
sensors

Article

WSN-SLAP: Secure and Lightweight Mutual Authentication
Protocol for Wireless Sensor Networks

Deok Kyu Kwon 1 , Sung Jin Yu 1 , Joon Young Lee 1 , Seung Hwan Son 1 and Young Ho Park 1,2,*

����������
�������

Citation: Kwon, D.K.; Yu, S.J.; Lee,

J.Y.; Son, S.H.; Park, Y.H. WSN-SLAP:

Secure and Lightweight Mutual

Authentication Protocol for Wireless

Sensor Networks. Sensors 2021, 21,

936. https://doi.org/10.3390/

s21030936

Academic Editor: Jaime Lloret Mauri

Received: 8 January 2021

Accepted: 27 January 2021

Published: 30 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea;
kdk145@knu.ac.kr (D.K.K.); darkskiln@knu.ac.kr (S.J.Y.); harry250@knu.ac.kr (J.Y.L.);
sonshawn@knu.ac.kr (S.H.S.)

2 School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea
* Correspondence: parkyh@knu.ac.kr; Tel.: +82-53-950-7842

Abstract: Wireless sensor networks (WSN) are widely used to provide users with convenient services
such as health-care, and smart home. To provide convenient services, sensor nodes in WSN environ-
ments collect and send the sensing data to the gateway. However, it can suffer from serious security
issues because susceptible messages are exchanged through an insecure channel. Therefore, secure
authentication protocols are necessary to prevent security flaws in WSN. In 2020, Moghadam et al.
suggested an efficient authentication and key agreement scheme in WSN. Unfortunately, we discover
that Moghadam et al.’s scheme cannot prevent insider and session-specific random number leakage
attacks. We also prove that Moghadam et al.’s scheme does not ensure perfect forward secrecy. To
prevent security vulnerabilities of Moghadam et al.’s scheme, we propose a secure and lightweight
mutual authentication protocol for WSNs (WSN-SLAP). WSN-SLAP has the resistance from various
security drawbacks, and provides perfect forward secrecy and mutual authentication. We prove
the security of WSN-SLAP by using Burrows-Abadi-Needham (BAN) logic, Real-or-Random (ROR)
model, and Automated Verification of Internet Security Protocols and Applications (AVISPA) sim-
ulation. In addition, we evaluate the performance of WSN-SLAP compared with existing related
protocols. We demonstrate that WSN-SLAP is more secure and suitable than previous protocols for
WSN environments.

Keywords: mutual authentication; wireless sensor networks; BAN logic; ROR model; AVISPA

1. Introduction

As a rapid development of wireless communication technology, wireless sensor net-
works (WSN) can be applied to various environments such as smart grids, smart homes,
agriculture, industrial internet of things (IoT), and health-care [1–5]. People can achieve
a more bountiful life by utilizing WSN environments. Generally, WSN environments
consist of sensor nodes, a gateway, and users, as shown in Figure 1. Sensor nodes detect
and monitor their surrounding environment. Then, sensor nodes transmit the monitored
data to the gateway. The gateway relays and analyzes the message between sensor nodes
and users. The gateway also manages the private information of sensor nodes and users
to provide secure services. Users can access the data collected by sensor nodes through
the gateway.

An example of the application environment in WSN is health-care services. Wearable
sensors attached to a patient analyze the health condition of the patient. Then, these sensors
send the collected data to the physician. However, these services can be exposed to various
security attacks because each entity exchanges information through a public channel. If an
adversary intercepts messages in WSN, the adversary can disguise as a legal user and send
an incorrect message to the sensor node. Moreover, if an adversary registers to the gateway
as a legal entity, the adversary can try to obtain other legal user’s sensitive information.

Sensors 2021, 21, 936. https://doi.org/10.3390/s21030936 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0014-1965
https://orcid.org/0000-0002-3245-781X
https://orcid.org/0000-0002-8172-6182
https://orcid.org/0000-0002-3198-8467
https://orcid.org/0000-0002-0406-6547
https://doi.org/10.3390/s21030936
https://doi.org/10.3390/s21030936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21030936
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/3/936?type=check_update&version=2

Sensors 2021, 21, 936 2 of 23

Therefore, we need an authentication protocol that can provide secure services and prevent
various attacks in WSN environments.

In 2020, Moghadam et al. [6] suggested an authentication and key agreement scheme
for WSN environments utilizing Elliptic-Curve Diffie-Hellman (ECDH) [7]. They demon-
strated that their scheme is efficient and secure against various security attacks such as
replay, password guessing, stolen verifier, and man-in-the-middle (MITM) attacks. How-
ever, we discover that Moghadam et al.’s scheme does not provide security against insiders,
and session-specific random number leakage attacks. We also prove that Moghadam
et al.’s scheme does not support perfect forward secrecy. Moreover, each entity performs
Elliptic Curve Cryptography (ECC) multiplication operations to compute a session key
in Moghadam et al.’s scheme. However, ECC requires heavy computational costs. Since
sensor nodes have low computation capabilities and storage resources in a WSN envi-
ronment, we cannot ensure real-time communications using ECC in WSN environments.
Therefore, using Moghadam et al.’s scheme makes it difficult to provide efficient services.
To improve security vulnerabilities and reduce the computational cost of Moghadam et al.’s
scheme, we propose a secure and lightweight mutual authentication protocol (WSN-SLAP)
considering security and efficiency features using hash functions and XOR operations.

Figure 1. System model in Wireless sensor networks (WSNs).

1.1. Contributions

Our paper’s contributions are as below.

• We analyze and prove the security vulnerabilities of Moghadam et al.’s scheme.
Then, we propose WSN-SLAP to resolve security vulnerabilities of Moghadam et al.’s
scheme.

• We demonstrate the mutual authentication of WSN-SLAP using Burrows–Abadi–
Needham (BAN) logic [8].

• We proof the session key security of WSN-SLAP by using the Real-or-Random (ROR)
model [9]

• We use Automated Verification of Internet Security Protocols and Applications (AVISPA) [10,11]
to prove security features of WSN-SLAP against replay and MITM attacks.

• We analyze the communication cost, the computational cost, and security properties
of WSN-SLAP compared with related schemes.

1.2. Adversary Model

WSN-SLAP uses a well-known adversary model called the Dolev–Yao (DY) model [12].
Through the DY model, the adversary can eavesdrop, delete, intercept, and insert ex-
changed messages through a public channel. Moreover, the adversary can get exposed
session-specific ephemeral parameters, which is based on the Canetti–Krawczyk (CK)
adversary model [13]. The adversary can perform various security attacks with the DY
model and the CK model. The detailed assumptions of the adversary model are defined in
the following manner.

• If an adversary registers as a legal user to the gateway, the adversary can authenticate
with other entities.

Sensors 2021, 21, 936 3 of 23

• An adversary can obtain a user’s lost/stolen smart card. The adversary can perform
the power analysis attack [14] to get stored parameters of the smart card.

• An adversary can attempt various attacks such as replay, sensor node capture, stolen
verifier, and off-line password guessing attacks.

1.3. Organization

In Section 2, we describe related works for WSN environments. Then, we revisit
Moghadam et al.’s scheme in Section 3 and prove the security flaws of Moghadam et al.’s
scheme in Section 4. Section 5 illustrates WSN-SLAP. In Section 6, we perform informal and
formal security analyses of WSN-SLAP by using BAN logic, the ROR model, and AVISPA
simulation tool. In Section 7, we analyze WSN-SLAP’s performance compared with the
existing related protocols. In Section 8, we conclude and summarize our paper.

2. Related Works

In the past few decades, numerous password-based authentication schemes have
been proposed to provide security and efficiency in WSN environments [15–19]. In 1981,
Lamport [20] suggested an authentication mechanism based on a password. Lamport
used one-way hash functions to encode the password and stored the hashed password
inside the system. In 2006, Wong et al. [21] suggested a password-based authentication
scheme in WSN environments. Unfortunately, Tseng et al. [22] proved that Wong et al.’s
scheme is insecure against forgery and replay attacks. Tseng et al. demonstrated a dy-
namic user authentication scheme to improve security vulnerabilities of Wong et al. [21]’s
scheme. However, these schemes [20–22] can suffer from on/off-line password guessing
attacks because they only used the password as a factor to login and authenticate with
other entities.

In the last few decades, two-factor-based authentication schemes [23–25] have been
presented using hash functions and XOR operations to improve single factor’s security
weaknesses. In 2009, Das et al. [23] proposed a two-factor authentication scheme based on
a smart card in WSNs. They demonstrated that their scheme can prevent various attacks
such as replay, stolen verifier, and off-line password guessing attacks. However, Khan
et al. [24] analyzed that Das et al. [23]’s scheme is vulnerable to privileged insider attack.
He et al. [25] found that Das et al. [23]’s scheme is vulnerable to insider and impersonation
attacks. To improve the security vulnerabilities of Das et al.’s scheme, He et al. [25]
suggested an enhanced two-factor user authentication scheme for WSNs. However, these
schemes [23–25] can suffer from various attacks such as thoe using stolen smart cards and
mobile devices.

