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Abstract 

Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment 
(TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and 
development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the 
remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and 
lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on 
tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, 
and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This 
article reviews the interrelationship between TAMs and tumor microenvironment and its related 
applications in tumor therapy. 
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Introduction 
While containing a large number of malignant 

epithelial cells, the tumor is also surrounded by 
surrounding immune cells, neovascularization and its 
endothelial cells, cancer associated fibroblasts (CAFs), 
and TAMs surrounded by the extracellular matrix, it 
forms a unique microenvironment [1].Now, the 
molecular and biological abnormalities of tumor cells 
alone cannot fully explain the complex changes in 
tumorigenesis and development [2,3]. Therefore, the 
effect of tumor microenvironment on tumor 
progression has become the focus of more and more 
research [4, 5]. 

Macrophages are the most inflammatory cells 
infiltrated into tumors, also known as 
tumor-associated macrophages. Their content can 
reach more than 50% of the mass of solid tumors, and 
they major involved in the inflammatory response of 
tumors. Studies have shown that treatment methods 
that target tumor cells alone are not sufficient to treat 
tumors. Tumor therapy should target tumor cells and 
their microenvironment as a common target [6]. 

TAMs are significant part of the tumor 
microenvironment and a very attractive targets for 
tumor immunotherapy [7-9]. 

This paper reviews the recent involvement of 
TAMs in tumorigenesis and its related applications in 
tumor therapy, in order to find new strategies for 
treating tumors. 

Origins and characteristics of TAMs 
Solid tumors are composed of malignant cells 

and some non-malignant hematopoietic and 
mesenchymal cells [10, 11]. Macrophages, which are 
non-malignant cells, are one of the major lymphocytes 
infiltrating solid tumors. Sometimes the ratio is 
greater than 50% in tumor tissues. They have the 
function of phagocytosis and digestion of exogenous 
armamentarium, including cell fragments and tumor 
cells to remove detrimental substances [12, 13]. 
Mature macrophages transform into TAMs under 
appropriate conditions after entering the tumor 
microenvironment. 
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The exact origin of TAMs has been controversial. 
Current research indicates that in mouse models, 
TAMs are mainly derived from bone marrow 
monocytes[14], which are absorbed by inflammatory 
signals released by cancer cells in primary and 
metastatic tumors, where they differentiate into 
TAMs and promote tumor progression[15, 16]. 
However, in tumors such as gliomas and pancreatic 
cancer, TAMs may also be derived from embryonic 
macrophages, especially from macrophages deposited 
in the yolk sac [17]. TAM only from embryonic 
macrophages promotes the growth of formed tumors 
[18]. In both cases, TAMs differentiate into different 
tumor-related phenotypes in different tumor 
microenvironments. 

TAMs can be divided into two categories, 
namely pro-inflammatory M1 type and anti- 
inflammatory M2 type (Figure 1), in which M2 type 
macrophages can be further subdivided into M2a, 
M2b, M2c and M2d subgroups [17, 19]. M1 
macrophages are also known as classically activated 
macrophages, which are induced by Interferon- 
gamma (IFN-γ) [20], other pro-inflammatory 
cytokines and immune stimulating cytokines such as 
IL-12 and IL-23[21]. At the same time, it can induce 

Th1 type immune response with the ability to 
promote inflammation and anti-tumor immune 
activity [22]. It also removes pathogens, kill tumor 
cells and play an anti-tumor effect. M2 macrophages 
are called surrogate activated macrophage. They are 
induced by IL-4 or IL-4 and IL-13, secrete IL-10, IL-1 
receptor antagonists (IL-1RA) and a variety of 
chemokines, and highly express arginase, mannose 
receptor, scavenger receptor, etc. M2 macrophages 
display a low ability to present antigens, mainly 
induce Th2 type immune responses, and are mainly 
involved in cell growth, angiogenesis, 
immunosuppression, tissue repair, and interstitial 
formation [23, 24], thereby promoting tumor growth. 

