 and FPR of 0.0

(top left of figure)
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limited, while still achieving an acceptable amount of recall of the
compounds that are present in the sample. Table 2 shows the

performance at an FPR of 5%; as can be seen, MetAssign con-
sistently performs much better than the other two algorithms at

annotating metabolites, for all standard mixtures tested and at all

sizes of the decoy database.

5 DISCUSSION AND CONCLUSION

We have presented a statistical method for peak annotation and
metabolite annotation in large untargeted LC–MS datasets. The

novelty in our method lies in the statistical approach to peak
annotation that provides a quantitative assessment of the confi-

dence of annotations, as well as probabilities of metabolite pres-

ence/absence. Validation studies on real-world experimental
datasets showed that MetAssign produced better annotations

of peaks and metabolites than two widely used earlier methods,
while at the same time providing a measure of confidence in its

putative annotations. We believe that these confidence values are

useful in subsequent analysis for, e.g. deciding which metabolites
warrant further investigation by MSn or comparison with an

authentic standard. It may also be possible to use this system
to build a database of metabolites for which putative annotation

is generally possible with high confidence.
As alluded to in the introduction, a further benefit of the

Bayesian approach is that additional non-conventional forms

of information can be easily added to the model. Unlike the
MetAssign approach, which seeks to annotate peaks in the pres-

ence of derivatives, several recent studies have investigated
including metabolic network connectivity into the annotation

stage (e.g. Rogers et al., 2009; Silva et al., 2014; Weber and

Viant, 2010), and it would be possible to include a connectiv-
ity-based prior (such as the one described in Rogers et al., 2009)

in the current model. In addition, it has recently been shown that

in silico retention time prediction can improve annotation, par-

ticularly for isomers (Creek et al., 2011). Such information could

be incorporated through a metabolite-specific prior retention

time distribution, analogous to the metabolite-specific prior iso-

tope intensity distribution. Together, these different approaches

provide complementary views of the dataset that can now be

integrated in a comprehensive, fully probabilistic pipeline for

metabolome data annotation.

Finally, the noise models used throughout MetAssign can

almost certainly be improved via better models of the detector

itself (Ipsen et al., 2010b) and inclusion in the model of terms

relating to contaminants (Keller et al., 2008). The MetAssign

algorithm thus provides the basis for the modular development

of a general probabilistic framework for the interpretation of

LC–MS data in metabolomics.
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