To resolve the security flaws associated with two-factor-based authentication schemes
and improve the security level in WSN environments, researchers have proposed many
ECC-based authentication schemes [26–31]. In 2011, Yeh et al. [26] proposed an authenti-
cation protocol for WSN environments using ECC. Yeh et al.’s scheme used a smart card
and ECC to prevent various security issues such as insider, and masquerade attacks. Choi
et al. [27] suggested an ECC-based user authentication scheme for WSN. However, Wu
et al. [28] pointed out that Choi et al.’s protocol does not provide security against forgery
attack. Nam et al. [29] suggested a secure authentication protocol for WSN based on ECC.
Nam et al.’s scheme provides a secure protocol based on an Elliptic Curve Computation
Diffie-Hellman (ECCDH) problem. In 2016, Jiang et al. [30] proposed an ECC-based authen-
tication scheme. Jiang et al.’s scheme provides secure communications and untraceability
in WSN environments. In 2017, Wu et al. [31] suggested a user authentication scheme
using ECC. Wu et al.’s scheme can preserve user privacy in WSN environments. However,
sensor nodes in WSN have low computing power and resources. Therefore, it is difficult
to provide efficiency in WSN environments using these schemes [26–31] because ECC
requires large computational resources.

In 2020, Moghadm et al. [6] suggested an authentication and key agreement scheme
using ECDH. They asserted that their scheme provides resistance against various attacks

Sensors 2021, 21, 936 4 of 23

such as replay, MITM, off-line password guessing, and stolen verifier attacks. However, we
discover that Moghadam et al.’s scheme is vulnerable to insider, session-specific random
number leakage attacks and perfect forward secrecy. Moreover, Moghadam et al.’s scheme
suffers from heavy computational cost because it involves an ECC-based computation.
Therefore, we propose WSN-SLAP, which has resistance to various security problems.

3. Review of Moghadam et al.’s Scheme

Moghadam et al. proposed an authentication scheme based on ECDH in WSN [6].
Moghadam et al.’s scheme is composed of sensor node registration, user registration, and
login and authentication phases. Table 1 indicates the notations of Moghadam et al.’s
scheme and WSN-SLAP.

Table 1. Notations.

Notation Description

Ui User
GW Gateway
Sj Sensor node

IDi Real identity of user
PWi Password of user
PIDi Pseudo identity of user
SIDj Real identity of sensor node
kGWN Master key of gateway

KG Shared secret key between gateway and sensor node
X Public key of gateway
G Elliptic curve group
P Generator of G

Rk, Nk, zi, ai, fi, gi, qi Random numbers
Tk Timestamp
SK Session key

Ek/Dk Symmetric key encryption/decryption
h(.) Hash function
|| Concatenation function
⊕ Exclusive-or function

3.1. Sensor Node Registration Phase

In this phase, a sensor node Sj sends its identity to the gateway GW. Then, GW
computes a shared secret parameter between GW and Sj. In Figure 2, we show the sensor
node registration phase and the details are as follows.

Sensor Node (Sj) Gateway (GW)

Generates SIDj
{SIDj}−−−−−−−−−−−−−−→ Checks SIDj in the database

Computes KG = h(SIDj||kGWN)
Stores {SIDj, KG} in the database

Stores {KG} in the memory
{KG}←−−−−−−−−−−−−−−

Figure 2. Sensor node registration phase of Moghadam et al.’s scheme.

Step 1: Sj generates its identity SIDj, and sends it to GW over a secure channel.

Step 2: GW receives SIDj and checks the validity of SIDj. After that, GW computes
KG = h(SIDj||kGWN), and stores {SIDj, KG} in its secure database, where kGWN is
the master key of GW. Finally, GW sends {KG} to Sj.

Step 3: Sj receives and stores {KG} in its database.

Sensors 2021, 21, 936 5 of 23

3.2. User Registration Phase

A user Ui registers to the gateway GW by sending an identity and a masked password
value. Then, GW issues a smart card to Ui. In Figure 3, we describe the user registration
phase and the details are shown as below.

User (Ui) Gateway (GW)

Inputs IDi, PWi
Generates a random number qi
Computes APWi = h(qi||PWi)

{IDi ,APWi}−−−−−−−−−−−−−−→ Generates a random number zi
Computes Bi = h(IDi||APWi||zi)
Ci = h(IDi||kGWN)
Di = h(IDi||Ci||zi||Bi)
Stores {IDi, Bi} in the database

Stores {zi, Ci, Di, h(.), qi} in the smart card
Smart card {zi ,Ci ,Di ,h(.)}←−−−−−−−−−−−−−−

Figure 3. User registration phase of Moghadam et al.’s scheme.

Step 1: Ui inputs the identity IDi and the password PWi, and then generates a random
number qi. After that, Ui computes APWi = h(qi||PWi) and sends the registration
request message {IDi, APWi} to the gateway GW over a secure channel.

Step 2: GW receives {IDi, APWi} from Ui, and then generates a random number zi.
After that, GW computes Bi = h(IDi||APWi||zi), Ci = h(IDi||kGWN), and Di =
h(IDi||Ci||zi||Bi). Finally, GW stores {zi, Ci, Di, h(.)} in a smart card and issues it to
Ui over a secure channel.

Step 3: Ui receives the smart card, and stores qi in the smart card. Finally, parameters
{zi, Ci, Di, h(.), qi} are stored in the smart card.

3.3. Login and Authentication Phase

After the registration phase, the user Ui authenticates the gateway GW. In Figure 4,
we describe the login and authentication phase and the detailed steps of the phase are
shown as below.

Step 1: After inserting the smart card, Ui inputs the identity ID∗i and the password
PW∗i . The smart card computes APW∗i = h(PW∗i ||qi), B∗i = h(ID∗i ||APW∗i ||zi), D∗i
= h(ID∗i ||Ci||zi||B∗i) and verifies D∗i

?
= Di. If the verification process is successful,

the smart card generates a random nonce ai and timestamp T1. With the public
key of the gateway X, the smart card computes A1 = ai · P, A2 = ai · X, DIDi =
IDi ⊕ A2(x), A3 = SIDj ⊕ A2(x), and A4 = EA2(Bi||SIDj||A3). At last, the smart card
sends {A1, A3, A4, T1} to GW through a public channel.

Step 2: GW receives {A1, A3, A4, T1} from Ui, and selects a timestamp T2 and checks the
validity of T1. If the timestamp is vaild, GW computes A2 = kGWN · A1, DA2(A4) =

(B∗i ||SID∗i ||A∗3), A3 = SID∗i ⊕ A2(x) and verifies A∗3
?
= A3. If the equality holds,

GW generates a random nonce gi and computes KG = h(SIDj||kGWN), D1 = KG⊕
A2, D2 = h(A2||SIDj||A3) . At last, GW sends {gi · P, D1, D2, T2} to the sensor node
Sj over a public channel.

Step 3: After reception of the message {gi · P, D1, D2, T2} from GW, Sj selects a timestamp
T3 and checks the validity of T2. Then, Sj computes A2 = KG ⊕ D1, A3 = SIDj ⊕
A2(x), D∗2 = h(A2||SIDj||A3) and verifies D∗2

?
= D2 . If the verification is legitimate,

Sj generates a random nonce fi, and computes sk = h(A2|| fi · gi · P), Xi = h(sk||KG).
At last, Sj sends { fi · P, Xi, T3} to GW.

Step 4: After receiving { fi · P, Xi, T3} from Sj, GW selects a timestamp T4 and checks the
validity of T3. Then, GW computes sk = h(A2|| fi · gi · P), Xi = h(sk||KG) and verifies

X∗i
?
= Xi. If it is equal, GW computes D4 = EA2(gi), yi = h(sk||A3) and sends

{yi, D4, T4} to Ui.

Sensors 2021, 21, 936 6 of 23

Step 5: Ui receives the message {yi, D4, T4}, and selects a timestamp T5 and checks the
validity of T4. At last, Ui computes DA2(D4) = (gi), sk = h(A2|| fi · gi · P), y∗i =

h(sk||A3) and verifies y∗i
?
= yi. If it is equal, the key agreement is successful.

User (Ui) Gateway (GW) Sensor Node (Sj)

Inserts the smart card
Inputs ID∗i , PW∗i
Computes APW∗i = h(PW∗i ||qi)
B∗i = h(ID∗i ||APW∗i ||zi)
D∗i = h(ID∗i ||Ci||zi||B∗i)
Checks D∗i

?
= Di

Generates a random nonce ai
Computes A1 = ai · P, A2 = ai · X
DIDi = IDi ⊕ A2(x)
A3 = SIDj ⊕ A2(x)
A4 = EA2(Bi||SIDj||A3)
{A1, A3, A4, T1}−−−−−−−−−−→

Selects a timestamp T2

Checks |T2 − T1| ≤ ∆T
Computes A2 = kGWN · A1
DA2(A4) = (B∗i ||SID∗i ||A∗3)
A3 = SID∗i ⊕ A2(x)

Checks A∗3
?
= A3

Generates a random nonce gi
Computes KG = h(SIDj||kGWN)
D1 = KG⊕ A2
D2 = h(A2||SIDj||A3)
{gi · P, D1, D2, T2}−−−−−−−−−−−−→

Selects a timestamp T3

Checks |T3 − T2| ≤ ∆T
Computes A2 = KG⊕ D1
A3 = SIDj ⊕ A2(x)
D∗2 = h(A2||SIDj||A3)

Checks D∗2
?
= D2

Generates a random nonce fi
Computes sk = h(A2|| fi · gi · P)
Xi = h(sk||KG)

Selects a timestamp T4 { fi · P, Xi, T3}←−−−−−−−−−
Checks |T4 − T3| ≤ ∆T
Computes sk = h(A2|| fi · gi · P)
Xi = h(sk||KG)

Checks X∗i
?
= Xi

Computes D4 = EA2(gi)
yi = h(sk||A3)

Selects a timestamp T5 {yi, D4, T4}←−−−−−−−
Checks |T5 − T4| ≤ ∆T
Computes DA2(D4) = (gi)
sk = h(A2|| fi · gi · P)
y∗i = h(sk||A3)

Checks y∗i
?
= yi

Figure 4. Login and authentication phase of Moghadam et al.’s scheme.