TAMs are predominantly M2 in most tumors 
and can be described as M2d subtypes [25]. In the 
course of tumor development, M1 polarized 
macrophages infiltrated by tumor usually exhibit an 
IL-12 high IL-10 low phenotype, which promote the 
immune reaction and cause tumor cell division. 
During the development of advanced tumors, TAMs 
usually transform to the M2 phenotype, promote 
tumor infiltration and metastasis, and create an 
advantageous microenvironment to promote tumor 
survival, tumor growth and angiogenesis [26, 27]. 

 

 
Figure 1. pro-inflammatory M1 type and anti-inflammatory M2 type macrophages. Pro-inflammatory M1 type macrophages are activated by LPS, IFN-γ, or TNF-α. 
Anti-inflammatory M2 type macrophages are activated by IL4, IL13, or TGF-β. All of the phenotypes synthetize and release a series of different cytokines, chemokines, and 
receptors, which play different role in tumorigenesis. M1 type macrophages secrete IL-12, iNOS, and TNF-α induce Th1 type immune response, and CD40 and CD11c receptors 
are highly expressed on the surface. M2 type macrophages secrete Arg-1 and IL-10 to induce Th2 type immune responses and highly express CD206 and CD169 receptors on 
the surface. 
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The role and mechanism of TAMs in 
tumorigenesis and development 
TAMs and the immunosuppressive tumor 
microenvironment 

TAMs are one of the important components of 
tumor microenvironment [28]. Because TME can 
inhibit immune function, TAMs are generally 
polarized into M2 macrophage [19]. M2 type TAMs 
are abundant in the tumor stroma, can produce a 
large number of immunosuppressive chemokines and 
factors. It can suppress tumor immunity by reducing 
antigen presentation and blocking T cell function [29]. 
TAMs can restrain the normal course of antigen 
presentation, such as by secreting cytokines and 
inflammatory mediators like IL-10, transforming 
growth factor beta (TGF-β), prostaglandin E2 (PGE2) 
and matrix metalloproteinase 7 (MMP-7), thereby 
making T cells lose the ability to distinguish or even 
kill tumor cells, which create an immunosuppressive 
microenvironment [9]. Among them, TGF-β and IL-10 
are important factors that form the microenvironment 
of immunosuppressive tumors [30]. 

TGF-β is a kind of cytokine with immunosup-
pressive function, and it can inhibit the activity of 
immune cells such as natural killer (NK) cells, 
dendritic cells (DCs), and T cells [31]. TGF-β can 
inhibit the NK cell membrane-mediated cytotoxicity- 
promoting receptors NKp30 and NKG2D, thereby 
weakening the immune killing of NK cells to tumors 
[32]. The antitumor effect of CD8+ T cells is also 
inhibited by TGF-β. The mechanism is to inhibit the 
expression of some cell lysing genes, such as 
granzyme A, granzyme B, IFN-γ and FAS ligand. 
Further promotes the expansion of the Tregs cell 
population [33]. Moreover, TGF-β reduces DCs 
transfer and enhance apoptosis, thereby reducing 
antigen presentation and down-regulating adaptive 
immune responses, and promoting the differentiation 
of CD4+ T cells to Th2 type [34]. TGF-β can also induce 
tumor cells to overexpress IL-10 to activate Th2 while 
inhibiting Th1 immune activity, thereby breaking the 
balance of Th1 / Th2, and ultimately suppressing 
immune killing of tumor cells [35]. Studies show that 
blocking TGF-β-mediated signaling pathways in the 
TME could strengthen the killing effect of the immune 
system on tumors [36, 37]. 

IL-10 is a versatile cytokine that allows 
malignant cells to evade immune regulation and 
promote tumor growth [38]. The ability of TAMs to 
secrete IL-10 is related to another tumor-derived 
molecule PGE2, which regulates TAMs polarization 
through the EP2 and EP4 receptors [39]. IL-10 is able to 
restrain the production of pro-inflammatory cytokines 
by inhibiting the activity of NF-κB, including TNF-α, 

IL-6 and IL-12[40]. IL-10 could also suppress IFN-γ, 
which is the principal consideration that stimulates 
T-cell differentiation and accelerate immune escape. 
Recent studies have shown that IL-10 has 
immunostimulatory activity that enhances antitumor 
immunity [41]. When melanoma cells are treated with 
IL-10 for 48-72 hours can completely inhibit 
homologous CTL-mediated HLA-A2.1 limited tumor 
cell up to 100% specific lysis [42]. Furthermore, 
researchers also found that serum IL-10 levels were 
positively correlated with tumor progression, 
suggesting that IL-10 is inseparable from the 
development of tumors [43]. 

TAMs and pro-angiogenic effects 
TAMs are strictly related to angiogenesis, which 

is rigid in tumorigenesis and development. As we all 
know, angiogenesis is essential for the growth and 
diffusion of malignant tumors. Tumor angiogenesis is 
the course of generating neovascularization from now 
available vascular system. The appearance of 
neovascularization not only provides oxygen and 
nutrients for tumor growth, but also provides a 
convenient condition for tumor metastasis [44]. There 
is growing evidence that TAMs make a big difference 
to adjust angiogenesis. Throughout the process, 
vascular epithelial growth factor (VEGF), fibroblast 
growth factor (FGF1), platelet-derived growth factor 
(PDGF), hepatocyte growth factor (HGF), and 
placental growth factor (TGF) expressed by TAMs 
and tumor cells PIGF), matrix metalloproteinases 
(MMP-9, MMP-2), IL-8, IL-1 and other cytokines play 
an important synergistic role, of which VEGF is the 
most important[45]. Studies have shown that 
triggering M2 polarization of macrophages in lung 
cancer can enhance the expression of VEGF and 
thereby advance tumor angiogenesis [46]. 

Furthermore, TAMs assemble in tumor hypoxic 
zone be marked by hypoxia tension. TAMs can 
convey more angiogenic genes based on its 
adaptation to the hypoxic environment. Hypoxia- 
inducible factor (HIF)-1 and-2 act a pivotal part in 
regulating angiogenesis [47]. In the hypoxic tumor 
microenvironment, TAMs enhance the expression of 
HIF-1and HIF-2[48, 49], and the overexpression of this 
factor can promote the production of the above 
cytokines such as VEGF [50, 51]. 

In a study of PyMT mice, the figure for 
macrophages in area surrounding tumor was 
decreased by 43% in PyMT mice treated with 
doxycycline. Decreasing the number of macrophages 
through this level can delay tumor progression, 
reduce tumor production, reduce cancer 
angiogenesis, and down-regulate the expression of 
many pro-angiogenic genes [52]. Through the study of 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

57 

TAMs in angiogenesis in colon cancer, it was found 
that TAMs play a vital part in tumors in development 
of colon cancer in an oxidative stress-dependent 
manner, thereby enhancing the angiogenic capacity of 
the tumor microenvironment [53]. In the malignant 
glioblastoma model, M2 type immunosuppressive 
macrophages promote neovascularization [54]. The 
study found that some TAMs express TIE2 on the 
surface. These TIE2 + macrophages usually bind to 
endothelial cells expressing ANG2 (TIE2 ligand, an 
endothelial cell-specific angiogenic factor), and they 
are associated with tumor angiogenesis and tumor 
ischemia. After the recovery is highly relevant [55]. 

TAMs and tumor proliferation, invasion and 
metastasis 

Tumor metastasis is one of the important signs to 
determine the stages of tumor. Ectopic tumor 
formation is caused by tumor cell metastasis through 
blood vessels and lymphatic vessels [56]. These all 
pose huge challenges for tumor treatment, making it 
difficult to cure and easy to relapse. TAMs can 
promote the proliferation, invasion and metastasis of 
tumors [57]. It can activate NF-κB and activator of 
transcription activator STAT3 by expressing 
inflammatory factors such as TNF-α, IL-6, and IL-11 to 
enhance tumor cell survival and proliferation [58, 59]. 