4. Cryptanalysis of Moghadam et al.’s Scheme

In this section, we demonstrate the security vulnerabilities of Moghadam et al.’s
scheme [6] such as insider, and session-specific random number leakage attacks. Moghadam
et al.’s scheme also does not achieve perfect forward secrecy.

4.1. Insider Attack

If an adversary A ordinary registers as a legal user Ui, A can authenticate with the
gateway GW and the sensor node Sj by exchanging messages. With this information, A
can compute another legal user Ul

i ’s session key. The details are shown as below.

Step 1: A inserts the smart card, and inputs the identity IDi and the password PWi of A.
Then, the smart card checks the validity of A, and sends a login request message
{A1, A3, A4, T1} to GW. After authenticating A, GW sends {gi · P, D1, D2, T2} to Sj.
Upon reception of the message {gi · P, D1, D2, T2}, Sj computes a session key sk. Then,
Sj sends the authentication response message { fi · P, Xi, T3} to GW. GW computes

Sensors 2021, 21, 936 7 of 23

the session key and sends {yi, D4, T4} to A. A computes the session key and obtains
communication messages during the login and authentication phase.

Step 2: After obtaining the message {gi · P, D1, D2, T2},A computes KG = D1⊕ A2, where
A2 is the secret key ofA using ECC and KG is a shared secret key between GW and Sj.

Step 3 : A intercepts a message {gl
i · P, Dl

1, Dl
2, Tl

2} from the message of another legal user
Ul

i . Since A knows KG, it can compute Al
2 = Dl

1 ⊕ KG, where Al
2 is the secret key

of Ul
i .

Step 4: A obtains the message {yl
i , Dl

4, Tl
4} and decrypts Dl

4 using the secret key Al
2 of

Ul
i . Then, A can obtain the random secret nonce gl

i of sensor node. A can compute
f l
i · gl

i · P by utilizing the message { f l
i · P, Xl

i , Tl
3}. Finally, A compute the session key

skl = h(Al
2|| f l

i · gl
i · P).

Therefore, Moghadam et al.’s scheme cannot prevent insider attacks.

4.2. Perfect Forward Secrecy

Moghadam et al. demonstrated that their scheme can ensure the security feature of
perfect forward secrecy. However, if the adversary A gets the master key kGWN of the
gateway GW, the adversary can compute the legal user Ui’s session key sk. The details are
shown in following steps.

Step 1: If A obtains the master key kGWN , A can compute the secret key A2 = kGWN · A1
of Ui by utilizing the login request message {A1, A3, A4, T1}.

Step 2: When A intercepts the message {yi, D4, T4}, A can decrypt EA2(gi) because A2 is
the symmetric key between the Ui and the gateway GW.

Step 3: After A obtains the message { fi · P, Xi, T3}, A can get (A2, gi) and (fi · P). At last,
A computes Ui’s session key sk = h(A2|| fi · gi · P).

Consequently, Moghadam et al.’s scheme does not ensure perfect forward secrecy.

4.3. Session-Specific Random Number Leakage Attack

Suppose that a random nonce ai is disclosed to an adversary A. Using the public key
X of the gateway GW, A can calculate A2 = ai · X. Then, A can compute the session key
sk. The details are described as below.

Step 1: After getting the parameter A2, A captures the message {yi, D4, T4}. Then, A
decrypts D4 = EA2(gi) by using the symmetric key A2 and obtains gi.

Step 2: A eavesdrops the message of the sensor node Sj { fi · P, Xi, T3} . Finally, A com-
putes the session key sk = h(A2|| fi · gi · P) using fi · P in the message of Sj.

Therefore, Moghadam et al.’s scheme cannot prevent session-specific random number
leakage attacks.

5. Proposed Scheme

We propose a secure and lightweight mutual authentication protocol for WSN envi-
ronments to resolve security weaknesses of Moghadam et al.’s scheme [6]. To consider
the resource-limited sensor nodes, WSN-SLAP uses hash functions and XOR operations
that generate low computational overheads. WSN-SLAP is composed of sensor node
registration, user registration, login and authentication, password update, and sensor node
addition phases.

Sensors 2021, 21, 936 8 of 23

5.1. Sensor Node Registration Phase

If a sensor node Sj sends a registration request message, the gateway GW computes a
secret parameter for the sensor node. Then, Sj stores the parameter. We show the sensor
node registration phase in Figure 5 and the details are presented as below.

Sensor Node (Sj) Gateway (GW)

Selects SIDj
Generates a random number Rj

{SIDj ,h(SIDj ||Rj)}−−−−−−−−−−−−−−→ kGWN is a master key of the gateway
Computes KSj = h(h(SIDj||Rj)||kGWN)
Stores {SIDj, h(SIDj||Rj)} in the database

Stores {KSj} in the memory
{KSj}←−−−−−−−−−−−−−−

Figure 5. Sensor node registration phase of a secure and lightweight mutual authentication protocol
(WSN-SLAP).

Step 1: Sj selects its identity SIDj and generates a random number Rj. Then, Sj computes
h(SIDj||Rj) and sends {SIDj, h(SIDj||Rj)} to GW over a secure channel.

Step 2: GW receives {SIDj, h(SIDj||Rj)} and computes KSj = h(h(SIDj||Rj)||kGWN),
where kGWN is the master key of GW. GW stores {SIDj, h(SIDj|| Rj)} in the se-
cure database and sends {KSj} to Sj.

Step 3: At last, Sj stores {KSj} in its memory.

5.2. User Registration Phase

A user Ui sends a registration request message to the gateway GW. Then, GW
computes secret parameters and issues a smart card to the user. In Figure 6, we describe
the user registration phase and the detailed steps are shown as below.

User (Ui) Gateway (GW)

Inputs IDi, a high entropy PWi
{IDi}−−−−−−−−−−−−−−→ Generates a random number x, Rg

Computes HIDi = h(IDi||Rg)
PIDi = HIDi ⊕ h(x||kGWN)

Generates a random number Ri
{PIDi ,HIDi ,h(.)}←−−−−−−−−−−−−−− Stores {PIDi, x} in its secure database

Computes APWi = h(PWi||Ri)
SRi = Ri ⊕ (IDi||PWi)
SHIDi = HIDi ⊕ h(PWi||IDi||Ri)
Vi = h(APWi||IDi||Ri)
Stores {SRi, SHIDi, Vi, PIDi, h(.)}
in the smart card

Figure 6. User registration phase of WSN-SLAP.

Step 1: Ui inputs an identity IDi and a high entropy password PWi. After that, Ui transmits
{IDi} to GW via a secure channel.

Step 2: GW generates random numbers x and Rg, and computes HIDi = h(IDi||Rg), PIDi
= HIDi ⊕ h(x||kGWN). GW stores {PIDi, x} in its secure database and sends the
message {PIDi, HIDi, h(.)} to Ui.

Step 3: Ui generates a random number Ri. With Ri, Ui computes APWi = h(PWi||Ri),
SRi = Ri ⊕ (IDi||PWi), SHIDi = HIDi ⊕ h(PWi||IDi||Ri), and Vi = h(APWi
||IDi||Ri). Finally, Ui stores {SRi, SHIDi, Vi, PIDi, h(.)} in the smart card.

5.3. Login and Authentication Phase

To access information of the sensor Sj, the user Ui sends a login request message to the
gateway GW. In Figure 7, we describe the login and authentication phase and the details
are presented below.

Sensors 2021, 21, 936 9 of 23

User (Ui) Gateway (GW) Sensor Node (Sj)

Inserts the smart card
Inputs IDi, PWi
Computes R∗1 = SRi ⊕ h(IDi||PWi)
APW∗i = h(PWi||Ri)
V∗i = h(APWi||IDi||R∗1)
Checks V∗i

?
= Vi

Generates a random nonce N1
Computes HIDi = SHIDi ⊕ h(PWi||IDi||Ri)
Si = SIDj ⊕ h(PIDi||HIDi)
M1 = N1 ⊕ h(HIDi||PIDi)
V1 = h(SIDj||PIDi||N1||HIDi)
{PIDi, Si, M1, V1}−−−−−−−−−−−−→

Retrieves PIDi and the secret value x

Computes HID∗i = PIDi ⊕ h(x||kGWN)
SID∗j = Si ⊕ h(PIDi||HID∗i)
N∗1 = M1 ⊕ h(HID∗i ||PIDi)
V∗1 = h(SID∗j ||PIDi||N∗1 ||HID∗i)

Checks V∗1
?
= V1

Generates a random nonce N2
Retrieves SIDj and h(SIDj||Rj)
Computes KSj = h(h(SIDj||Rj)||kGWN)
M2 = h(N2||HIDi)⊕ h(KSj||PIDi)
M3 = N1 ⊕ h(h(N2||HIDi)||KSj)
V2 = h(PIDi||SIDj||h(N2||HIDi)||N1)
{PIDi, M2, M3, V2}−−−−−−−−−−−−→

Computes h(N2||HIDi)
∗ = M2 ⊕ h(KSj||PIDi)

N∗1 = M3 ⊕ h(h(N2||HIDi)
∗||PIDi)

V∗2 = h(PIDi||SIDj||h(N2||HIDi)||N∗1)
Checks V∗2

?
= V2

Generates a random nonce N3
Computes SK = h(h(N2||HIDi)||N3||N1)
M4 = N3 ⊕ h(KSj||N2)
V3 = h(SK||N3||SIDj)

Computes N∗3 = M4 ⊕ h(KSj||N2) {M4, V3}←−−−−−
SK∗ = h(h(N2||HIDi)||N∗3 ||N1)
V∗3 = h(SK∗||N∗3 ||SIDj)

Checks V∗3
?
= V3

Computes xnew = h(x||N2)
PIDnew

i = HIDi ⊕ h(xnew||kGWN)
Pi = PIDnew

i ⊕ h(N1||HIDi)
M5 = N2 ⊕ h(HIDi||SIDj||N1)
M6 = N3 ⊕ h(N2||HIDi||PIDnew

i)
V4 = h(N2||N3||PIDnew

i ||SK)
If the key agreement is successful,
updates {PIDi, x} to {PIDnew

i , xnew}.
Computes PIDnew

i = Pi ⊕ h(N1||HIDi) {Pi, M5, M6, V4}←−−−−−−−−−−
N∗2 = M5 ⊕ h(HIDi||SIDj||N1)
N∗3 = M6 ⊕ h(N∗2 ||HIDi||PIDnew

i)
SK∗ = h(h(N∗2 ||HIDi)||N∗3 ||N1)
V∗4 = h(N∗2 ||N∗3 ||PIDnew

i ||SK∗)

Checks V∗4
?
= V4

Replaces {PIDi} to {PIDnew
i } in the smart card.