Polarization of TAMs can affect the proliferation, 
migration, invasion and angiogenesis in primary 
tumors and metastases. In the study of breast cancer, 
endometrial cancer and renal cell carcinoma, it was 
found that the infiltration amount of type M2 TAMs 
in tumor tissue was positively correlated with tumor 
cell proliferation. M2 tumor related macrophages 
advance tumor invasion and metastasis by 
influencing tumor microenvironment. Studies have 
confirmed that M2 macrophages secreted EGF, which 
accelerate epithelial ovarian cancer metastasis by 
activating EGFR-ERK signaling and inhibiting the 
deliverance of lncRNA LIMT [60]. Epidermal Growth 
Factor (EGF) secreted by TAMs can make tumor cells 
form elongated protrusions and enhance their 
invasion ability. At the same time, Clony stimulating 
factor-1 (CSF-1) produced by tumor cells can promote 
macrophages to secrete more EGF, which in turn can 
promote the production of tumor CSF-1. Significantly 
increase the invasive power of tumor cells, thereby 
promoting tumor metastasis [61]. In non-small cell 
lung cancer, TAMs secrete more TGF-β than other 
macrophage phenotypes and increases SOX9 
expression, which strengthens tumor EMT, thereby 
increases tumor proliferation, migration and invasion 
[62]. 

TAMs also produce enzymes (such as metallo-
proteinases and plasmin) to regulate interstitial 
metabolism. The activity of these enzymes is related 
to tumor aggressiveness. For example, MMP-2 is 
connected with lymph node metastasis and tumor 
staging in some tumors [63]. M2 macrophage-induced 
deliverance of vascular endothelial growth factor 
promotes metastatic behavior of Lewis lung cancer 
cells [64].  

TAMs and Lymphangiogenesis 
Lymphangiogenesis is the first step in the 

general transfer of tumor cells, indicating that the 
tumor has a poor prognosis. Maintaining the body's 
homeostasis, normal metabolism and immune 
response are inseparable from the normal function of 
the lymphatic system. Experimental and clinical 
studies have shown that TAMs can markedly advance 
lymphangiogenesis through cellular autonomic 
models and paracrine. Paracrine effects include 
activating lots of pre-existing lymphangiogenic 
factors.  

Studies have found that macrophages are 
involved in the production of lymphatic vessels in an 
inflammatory environment. In the study of TAMs on 
the occurrence and development of ovarian cancer, it 
was found that TAMs have an impact on the 
proliferation, migration and capillary-like vessel 
make up of lymphatic endothelial cells (LEC). TAMs 
can release VEGF-C, which not only helps tumor 
angiogenesis, but also promotes tumor 
lymphangiogenesis [65]. Compared with normal 
ovary, invasive TAMs in malignant ovarian tumor can 
promote lymphangiogenesis by acting on LEC [66]. 
Overexpression of MMP-2 and MMP-9 in breast 
cancer can promote lymphangiogenesis and is closely 
related to lymph node metastasis [67]. Maruyama et 
al. Found that CD11b + macrophages can accumulate 
in mouse corneal stroma and express VEGF-C to 
promote mouse corneal lymphangiogenesis [68]. 

Application of TAMs in tumor 
immunotherapy 

In view of the importance of TAMs in the 
regulation of tumor immunity, treatment strategies 
for macrophages have attracted widespread interest 
(Figure 2). The treatment of TAMs, including TAMs 
elimination, changing TAMs phenotype, and 
improving the antigen presentation function of TAMs 
not only has a separate anti-tumor effect, but also has 
a good synergy with immunotherapy methods such 
as immune checkpoints by animal models and clinical 
trials. 
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Figure 2. Macrophage targeted cancer treatment strategy. TAM polarization, survival, phagocytosis and angiogenic properties during tumor progression. Targeting key 
receptors or signaling proteins can inhibit these macrophage properties and inhibit tumor progression. 

 

Targeting TAMs recruitment depletion and 
recruitment 

One strategy for TAMs consumption is to key off 
the circulating inflammatory monocyte supply. The 
circulating monocytes are mobilized from the bone 
marrow and recruited into the site of inflammation, 
which highly rely on CCL2-CCR2 signaling. The 
suppression of CCR2 preserve monocytes in the bone 
marrow, leading to depletion of circulating cell pools 
and a reduction in the number of TAMs at the 
primary and metastatic sites [69-74]. The chemokine 
CCL2 and its receptor CCR2 act a pivotal part in 
tumor invasion and metastasis by recruiting TAMs. 
CCL2 infiltrates tumor tissue by recruiting TAMs, 
secretes VEGF, TGF - β, TNF - α and other cytokines, 
promotes tumor cell growth and angiogenesis, and 
also secretes matrix metalloproteinase MMP2, MMP9, 
participates in the destruction and reconstruction of 
extracellular matrix, and promotes tumor cell 
invasion and metastasis. A study of bladder cancer 
found that lymph node metastasis-related transcripts 
expressed by tumor cells 1 can recruit heterologous 
ribonucleoprotein to the CCL2 promoter to activate 
CCL2 expression. Upregulation of CCL2 recruit 

macrophages to the tumor and passes VEGF- C 
promote lymphatic metastasis [75]. The increase of 
CCL2 expression during the carcinogenesis of 
esophageal squamous cell carcinoma (ESCC) is 
related to the accumulation of TAMs, both of which 
indicate a poor prognosis of esophageal cancer. 
Animal experiments show that CCL2 is blocked-the 
CCR2 axis is greatly reduced by hindering TAMs 
recruitment to increase the incidence of tumors, 
thereby enhancing the anti-tumor efficacy of CD8 (+) 
T cells in the TME [76]. Research progress of adenoid 
cystic carcinoma of salivary glands (SACC), it was 
found that the CCL2 derived from SACC cells can 
activate the expression of its receptor CCR2 in TAMs. 
The in vitro results further indicate that SACC 
cell-derived CCL2 is involved in TAMs recruitment, 
M2 polarization and GDNF expression via the CCL2 / 
CCR2 axis. Treatment of immunodeficient mice with 
CCR2 antagonists greatly inhibited TAMs infiltration 
and SACC cell tumorigenicity [77].  

CSF-1 is a cytokine that supports the 
differentiation, proliferation and function of 
monocytes and macrophages [78]. In the preclinical 
model, a large number of CSF1-CSF1R axes the study 
[79-81]. Inhibiting CSF-1R in a mouse model of 
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glioblastoma can lead to obvious decrease in tumor 
volume and a significant increase in mouse survival. 
Although this CSF-1R inhibitory effect does not clear 
TAMs, it can cause them to be transformed into 
anti-tumor states regulated by granulocyte- 
macrophage colony stimulating factor (GM-CSF) [82]. 
At the same time, small molecule inhibitors of CSF1-R 
have also been shown to consume some TAMs, 
inhibiting macrophage-mediated immunosuppress-
sion during tumor recovery, thereby significantly 
enhancing tumor sensitivity to chemotherapy [83, 84]. 
Inhibition of CSF1R signaling in a mouse model of 
pancreatic ductal adenocarcinoma can enhance 
antigen presentation function of macrophages and 
anti-tumor T cell responses, but these tumor-reactive 
T cells have PD-1, the expression of PD-1 and other 
immune checkpoint molecules is increased, which 
weakens the anti-tumor effect of CSF1R inhibitors. 
Joint application of immune checkpoint antibodies 
can enhance its anti-tumor effect.  Combination of 
CSF1R and CXCR2 inhibitor can effectively reduce the 
number of TAMs and inhibits polymorphonuclear 
myeloid suppressor cells (PMN-MDSC) in TME, 
which could delay tumor growth. Nevertheless, the 
above two drugs used alone in mouse tumor models 
have no effect on tumor growth [85]. 