Figure 7. Login and authentication phase of WSN-SLAP.

Step 1: After inserting the smart card, Ui inputs the identity IDi and the password PWi.
The smart card computes R∗1 = SRi ⊕ h(IDi||PWi), APW∗i = h(PWi||Ri) and V∗i =
h(APW∗i ||IDi||R∗1). Then, the smart card checks the validity of V∗i compared with
Vi stored in the smart card. If the validity is confirmed, the smart card generates
a random nonce N1, and computes HIDi = SHIDi ⊕ h(PWi||IDi||Ri), Si = SIDj ⊕
h(PIDi||HIDi), M1 = N1 ⊕ h(HIDi||PIDi), and V1 = h(SIDj||PIDi||N1||HIDi). At
last, Ui sends {PIDi, Si, M1, V1} to GW over a public channel.

Step 2: When GW receives {PIDi, Si, M1, V1} from Ui, GW retrieves PIDi and the shared
secret value x from GW’s database. Then, GW computes HID∗i = PIDi⊕ h(x||kGWN),
SID∗j = Si ⊕ h(PIDi|| HID∗i), N∗1 = M1 ⊕ h(HID∗i ||PIDi) and V∗1 = h(SID∗j ||
PIDi||N∗1 ||HID∗i), and checks the validity of V∗1 compared with V1. If the valid-
ity is confirmed, GW retrieves SIDj and h(SIDj||Rj) from GW’s database. GW
computes KSj = h(h(SIDj||Rj)||kGWN), M2 = h(N2||HIDi)⊕ h(KSj||PIDi), M3 =
N1 ⊕ h(h(N2||HIDi)||KSj), and V2 = h(PIDi||SIDj||h(N2||HIDi)||N1). At last, GW
sends {PIDi, M2, M3, V2} to Sj over a public channel.

Step 3: If Sj receives {PIDi, M2, M3, V2}, Sj computes h(N2||HIDi)
∗ = M2 ⊕ h(KSj||

PIDi), N∗1 = M3 ⊕ h(h(N2||HIDi)
∗||PIDi), V∗2 = h(PIDi||SIDj||h(N2||HIDi)|| N∗1)

and checks the validity of V∗2 compared with the parameter V2. If the validity is con-
firmed, Sj computes SK = h(h(N2||HIDi)||N3||N1), M4 = N3 ⊕ h(KSj||N2), V3 =
h(SK||N3 ||SIDj), where SK is a session key. Finally, Sj sends {M4, V3} to GW.

Step 4: After receiving the message {M4, V3} from Sj, GW computes N∗3 = M4⊕ h(KSj||N2),
SK∗ = h(h(N2||HIDi)||N∗3 ||N1), V∗3 = h(SK∗||N∗3 || SIDj) and verifies the equality
of V∗3 and V3. If the verification is successful, GW generates a random nonce N2

Sensors 2021, 21, 936 10 of 23

and computes xnew = h(x||N2), PIDnew
i = HIDi ⊕ h(xnew||kGWN), Pi = PIDnew

i ⊕
h(N1||HIDi), M5 = N2 ⊕ h(HIDi||SIDj|| N1) , M6 = N3 ⊕ h(N2||HIDi ||PIDnew

i)
and V4 = h(N2||N3|| PIDnew

i ||SK). At last, GW sends {Pi, M5, M6, V4} to Ui and
updates {PIDi, x} to {PIDnew

i , xnew} if the key agreement is successful.

Step 5: When Ui receives the message {Pi, M5, M6, V4} from GW, Ui computes PIDnew
i

= Pi ⊕ h(N1||HIDi), N∗2 = M5 ⊕ h(HIDi||SIDj||N1), N∗3 = M6 ⊕ h(N∗2 ||HIDi ||
PIDnew

i) , SK∗ = h(h(N∗2 ||HIDi)||N∗3 ||N1), V∗4 = h(N∗2 ||N∗3 || PIDnew
i ||SK∗) and

checks the validity of V∗4 compared with V4. If the validity is confirmed, Ui replaces
{PIDi} to {PIDnew

i } in the smart card.

5.4. Password Update Phase

In WSN-SLAP, users can easily change their own password. The details are shown
as below.

Step 1: After inserting the smart card, The user Ui inputs the identity IDi and the password
PWi. The smart card computes R∗i = SRi ⊕ h(IDi||PWi), APW∗i = h(PWi||Ri), V∗i =
h(APWi||IDi||R∗i) and verifies the equality of V∗i and Vi. If the verification is success-
ful, the smart card requests a new password to Ui.

Step 2: Ui inputs a new password PWnew
i . The smart card selects a random number

Rnew
i and computes APWnew

i = h(PWnew
i ||Rnew

i), SRnew
i = Rnew

i ⊕ (IDi||PWnew
i)

, SHIDnew
i = HIDi ⊕ h(PWnew

i ||IDi||Rnew
i), Vnew

i = h(APWnew
i ||IDi||Rnew

i). Finally,
the smart card stores {SRnew

i , SHIDnew
i , Vnew

i , PIDi, h(.)}.

5.5. Sensor Node Addition Phase

To add a new sensor node Snew
j to WSN-SLAP, Snew

j registers to the gateway GW. The
detailed steps are described as follows.

Step 1: Snew
j selects its identity SIDnew

j . Then, Snew
j generates a random number Rnew

j .
With SIDnew

j and Rnew
j , Snew

j computes h(SIDnew
j ||Rnew

j) and sends {SIDnew
j , h(SIDnew

j
||Rnew

j)} to GW through a secure channel.

Step 2: After receiving {SIDnew
j , h(SIDnew

j ||Rnew
j)} from Snew

j , GW computes KSnew
j =

h(h(SIDnew
j ||Rnew

j)||kGWN) and stores {SIDnew
j , h(SIDnew

j ||Rnew
j)} in the database of

GW. Finally, GW sends {KSnew
j } to Snew

j .

Step 3: Snew
j receives the message {KSnew

j } from GW and stores {KSnew
j } in the memory

of Snew
j .

6. Security Analysis

WSN-SLAP not only considers lightweight features using hash functions and XOR
operations, but also ensures a higher security level compared with related schemes. To
evaluate the security of WSN-SLAP, we perform informal security analysis and formal
security analysis such as BAN logic, ROR model, and AVISPA simulation tool. We show
that WSN-SLAP prevents a variety of attacks using informal analysis. We demonstrate
the mutual authentication of WSN-SLAP using BAN logic and also prove the session key
security of WSN-SLAP by using the ROR model. We use the AVISPA simulation tool to
prove security features of WSN-SLAP against replay and MITM attacks.

6.1. Informal Security Analysis

WSN-SLAP provides security against various attacks such as insider, stolen smart
card, replay, sensor node capture, off-line password guessing, privileged insider, stolen
verifier, and MITM attacks. Furthermore, WSN-SLAP ensures perfect forward secrecy and
mutual authentication.

Sensors 2021, 21, 936 11 of 23

6.1.1. Insider Attack

If an adversary A registers to the gateway GW as a legal user, A can authenticate
to GW and the sensor node Sj. A captures messages {PIDi, M2, M3, V2}, {M4, V3} and
{Pi, M5, M6, V4}. Then, A computes h(h(N2||HIDi)||KSj) = M3 ⊕ N1 and h(KSj||PIDi)
= M2 ⊕ h(N2||HIDi). To compromise other legal user’s sessions, A must need KSj to
compute the session key. Since hash functions mask the random nonce N2 and the user’s
secret parameter HIDi such as h(h(N2||HIDi)||KSj), A cannot compute the shared secret
parameter KSj between GW and Sj. Therefore, WSN-SLAP is secure against the insider at-
tacks.

6.1.2. Stolen Smart Card Attack

Suppose that an adversary A captures the legal user Ui’s smart card. Then, A uses
the power analysis attack to extract stored parameters in the smart card. With Ui’s smart
card parameters, A tries to authenticate with the gateway GW and the sensor node Sj.
However, A cannot compute the login request message {PIDi, Si, M1, V1} because HIDi
is masked by SHIDi = HIDi ⊕ h(PWi||IDi||Ri). To calculate HIDi, A needs to guess IDi
and PWi at the same time. Since these tasks are computationally infeasible task, it is hard
to obtain both IDi and PWi. For these reasons, WSN-SLAP is secure against stolen smart
card attacks.

6.1.3. Replay Attack

If an adversaryA intercepts messages {PIDi, M2, M3, V2} and {IDi, Si, M1, V1} from a
legal user Ui,A tries to authenticate with the gateway GW by sending intercepted messages
at other sessions. In WSN-SLAP, GW and the sensor node check the freshness of random
nonces N1, N2 and N3. Thus, WSN-SLAP can provide security against replay attacks.

6.1.4. Sensor Node Capture Attack

We assume that an adversary A captures a specific sensor node Sj and obtains param-
eters {SIDj, KSj} from the Sj’s memory by using the power analysis attack. Then, A can
authenticate with gateway GW and user Ui. However, A cannot threat other sensor nodes.
Since the shared secret parameter KSj = h(h(SIDj||Rj)||kGWN), A can only authenticate
with the specific sensor node Sj. A cannot calculate any information about other sensor
nodes. Therefore, WSN-SLAP is secure against sensor node capture attacks.

6.1.5. Off-Line Password Guessing Attack

According to Section 1.2, an adversary A can guess a legal user Ui’s password PWi. A
can also extract stored parameters {SRi, SHIDi, Vi, PIDi, h(.)} from Ui’s legitimate smart
card. Then, A tries to impersonate as Ui. However, A cannot compute Ri = SRi ⊕
h(IDi||PWi) to obtain HIDi = SHIDi ⊕ h(PWi||IDi||Ri) without knowing the identity
IDi. Therefore, A cannot compute the legal message {PIDi, M2, M3, V2}. Accordingly,
WSN-SLAP has resistance to off-line password-guessing attacks.

6.1.6. Privileged Insider Attack

If a privileged insider adversary A intercepts a legal user Ui’s registration message
{IDi}, A tries to compute Ui’s session key by using messages in Section 5.3. However,
A cannot compute the session key of Ui. To compute SK = h(h(N2||HIDi)|| N3||N1), A
has to calculate HIDi which is the shared secret parameter between Ui and the gateway
GW. However, A cannot compute HIDi = SHIDi ⊕ h(PWi||IDi||Ri) from the login
request message {PIDi, Si, M1, V1} without Ui’s password and the random number Ri.
Consequently, WSN-SLAP ensures security against privileged insider attacks.

6.1.7. Stolen Verifier Attack

Assuming that an adversary A steals the gateway GW’s verification table including
{SIDj, h(SIDj||Rj)} and (PIDi, x). However, A cannot compute the session key of the

Sensors 2021, 21, 936 12 of 23

legal user Ui with these parameters. To compute the session key SK = h(h(N2||HIDi)||N3||
N1), A must compute HIDi by using PIDi = HIDi ⊕ h(x||kGWN). Since the parameter
kGWN is GW’s master key, A cannot compute HIDi. Therefore, WSN-SLAP has resistance
to stolen verifier attacks.

6.1.8. MITM Attack

During the login and authentication phase, an adversary A intercepts and tries to
modify the login request message {PIDi, Si, M1, V1}. However, the gateway GW can easily
detect the modified message by using the verification table. In addition, it is impossible to
modify all messages because they include random parameters. Therefore, WSN-SLAP can
prevent MITM attacks.

6.1.9. Session-Specific Random Number Leakage Attack

Assume that an adversary A obtains all random parameters N1, N2, and N3. Then, A
tries to compute the session key SK. However, it is impossible to calculate the session key
without knowing HIDi. HIDi is masked with the secret key x and the master key kGWN
during the session. Accordingly, WSN-SLAP is secure against session-specific random
number leakage attacks.

6.1.10. Perfect Forward Secrecy

We suppose that an adversary A obtains GW’s master key kGWN . Then, A tries to
compute the session key SK = h(h(N2||HIDi)||N3||N1) of the user Ui. However, the
master key kGWN is utilized, i.e., h(x||kGWN) and h(h(SIDj||Rj)||kGWN). Therefore, A
needs the shared secret parameter x or h(SIDj||Rj) to analyze the secret parameter. For
this reason, WSN-SLAP provides perfect forward secrecy.

6.1.11. Mutual Authentication

To authenticate with each other, each participant of WSN-SLAP performs verification

processes. The gateway GW checks the validity of V1
?
= V∗1 and V3

?
= V∗3 , the sensor

node Sj verifies V2
?
= V∗2 , and the Ui checks V4

?
= V∗4 . If the whole verification process

is successful, we can conclude that each participant is authenticated with each other.
Therefore, WSN-SLAP guarantees mutual authentication.

6.2. BAN Logic

In this section, we prove mutual authentication of WSN-SLAP using BAN logic
analysis [8]. BAN logic has been widely used to analyze the mutual authentication of
various authentication schemes [32,33]. In WSN-SLAP, the participants authenticate with
each other to establish a session key SK among U, GW, and SN. Table 2 presents the basic
notations of the BAN logic used in this proof.

Table 2. The basic notations.

Notation Description

P1, P2 Two principals
S1, S2 Two statements

SK The session key
P1| ≡ S1 P1 believes S1
P1| ∼ S1 P1 once said S1
P1 ⇒ S1 P1 controls S1
P1 C S1 P1 receives S1

#S1 S1 is fresh
{S1}Key S1 is encrypted with Key

P1
Key←→ P2 P1 and P2 have shared key Key

Sensors 2021, 21, 936 13 of 23

6.2.1. Rules

The logical rules of the BAN logic are described as below.

1. Message meaning rule (MMR) :

P1

∣∣∣ ≡ P1
Key↔ P2, P1 C (S1)Key

P1| ≡ P2| ∼ S1

2. Nonce verification rule (NVR) :

P1| ≡ #(S1), P1| ≡ P2

∣∣∣ ∼ S1

P1| ≡ P2| ≡ S1

3. Jurisdiction rule (JR) :
P1| ≡ P2| =⇒ S1, P1| ≡ P2| ≡ S1

P1

∣∣∣ ≡ S1

4. Belief rule (BR) :
P1

∣∣∣ ≡ (S1, S2)

P1

∣∣∣ ≡ S1

5. Freshness rule (FR) :
P1

∣∣∣ ≡ #(S1)

P1

∣∣∣ ≡ #(S1, S2)

6.2.2. Goals

In WSN-SLAP, the basic goals of the BAN logic are that each principal establishes a ses-
sion key and achieves mutual authentication. The goals for proving mutual authentication
of WSN-SLAP are defined as follows :

Goal 1: U| ≡ U SK←→ GW

Goal 2: U| ≡ GW| ≡ U SK←→ GW

Goal 3: GW| ≡ U SK←→ GW

Goal 4: GW| ≡ U| ≡ U SK←→ GW

Goal 5: SN| ≡ SN SK←→ GW

Goal 6: SN| ≡ GW| ≡ SN SK←→ GW

Goal 7: GW| ≡ SN SK←→ GW

Goal 8: GW| ≡ SN| ≡ SN SK←→ GW

Sensors 2021, 21, 936 14 of 23

6.2.3. Idealized Forms

In WSN-SLAP, the authentication request and response messages {PIDi, Si, M1, V1},
{PIDi, M2, M3, V2}, {M4, V3}, and {Pi, M5, M6, V4} are transmitted through a public chan-
nel. We will transmit these messages into the idealized form and omit other messages
because they cannot efficiently provide the logical properties of BAN logic. WSN-SLAP’s
idealized form messages are shown as below:

Msg1 : U → GW : {N1, SIDj}HIDi

Msg2 : GW → SN : {h(N2||HIDi), N1}KSj

Msg3 : SN → GW : {N3}KSj

Msg4 : GW → U : {N2, N3}HID1

6.2.4. Assumptions

After the registration phase, each principal believes that it has secret keys which are
shared among each other. The principal also trusts that random numbers and pseudo
identity are fresh. Moreover, the principal believes that a legal principal can control the
entitled components and values. The assumptions of the BAN logic in WSN-SLAP are
as below:

A1: GW| ≡ #(N1)

A2: GW| ≡ #(N3)

A3: SN| ≡ #(h(N2||HIDi))

A4: U| ≡ #(N2)

A5: U| ≡ GW ⇒ (U SK←→ GW)

A6: GW| ≡ U ⇒ (U SK←→ GW)

A7: SN| ≡ GW ⇒ (SN SK←→ GW)

A8: GW| ≡ SN ⇒ (SN SK←→ GW)

A9: U| ≡ U
HIDi←−→ GW

A10: GW| ≡ U
HIDi←−→ GW

A11: SN| ≡ SN
KSj←→ GW

A12: GW| ≡ SN
KSj←→ GW

Sensors 2021, 21, 936 15 of 23

6.2.5. BAN Logic Proof

We conduct the BAN logic analysis of WSN-SLAP as follows:

Step 1: S1 can be obtained from Msg1.

S1 : GW C {N1, SIDj}HIDi

Step 2: S2 can be induced by applying the MMR using S1 and A10.

S2 : GW| ≡ U| ∼ (N1, SIDj)

Step 3: S3 can be induced by applying the FR using S2 and A1.

S3 : GW| ≡ #(N1, SIDj)

Step 4: S4 can be induced by applying the NVR using S2 and S3.

S4 : GW| ≡ U| ≡ (N1, SIDj)

Step 5: S5 is can be induced by S4 and the BR.

S5 : GW| ≡ U| ≡ (N1)

Step 6: S6 is obtained from Msg2.

S6 : SN C {h(N2||HIDi), N1}KSj

Step 7: S7 is can be induced by applying the MMR using S6 and A13.

S7 : SN| ≡ GW| ∼ (h(N2||HIDi), N1)

Step 8: S8 is can be induced by applying the FR using S7 and A3.

S8 : SN| ≡ #(h(N2||HIDi), N1)

Step 9: S9 is can be induced by applying the NVR using S7 and S8.