Remodeling M1 type macrophages to M2 type 
Macrophages are functionally plastic, so 

changing the environmental stimulus under 
pathological conditions and repolarizing M2 type 
TAMs into a tumor suppressing phenotype is a 
potential clinical strategy for cancer treatment. 
Eliminating or reducing the inducement of M2-type 
TAMs expression or using certain methods to reverse 
the phenotype of TAMs have become an important 
measure to restore the killing ability of macrophages. 
Reversing the TAMs phenotype can also destroy the 
tumor immunosuppressive microenvironment, 
inhibit the formation of tumor blood vessels and 
lymphatic vessels, and ultimately achieve the purpose 
of inhibiting tumor proliferation, invasion and 
metastasis [86]. Specifically, in breast tumor models, 
selective class IIa HDAC inhibitors induce M1 
macrophage phenotype, sustain T cell responses and 
enhance the response to chemotherapy and immune 
checkpoint blockade [87]. Macrophage remodeling 
may be vital for in the efficacy of tumor cure. It has 
been shown that activation of PI3Kγ signaling in 
macrophages can promote immunosuppression of 
TAMs in lung cancer, pancreatic cancer and 
melanoma models [88-91]. In animal experiments, the 
pharmacological repression of PI3Kγ leads to 
macrophage remodeling and enhanced T cell 
response, either as a unitary drug [92] or in 

combination with T cell checkpoint suppression [90, 
92, 94]. 

TLR is an important pathogen recognition 
receptor expressed by TAMs. After TLR3 stimulation, 
M1 type marker MHCⅡ and costimulatory molecules 
such as CD86, CD80 and CD40 are up-regulated. In 
contrast, the expression of the M2-type markers 
CD206, T-cell immunoglobulin, and mucin domain 3 
is reduced. The use of TLR3L in mouse tumors can 
change M2 type macrophages to M1 type and 
degenerate tumor growth [95]. Ubil[96] et al. found 
that Pros1 secreted by tumors inhibited the 
polarization of M1 type macrophages. Pros1 knockout 
tumor-bearing mice showed an increase in innate and 
adaptive immune responses and significantly 
prolonged survival. The study shows that the Pros1 / 
TAM interaction may be a new strategy for 
tumor-mediated immunosuppression. Inhibiting 
Pros1 and TLR7, 8 is beneficial to promote the 
polarization of TAM toward M1 and is beneficial to 
anti-tumor responses. 

In a study, it was demonstrated that Lachnum 
polysaccharide (LEP) can reverse TAM from the 
tumor-promoting M2 phenotype to the anti-tumor M1 
phenotype, thereby enhancing anti-tumor immunity 
[97]. The results showed that glycocalyx simulated 
nanoparticles could be internalized by TAM through 
lectin receptor, which resulted in up regulation of 
immunostimulatory IL-12 and immunosuppressive 
IL-10. Arginine the down-regulation of enzyme 1 and 
CCL2 can reverse the function of tumor TAMs to 
anti-tumor phenotype [98].  

When IL-12 was administered to mice with 
hepatocellular carcinoma, By down regulating STAT3 
and its downstream transcription factor c-myc, we can 
change the functional phenotype of M2 TAMs, so as 
to reduce the production of tumor cytokines and 
inhibit the growth of tumors [99]. Interleukin (IL) -37 
has an anti-tumor effect in hepatocellular carcinoma 
(HCC) [100]. IL-37 promotes the differentiation of 
TAMs from M2 to M1 subtypes by inhibiting IL-6 / 
STAT3 signaling. Overexpression of IL-37 in TAMs 
derived from HCC patients inhibits tumor growth in 
vivo. IL-37 inhibits the M2 polarization of TAMs by 
regulating the IL-6 / STAT3 pathway, and together 
inhibits the growth of HCC [101]. 