S9 : SN| ≡ GW| ≡ (h(N2||HIDi), N1)

Step 10: S10 is obtained from Msg3.

S10 : GW C {N3}KSj

Step 11: S11 can be induced by applying the MMR using A5 and S8.

S11 : GW| ≡ SN| ∼ (N3)

Step 12: S12 can be induced by applying the NVR using S9 and S10.

S12 : GW| ≡ SN| ≡ (N3)

Step 13: S13 and S14 can be induced by S9, and S12. SN and GW can compute the session
key SK = h(h(N2||HIDi)||N3||N1).

S13 : GW| ≡ SN| ≡ (SN SK←→ GW) (Goal 8)

S14 : SN| ≡ GW| ≡ (SN SK←→ GW) (Goal 6)

Sensors 2021, 21, 936 16 of 23

Step 14: S15 and S16 can be induced by applying the JR using S13 and A8, and S14 and A7,
respectively.

S15 : GW| ≡ (SN SK←→ GW) (Goal 7)

S16 : SN| ≡ (SN SK←→ GW) (Goal 5)

Step 15: S17 is obtained from Msg4.

S17 : U C {N2, N3}HIDi

Step 16: S18 can be induced by A9, S17, and the MMR.

S18 : U| ≡ GW| ∼ (N2, N3)

Step 17: S19 can be induced by applying the FR using S18 and A4.

S19 : U| ≡ #(N2, N3)

Step 18: S20 can be induced by S16, S17, and the NVR.

S20 : U| ≡ GW| ≡ (N2, N3)

Step 19: S21 and S22 can be induced by S5, S18. U and GW can compute the session key
SK = h(h(N2||HIDi)||N3||N1)

S21 : U| ≡ GW| ≡ (U SK←→ GW) (Goal 2)

S22 : GW| ≡ U| ≡ (U SK←→ GW) (Goal 4)

Step 20: S23 and S24 can be induced by applying the JR using S21 and A5, S22, and A6,
respectively.

S23 : U| ≡ (U SK←→ GW) (Goal 1)

S24 : GW| ≡ (U SK←→ GW) (Goal 3)

6.3. ROR Model

This section proves the security of the session key of WSN-SLAP by using the well-
known Real-Or-Random (ROR) model [9]. In WSN-SLAP, there are three participants. P t1

U
is a user, P t2

GW is a gateway, and P t2
GW is a sensor node. In the ROR model, the network

is under an adversary A who can eavesdrop, capture, insert, and delete messages. With
these abilities, A performs various attacks using Execute, CorruptSC, Reveal, Send, and
Test queries.

• Execute : This query is a passive attack thatA can eavesdrop the legal entity’s message.
• CorruptSC : This query means A obtains stored parameters from the user’s smart

card.
• Reveal : This query means A reveals the session key SK.
• Send : This query is an active attack that A sends a message to receive a response

message.
• Test : An adversary A obtains a flipped unbiased coin before the game starts. If A

obtains c = 1, it means the session key SK is fresh. If A obtains c = 0, it means the
session key is not fresh. Otherwise, A obtains a NULL value. To ensure the security
of the session key, it is necessary that A cannot distinguish the result value between a
random number and the session key.

Sensors 2021, 21, 936 17 of 23

Security Proof

Theorem 1. Let A attempt to obtain the session key of WSN-SLAP in polynomial time as
follows. AdvA(Poly) is the probability of the session key being broken by A. q2

h, HASH, and
qsend mean the number of hash queries, the range space of the hash function, and the number
of send queries, respectively. s′ and C′ are the Zipf’s parameters [34].

AdvA(Poly) ≤
q2

h
|HASH|+ 2{C′qs′

send}

We follow the proof according to the method of [35,36]. We perform four games Gamek, where
k ∈ [0, 3]. SuccA,Gamek is the event that A can guess a correct bit c in the Gamek, and
Pr[SuccA,Gamek] is the probability of SuccA,Gamek . We can perform Gamek as follows with
these parameters.

– Game0 : This game describes a real attack of A in WSN-SLAP under the ROR model.
The random bit c needs to be selected before starting the game. Therefore, we can derive
as follows.

AdvA(Poly) = |2Pr[SuccA,Game0]− 1| (1)

– Game1 : In the Game1,A obtains each entity’s messages {PIDi, Si, M1, V1}, {PIDi, M2,
M3, V2}, {M4, V3}, and {Pi, M5, M6, V4} using Execute query. Then,A performs Test
and Reveal queries to obtain the session key SK. Since SK = h(h(N2||HIDi)||N3||N1),
A has to get random nonces N1, N2, and N3. In addition, A needs the user’s masked
identity HIDi. For these reasons, A cannot calculate SK. This means Game0 and
Game1 are indistinguishable. Therefore, we can get the following equivalent.

Pr[SuccA,Game1] = Pr[SuccA,Game0] (2)

– Game2 : In this game, A performs Send query, which is an active attack. A utilizes
{PIDi, Si, M1, V1}, {PIDi, M2, M3, V2}, {M4, V3}, and {Pi, M5, M6, V4} to get the
session key SK. Parameters V1, V2, V3, and V4 are masked by HASH query. In addition,
parameters PIDi, M1, M2, M3, M4, M5, M6, and Pi contain random nonces N1, N2,
and N3. By using random nonces, we can prevent collision from other sessions. According
to the birthday paradox [37], we can get the following inequation.

|Pr[SuccA,Game2]− Pr[SuccA,Game1]| ≤
q2

h
|HASH| (3)

– Game3 : In the Game3, A executes CorruptSC query and obtains smart card’s stored
parameters {SRi, SHIDi, Vi, PIDi} by using the power analysis attack, where SRi =
Ri ⊕ h(IDi||PWi), SHIDi = HIDi ⊕ h(PWi||IDi||Ri), Vi = h(APWi||IDi||Ri),
and PIDi = HIDi ⊕ h(x||kGWN). To obtain Ri and HIDi, A needs the identity IDi
and the password PWi. Therefore, A cannot distinguish with Game2 and Game3 if
guessing PWi is computationally infeasible task. Then, we can obtain the result by using
Zipf’s law [34].

|Pr[SuccA,Game3]− Pr[SuccA,Game2]| ≤ C′qs′
send (4)

Finally, A gets the guessed bit c because games are done.

Pr[SuccA,Game3] =
1
2

(5)

Moreover, we can get the following result by using (1) and (2).

1
2

AdvA(Poly) = |Pr[SuccA,Game0]−
1
2
| = |Pr[SuccA,Game1]−

1
2
| (6)

Sensors 2021, 21, 936 18 of 23

Using (5) and (6), we obtain the following equation.

1
2

AdvA(Poly) = |Pr[SuccA,Game1]− Pr[SuccA,Game3]| (7)

We get the following result utilizing the triangular inequality.

1
2

AdvA(Poly) = |Pr[SuccA,Game1]− Pr[SuccA,Game3]|
≤ |Pr[SuccA,Game1]− Pr[SuccA,Game2]|
+|Pr[SuccA,Game2]− Pr[SuccA,Game3]|

≤
q2

h
2|HASH|+ C′qs′

send (8)

By multiplying (8) by 2, we get the following result.

AdvA(Poly) ≤
q2

h
|HASH|+ 2{C′qs′

send}

Therefore, we prove

6.4. AVISPA Simulation

In this section, we analyze security features of WSN-SLAP by using AVISPA [10,11].
AVISPA is a formal security verification tool that detects MITM and replay attacks against
the authentication protocol.

AVISPA uses the High-Level Protocols Specification Language (HLPSL). After receiv-
ing a protocol written in HLPSL, the translator converts the HLPSL-based protocol to an
intermediate format (IF). Then, the translator inputs the IF to four back-ends, which are
Constraint Logic-based Attack Searcher (CL-AtSe), Tree Automata based on Automatic
Approximations for Analysis of Security Protocol (TA4SP), SAT-based Model-Checker
(SATMC), and On the fly Model-Checker (OFMC), respectively. Consequently, the IF is
converted to an output format (OF). If the summary of OF is SAFE, it means the protocol
has resistance to replay and MITM attacks.

Specifically, OFMC back-end can utilize XOR operations. Therefore, we use this
back-end in our paper.

6.4.1. HLPSL Specifications

In HLPSL, WSN-SLAP consists of users UA, gateway GWN, and sensor nodes SN.
These entities are written as role. There are also two composition roles named session and
environment, which contain security goals. Figure 8 indicates goals and the role of session
and environment of WSN-SLAP.

Figure 9 shows the whole process of the user UA. In state 1, the user UA registers to
GWN. To start the session, UA receives the start message. Then, UA sends a registration
request message {IDi} to the gateway GWN through a secure channel. In state 2, UA
receives a smart card from GWN and stores {Ri, SRi, SHIDi, Vi} in the smart card. In the
login and authentication phase, UA sends {PIDi, Si, M1, V1} to GWN via a public channel.
The function witness(UA, GWN, ua_gw_n1, N1′) indicates the freshness of N1 generated
by UA. In State 3, UA receives {Pi, M5, M6, V4} from GWN. Then, UA authenticates with
GWN using N′2 in request(GWN, UA, gw_ua_n3, N′2).