Promote phagocytosis and antigen 
presentation of TAMs 

CD47 / SIRP-α signaling pathway is an 
important way for tumor immune escape. Almost all 
human cells express CD47 on the surface, and 
macrophages can express the CD47 receptor 
signal-regulating protein α (SIRP-α), and by 
combining with CD47, they can help macrophages 
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distinguish normal cells from abnormal cells. And 
tumor cells can express CD47 highly, so as to achieve 
immune escape [102]. The specific antibody of CD47 
can prevent the binding of CD47 and SIRP-α, thereby 
enhancing the immune killing of macrophages against 
tumors [103]. TTI-621 (SIRPαFc) can be combined 
with CD47 to enhance the phagocytosis of 
macrophages. In the xenograft model of primary 
patients with acute myeloid leukemia (AML) the load 
is significantly reduced [104]. Antigen presenting 
cells, like macrophages and DC express receptors of 
the TNF receptor superfamily on their surface CD40. 
Interaction with ligand CD40L (mainly expressed by 
T cells, basophils and mast cells) can increase the 
utterance of MHC and the secretion of 
proinflammatory cytokines, thus encouraging the 
activation of T cells [105]. Glioblastoma multiforme 
(GBM) is a deadly and highly invasive malignant 
brain tumor. At present, it has been found that TAMs 
and microglia are the main cells that promote tumors 
in the tumor microenvironment. Blocking 
SIRPα-CD47 signal can induce the phagocytosis of 
tumor cells by TAMs and microglia, which is effective 
for various brain tumors including GBM [106]. 

Leukocyte immunoglobulin-like receptor 
subfamily B (LILRB), The LILRB family is a class of 
repressive receptors presented by myeloid cells, and 
its ligand is MHC class I molecule. MHC class I 
component β2-microglobulin expressed by tumor 
cells can straight protect it from being engulfed. This 
protection is mediated by LILRB1, which is 
up-regulated on the surface of macrophages, 
especially TAMs. Blocking MHC class Ⅰ or LILRB1 can 
enhance the phagocytosis of macrophages after 
blocking CD47 molecules [107]. LILRB2 antagonists 
inhibit this receptor-mediated activation of tyrosine 
phosphatase 1/2 and enhance the proinflammatory 
response. In the company of M-CSF and IL-4, LILRB2 
antagonism also inhibits AKT and STAT6 activation. 
Transcriptome analysis showed that LILRB2 
antagonism changed cytoskeletal remodeling, lipid / 
cholesterol metabolism. Blocking LILRB2 can 
effectively inhibit the infiltration of myeloid-derived 
suppressor cells (MDSC) and Treg, and significantly 
promote the antitumor effect of T cell immune 
checkpoint inhibitors in vivo [108]. 

Nowadays, anti-PD-1 / PD-L1 therapy has 
become an important research direction for human 
cancer immunotherapy. Among them, TAMs can 
promote the apoptosis of T cells and participate in 
immunosuppression by expressing PD-L1 on the cell 
external. Some evidence indicates that TAMs, 
especially M2-type TAMs, express PD-L1 on their 
surface [109], promote CD4 + and CD8 + T cell 
apoptosis through the PD-1 / PD-L1 pathway, and 

make a big difference in suppressing tumor immune 
responses [110]. PD-L1 is a crucial regulator of the 
polarization of M2 TAMs. Inhibition of PD-L1 leads to 
a decrease in M2 markers IL-10 and Arg-1, and an 
increase in M1 markers IL-12 and TNF-α [111]. The 
study also found that the expression of PD-L1 was 
increased in circulating monocytes and TAMs 
induced by tumor cell-derived factors. Blocking PD-1 
can reduce the expression of CD47 in TME to restore T 
cell activity [112], or partially activate DC by TME 
co-stimulatory molecules to promote an effective 
anti-tumor T cell response. 

Targeted TAMs therapy 
TAMs are an important component of the tumor 

local immunosuppressive microenvironment. TAMs 
targeted drug delivery has also attracted widespread 
attention, which can be roughly divided into three 
categories: decreasing or depleting TAMs, promoting 
phagocytosis of TAMs, transforming TAMs into 
tumor inhibiting macrophages. 