Sensors 2021, 21, 936 19 of 23

role session(UA, SN, GWN : agent, SKuagwn, SKsngwn : symmetric_key, H: hash_func)
3

def=

local SN1, SN2, SN3, RV1, RV2, RV3: channel(dy)

composition

user(UA, SN, GWN, SKuagwn, SKsngwn, H, SN1, RV1)

/\ sen(UA, SN, GWN, SKuagwn, SKsngwn, H, SN2, RV2)

/\ gate(UA, SN, GWN, SKuagwn, SKsngwn, H, SN3, RV3)

end role
3

role environment()

def=

const ua, sn, gwn : agent,

skuagwn, sksngwn: symmetric_key,

h: hash_func,

idi, pidi, sidj: text,

ua_gw_n1, gw_sn_n2, sn_gw_n3, gw_ua_n3: protocol_id,

sp1, sp2, sp3, sp4, sp5, sp6: protocol_id
3

intruder_knowledge = {idi, pidi, sidj, h}

composition

session(ua, sn, gwn, skuagwn, sksngwn, h)/\session(i, sn, gwn, skuagwn, sksngwn, h)

/\session(ua, i, gwn, skuagwn, sksngwn, h)

/\session(ua, sn, i, skuagwn, sksngwn, h)
3

end role
3

goal

secrecy_of sp1, sp2, sp3, sp4,sp5, sp6

authentication_on ua_gw_n1

authentication_on gw_sn_n2

authentication_on sn_gw_n3

authentication_on gw_ua_n3

end goal
3

environment()

Figure 8. Role of session, environment and goal.

Figure 9. Role of user.

6.4.2. Simulation Result

If the protocol’s result summary is SAFE in OFMC simulation, the protocol has
resistance to replay and MITM attacks. The result of WSN-SLAP’s AVISPA simulation tool
using OFMC back-end is shown in Figure 10. Thus, WSN-SLAP can prevent replay and
MITM attacks.

Sensors 2021, 21, 936 20 of 23

Figure 10. Result of the Automated Verification of Internet Security Protocols and Applications
(AVISPA) simulation.

7. Performance Analysis

In this section, we estimate computational costs, communication costs, and security
properties of WSN-SLAP compared with existing related schemes [6,27,28,31].

7.1. Computational Costs

We analyze WSN-SLAP’s computational cost compared with the performance of the
related schemes [6,27,28,31]. According to [6,38], the execution time of each operation is
acquired on a computer with a four-core 3.2 GHz CPU, and 8 GB memory. We estimate
that Th, Tecm, and Tsym are the execution time of the hash function (≈0.00032 s), ECC point
multiplication (≈0.0171 s), and symmetric encryption/decryption (≈0.0056 s), respectively.
We do not consider the execution time of the XOR operation because it is negligible. Table 3
indicates the result for computational costs. Accordingly, WSN-SLAP has a more efficient
computational cost than related schemes [6,27,28,31].

Table 3. Computational costs comparison.

Schemes User Gateway Sensor Node Total Total Cost (s)

Choi et al. [27] 9Th + 3Tecm 6Th + 2Tecm 5Th + 1Tecm 20Th + 6Tecm 0.109

Wu et al. [28] 12Th + 2Tecm +
1Tsym

11Th + 2Tsym
4Th + 2Tecm +

1Tsym

27Th + 4Tecm +
4Tsym

0.09944

Wu et al. [31] 13Th + 2Tecm 13Th 4Th + 2Tecm 30Th + 4Tecm 0.078

Moghadam et al. [6] 5Th + 3Tecm +
2Tsym

5Th + 3Tecm +
2Tsym

3Th + 2Tecm
13Th + 8Tecm +

4Tsym
0.16336

Ours 13Th 18Th 6Th 37Th 0.01184

7.2. Communication Costs

We evaluate the communication cost of WSN-SLAP compared with related
schemes [6,27,28,31] in this section. According to [6], we define that the user identity,
sensor node identity, random number, timestamp, SHA-1 hash digest, and ECC point
are 128, 16, 128, 32, 160 and 320 bits, respectively. In WSN-SLAP, the login request mes-

Sensors 2021, 21, 936 21 of 23

sage {PIDi, Si, M1, V1} requires (160 + 160 + 160 + 160 = 640 bits), and the transmit-
ted authentication messages {PIDi, M2, M3, V2}, {M4, V3}, and {Pi, M5, M6, V4} require
(160+ 160+ 160+ 160 = 640 bits), (160+ 160 = 320 bits), and (160+ 160+ 160+ 160 = 640
bits), respectively. Consequently, total communication costs of WSL-SLAP and related
schemes [6,27,28,31] are as shown in Table 4. Therefore, WSN-SLAP provides a more
efficient communication cost than related schemes do [6,27,28,31].

Table 4. Communication costs comparison.

Schemes Communication Costs Number of Messages

Choi et al. [27] 3200 bits 4 messages
Wu et al. [28] 3296 bits 4 messages
Wu et al. [31] 3392 bits 4 messages

Moghadam et al. [6] 2512 bits 4 messages
Ours 2240 bits 4 messages

7.3. Security Properties

In Table 5, we present the security properties of WSN-SLAP with related
schemes [6,27,28,31]. We show that existing protocols [6,27,28,31] suffer from various
attacks, including insider, stolen smart card, and session-specific random number leak-
age attacks. Therefore, WSN-SLAP provides better functionality and security features
compared with those of related schemes [6,27,28,31].

Table 5. Security properties.

Security Property Choi et al. [27] Wu et al. [28] Wu et al. [31] Moghadam et al. [6] Ours

Insider Attack ◦ ◦ × × ◦

Stolen Smart Card Attack × × × ◦ ◦

Replay Attack ◦ ◦ ◦ ◦ ◦

Sensor Node Capture Attack ◦ ◦ ◦ ◦ ◦

Off-line Password Guessing Attack × × ◦ ◦ ◦

Privileged Insider Attack ◦ ◦ × ◦ ◦

Stolen Verifier Attack × ◦ ◦ ◦ ◦

MITM Attack ◦ ◦ × ◦ ◦

Session-Specific Random Number
Leakage Attack × × × × ◦

Perfect Forward Secrecy ◦ ◦ ◦ × ◦

Mutual Authentication ◦ ◦ ◦ ◦ ◦
◦: Secure from the attack. ×: Insecure from the attack.

8. Conclusions

In this paper, we discovered that Moghadam et al.’s scheme has vulnerabilities
against insider, and session-specific random number leakage attacks. We also proved
that Moghadam et al.’s scheme does not guarantee perfect forward secrecy. To resolve the
security weaknesses of Moghadam et al.’s scheme, we proposed a secure and lightweight
mutual authentication protocol for WSN environments. WSN-SLAP has resistance to vari-
ous attacks, including insider, stolen smart card, off-line password guessing, stolen verifier,
and session-specific random number leakage attacks. We demonstrated that WSN-SLAP
provides perfect forward secrecy and mutual authentication. We proved the security of
WSN-SLAP using formal security analyses, which are AVISPA, BAN logic, and ROR model.
Moreover, WSN-SLAP has lightweight computational and communication costs because it

Sensors 2021, 21, 936 22 of 23

involves XOR operations and hash functions. Therefore, the proposed WSN-SLAP provides
more secure and efficient communication services compared with existing related protocols
and is suitable for WSN environments. In future work, we will implement a whole network
and secure protocol to design a new scheme that is practical for use in WSN.

Author Contributions: Conceptualization, D.K.K.; Formal analysis, S.J.Y., J.Y.L. and S.H.S.; Investi-
gation, S.J.Y. and Y.H.P.; Methodology, D.K.K.; Software, J.Y.L.; Supervision, Y.H.P.; Validation, J.Y.L.
and S.H.S.; Writing—original draft, D.K.K.; Writing—review & editing, S.J.Y., S.H.S. and Y.H.P. All
the authors contributed equally to this work. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported in part by the Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of Education under Grant
2020R1I1A3058605, and in part by the BK21 FOUR project funded by the Ministry of Education,
Korea under Grant 4199990113966.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mandal, S.; Bera, B.; Sutrala, A.K.; Das, A.K.; Choo, K.K.R.; Park, Y. Certificateless-signcryption-based three-factor user access

control scheme for IoT environment. IEEE Internet Things J. 2020, 7, 3184–3197.
2. Yu, S.; Park, Y. SLUA-WSN: Secure and lightweight three-factor-based user authentication protocol for wireless sensor networks.

Sensors 2020, 20, 4143. [CrossRef]
3. Ghahramani, M.; Javidan, R.; Shojafar, M.; Taheri, R.; Alazab, M.; Tafazolli, R. RSS: An energy-efficient approach for securing IoT

service protocols against the DoS attack. IEEE Internet Things J. 2020, doi:10.1109/JIOT.2020.3023102.
4. Park, K.; Noh, S.; Lee, H.; Das, A.K.; Kim, M.; Park, Y.; Wazid, M. LAKS-NVT: Provably secure and lightweight authentication

and key agreement scheme without verification table in medical internet of things. IEEE Access 2020, 8, 119387–119404. [CrossRef]
5. Lee, J.; Yu, S.; Park, K.; Park, Y.; Park, Y. Secure three-factor authentication protocol for multi-gateway IoT environments. Sensors

2019, 19, 2358. [CrossRef] [PubMed]
6. Moghadam, M.F.; Nikooghadam, M.; Al Jabban, M.A.B.; Alishahi, M.; Mortazavi, L.; Mohajerzadeh, A. An efficient authentication

and key agreement scheme based on ECDH for wireless sensor network. IEEE Access 2020, 8, 73182–73192. [CrossRef]
7. Coron, J.S. Resistance against differential power analysis for elliptic curve cryptosystems. In Proceedings of the 1st International

Workshop on Cryptographic Hardware and Embedded Systems, Worcester, MA, USA, 12–13 August 1999; pp. 292–302.
8. Burrows, M.; Abadi, M.; Needham, R.M. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [CrossRef]
9. Abdalla, M.; Fouque, P.; Pointcheval, D. Password-based authenticated key exchange in the three-party setting. In Proceedings

of the 8th International Workshop on Theory and Practice in Public Key Cryptography (PKC’05), Lecture Notes in Computer
Science (LNCS), Les Diablerets, Switzerland, 23–26 January 2005; pp. 65–84.

10. AVISPA. Automated Validation of Internet Security Protocols and Applications. Available online: http://www.avispa-project.org/
(accessed on 4 December 2020).

11. SPAN: A Security Protocol Animator for AVISPA. Available online: http://www.avispa-project.org/ (accessed on 4 Decem-
ber 2020).

12. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
13. Canetti, R.; Krawczyk, H. Universally composable notions of key exchange and secure channels. In Proceedings of the Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques—Advances in Cryptology (EUROCRYPT’02),
Amsterdam, The Netherlands, 28 April–2 May 2002; pp. 337–351.

14. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Proceedings of the Annual International Cryptology Conference, Santa
Barbara, CA, USA, 15–19 August 1999; pp. 388–397.

15. Yu, S.; Lee, J.; Lee, K.; Park, K.; Park, Y. Secure authentication protocol for wireless sensor networks in vehicular communications.
Sensors 2018, 18, 3191. [CrossRef] [PubMed]

16. Fu, X.; Fortino, G.; Li, W.; Pace, P.; Yang, Y. WSNs-assisted opportunistic network for low-latency message forwarding in sparse
settings. Future Gener. Comput. Syst. 2019, 91, 223–237. [CrossRef]

17. Fu, X.; Fortino, G.; Pace, P.; Aloi, G.; Li, W. Environment-fusion multipath routing protocol for wireless sensor networks.
Inf. Fusion 2020, 53, 4–19. [CrossRef]

18. Lee, J.; Yu, S.; Kim, M.; Park, Y.; Das, A.K. On the design of secure and efficient three-factor authentication protocol using honey
list for wireless sensor networks. IEEE Access 2020, 8, 107046–107062. [CrossRef]

19. Fu, X.; Pace, P.; Aloi, G.; Yang, L.; Fortino, G. Topology optimization against cascading failures on wireless sensor networks using
a memetic algorithm. Comput. Netw. 2020, 177, 107327. [CrossRef]

http://doi.org/10.3390/s20154143
http://dx.doi.org/10.1109/ACCESS.2020.3005592
http://dx.doi.org/10.3390/s19102358
http://www.ncbi.nlm.nih.gov/pubmed/31121895
http://dx.doi.org/10.1109/ACCESS.2020.2987764
http://dx.doi.org/10.1145/77648.77649
http://www.avispa-project.org/
http://www.avispa-project.org/
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.3390/s18103191
http://www.ncbi.nlm.nih.gov/pubmed/30248898
http://dx.doi.org/10.1016/j.future.2018.08.031
http://dx.doi.org/10.1016/j.inffus.2019.06.001
http://dx.doi.org/10.1109/ACCESS.2020.3000790
http://dx.doi.org/10.1016/j.comnet.2020.107327

Sensors 2021, 21, 936 23 of 23

20. Lamport, L. Password authentication with insecure communication. Commun. ACM 1981, 24, 770–772. [CrossRef]
21. Wong, K.H.; Zheng, Y.; Cao, J.; Wang, S. A dynamic user authentication scheme for wireless sensor networks. In Proceedings of

the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), Taichung, Taiwan,
5–7 June 2006; pp. 1–8.

22. Tseng, H.R.; Jan, R.H.; Yang, W. An improved dynamic user authentication scheme for wireless sensor networks. In Proceedings
of the IEEE Globecom, Washington, DC, USA, 26–30 November 2007; pp. 986–990.

23. Das, M.L. Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel. Commun. 2009, 8, 1086–1090. [CrossRef]
24. Khan, M.K.; Alghathbar, K. Cryptanalysis and security improvements of ‘two-factor user authentication in wireless sensor

networks’. Sensors 2010, 10, 2450–2459. [CrossRef]
25. He, D.; Gao, Y.; Chan, S.; Chen, C.; Bu, J. An enhanced two-factor user authentication scheme in wireless sensor networks. Ad Hoc

Sens. Wirel. Netw. 2010, 10, 361–371.
26. Yeh, H.L.; Chen, T.H.; Liu, P.C.; Kim, T.H.; Wei, H.W. A secured authentication protocol for wireless sensor networks using elliptic

curves cryptography. Sensors 2011, 11, 4767–4779. [CrossRef]
27. Choi, Y.; Lee, D.; Kim, J.; Jung, J.; Nam, J.; Won, D. Security enhanced user authentication protocol for wireless sensor networks

using elliptic curves cryptography. Sensors 2014, 14, 10081–10106. [CrossRef]
28. Wu, F.; Xu, L.; Kumari, S.; Li, X. A new and secure authentication scheme for wireless sensor networks with formal proof.

Peer-to-Peer Netw. Appl. 2017, 10, 16–30. [CrossRef]
29. Nam, J.; Kim, M.; Paik, J.; Lee, Y.; Won, D. A provably-secure ECC-based authentication scheme for wireless sensor networks.

Sensors 2014, 14, 21023–21044. [CrossRef] [PubMed]
30. Jiang, Q.; Ma, J.; Wei, F.; Tian, Y.; Shen, J.; Yang, Y. An untraceable temporal-credential-based two-factor authentication scheme

using ECC for wireless sensor networks. J. Netw. Comput. Appl. 2016, 76, 37–48. [CrossRef]
31. Wu, F.; Xu, L.; Kumari, S.; Li, X. A privacy-preserving and provable user authentication scheme for wireless sensor networks

based on Internet of Things security. J. Ambient. Intell. Humaniz. Comput. 2017, 8, 101–116. [CrossRef]
32. Ghahramani, M.; Javidan, R.; Shojafar, M. A secure biometric-based authentication protocol for global mobility networks in smart

cities. J. Supercomput. 2020, 76, 8729–8755. [CrossRef]
33. Yu, S.; Lee, J.; Park, Y.; Park, Y.; Lee, S.; Chung, B. A secure and efficient three-factor authentication protocol in global mobility

networks. Appl. Sci. 2020, 10, 3565. [CrossRef]
34. Wang, D.; Cheng, H.; Wang, P.; Huang, X.; Jian, G. Zipf’s law in passwords. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2776–2791.

[CrossRef]
35. Wazid, M.; Bagga, P.; Das, A.K.; Shetty, S.; Rodrigues, J.J.; Park, Y. AKM-IoV: Authenticated key management protocol in fog

computing-based internet of vehicles deployment. IEEE Internet Things J. 2019, 6, 8804–8817. [CrossRef]
36. Yu, S.; Lee, J.; Park, K.; Das, A.K.; Park, Y. IoV-SMAP: Secure and efficient message authentication protocol for IoV in smart city

environment. IEEE Access 2020, 8, 167875–167886. [CrossRef]
37. Boyko, V.; MacKenzie, P.; Patel, S. Provably secure password-authenticated key exchange using Diffie-Hellman. In Proceedings of

the International Conference on the Theory and Applications of Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000;
pp. 156–171.

38. Lee, C.C.; Chen, C.T.; Wu, P.H.; Chen, T.Y. Three-factor control protocol based on elliptic curve cryptosystem for universal serial
bus mass storage devices. IET Comput. Digit. Tech. 2013, 7, 48–55. [CrossRef]

http://dx.doi.org/10.1145/358790.358797
http://dx.doi.org/10.1109/TWC.2008.080128
http://dx.doi.org/10.3390/s100302450
http://dx.doi.org/10.3390/s110504767
http://dx.doi.org/10.3390/s140610081
http://dx.doi.org/10.1007/s12083-015-0404-5
http://dx.doi.org/10.3390/s141121023
http://www.ncbi.nlm.nih.gov/pubmed/25384009
http://dx.doi.org/10.1016/j.jnca.2016.10.001
http://dx.doi.org/10.1007/s12652-016-0345-8
http://dx.doi.org/10.1007/s11227-020-03160-x
http://dx.doi.org/10.3390/app10103565
http://dx.doi.org/10.1109/TIFS.2017.2721359
http://dx.doi.org/10.1109/JIOT.2019.2923611
http://dx.doi.org/10.1109/ACCESS.2020.3022778
http://dx.doi.org/10.1049/iet-cdt.2012.0073

	Introduction
	Contributions
	Adversary Model
	Organization

	Related Works
	Review of Moghadam et al.'s Scheme
	Sensor Node Registration Phase
	User Registration Phase
	Login and Authentication Phase

	Cryptanalysis of Moghadam et al.'s Scheme
	Insider Attack
	Perfect Forward Secrecy
	Session-Specific Random Number Leakage Attack

	Proposed Scheme
	Sensor Node Registration Phase
	User Registration Phase
	Login and Authentication Phase
	Password Update Phase
	Sensor Node Addition Phase

	Security Analysis
	Informal Security Analysis
	Insider Attack
	Stolen Smart Card Attack
	Replay Attack
	Sensor Node Capture Attack
	Off-Line Password Guessing Attack
	Privileged Insider Attack
	Stolen Verifier Attack
	MITM Attack
	Session-Specific Random Number Leakage Attack
	Perfect Forward Secrecy
	Mutual Authentication

	BAN Logic
	Rules
	Goals
	Idealized Forms
	Assumptions
	BAN Logic Proof

	ROR Model
	AVISPA Simulation
	HLPSL Specifications
	Simulation Result

	Performance Analysis
	Computational Costs
	Communication Costs
	Security Properties

	Conclusions
	References