Among them, polarization of TAMs is a hot 
research topic. The targeted nanocarrier that can 
deliver in vitro-transcribed mRNA encoding 
M1-polarizing transcription factors to reprogram 
TAMs without causing systemic toxicity. In ovarian 
cancer, melanoma and glioblastoma models, it has 
been proved that can reverse the immunosuppressive 
effect. The tumor support status of TAMs reprograms 
them into a phenotype that induces anti-tumor 
immunity and promotes tumor regression [113]. 
Studies have designed, synthesized and evaluated a 
series of ureido tetrahydrocarbazole derivatives in 
vitro and in vivo. Among them, it was found that 
compound 23a can repolarize TAM from M2 to M1 in 
a dose-dependent manner both in vitro and in vivo. 
More importantly, in vivo experiments also show that 
compound 23a can significantly inhibit tumor growth 
in LLC mouse models [114]. In addition, studies have 
found that CHA-encapsulated mannosylated 
liposomes can enhance the immunotherapeutic 
efficacy of CHA by inducing the transformation from 
M2 type to M1 type [115]. 

For reducing or depleting TAMs, the study to 
achieve the selective elimination of specific M2 TAMs 
provides the possibility to eliminate TAMs that 
support cancer while retaining TAMs with anti-tumor 
potential. EnAd targeting TAMs depletion armed 
with T cell adaptors provides a powerful treatment 
that combines direct cancer cell toxicity with the 
reversal of immunosuppression [116]. 

It is also very important to promote the 
phagocytosis of TAMs. Studies have shown that 
simultaneous inhibition of CSF1-R and SHP2 
signaling pathways on the activation and 
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phagocytosis of macrophages may be an effective 
strategy for macrophage-based immunotherapy. 
Self-assembled dual inhibitor-loaded nanoparticles 
(DNTs) target M2 TAMs and simultaneously inhibit 
the CSF1R and SHP2 pathways. Compared with 
single drug treatment, it has better phagocytic ability 
[117]. 

Conclusions and perspectives 
This review summarizes the research progress of 

TAMs in cancer treatment related fields in recent 
years. The source is described, and the role and 
mechanism in tumorigenesis and development and 
application in tumor immunotherapy are discussed. 

At present, TAM-related tumor immunotherapy 
has achieved promising results. Research shows that 
TAMs as the target of anti-tumor treatment strategy 
mainly focuses on the inhibition of macrophage 
recruitment and viability, which can significantly 
improve the efficacy of traditional therapy and 
immunotherapy. Nevertheless, clinical interest and 
some implied early test results have not yet brought 
out the best treatment. Moreover, due to the complex 
and changeable tumor microenvironment, and the 
clinical evaluation of immunotherapy mainly focused 
on single target drugs, its efficacy is limited. Clinical 
trials have begun to combine the use of different 
immunotherapy methods, as well as clinical trials that 
combine immunotherapy with surgery, chemo-
therapy, radiotherapy, targeted therapy, and 
photothermal therapy to more accurately treat 
patients from the perspective of the immune system. 

The latest research has shown that macrophages 
differ markedly from tumor to tumor. Other studies 
have also analyzed the presence of multiple TAMs 
subgroups at the molecular level, and the study of 
macrophages in their primary tumors and their 
metastasis should be deepened. In recent years, 
breakthroughs have been made in immunotherapy 
site therapy. In 2018, it won the Nobel Prize in 
Physiology or Medicine, and related antibody drugs 
have been approved for listing. The molecular 
detection of macrophages has an impact on the 
progress of tumors, and the research prospects of 
mechanisms that hinder the response of anti-tumor 
therapy are also very promising. The reprogramming 
of TAMs should become the top priority of research. 
The therapeutic response of M2 type macrophages 
can be used to direct anti-tumor immune cells to 
tumors. To attain to this purpose, TAMs can be 
reshaped into M1 type, which is essential for causing 
important transduction in TME. The method can also 
be used in conjunction with other immunotherapy 
strategies to provide cumulative cancer suppression. 
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