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Transplantation research has focused on cytotoxic T-cell and plasma cell/
B-cell-targeted strategies, but little attention has been paid to the role of T helper 
17 (Th17) cells in allograft dysfunction. However, accumulating evidence suggests 
that Th17 cells contribute to the development of acute and chronic allograft in-
jury after transplantation of various organs, including the kidney. This review 
summarizes recent reports on the role of Th17 cells in kidney transplantation. 
Means of improving allograft outcomes by targeting the Th17 pathway are also 
suggested.
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INTRODUCTION

Kidney transplantation (KT) is the best available treat-
ment option for end-stage renal disease. However, the 
long-term success rate of KT is limited by acute or 
chronic allograft rejection due to progressive destruc-
tion caused by recognition of donor alloantigens by the 
recipient’s immune system [1]. Allograft rejection after 
KT is mediated mainly by helper T-cells. The Th1–Th2 
balance is regarded as the major mechanism of rejection 
[2]. However, certain immunologic events occurring af-
ter KT cannot be explained solely by the Th1–Th2 bal-
ance. Therefore, the mechanism of rejection has been ex-
panded to include T helper 17 (Th17) cells, which secrete 
the proinflammatory cytokine interleukin 17 (IL-17) [3].

Th17 cells were identified as a subset distinct from T 

helper type 1 and 2 cells in 2005 [3-5]. Th17 cells were first 
found to be clinically important in autoimmune disor-
ders, and are now of interest in transplantation [6-8]. In-
deed, Th17 cells and their associated cytokines play an 
important role in the development of acute and chronic 
allograft injury after organ transplantation [1,8-12]. For 
example, IL-17 messenger RNA (mRNA) and protein 
levels are elevated in animal models of acute rejection 
[13]. In KT, the IL-17 mRNA level is elevated in proximal 
tubular epithelial cells from allograft tissue with sub-
clinical rejection [14]. Moreover, the IL‑17 protein lev-
el is elevated, and IL-17 mRNA is detectable, in kidney 
allografts with subclinical rejection [7]. Here, we review 
the findings on the role of Th17 cells in the development 
of acute or chronic rejection in KT, and discuss strate-
gies to control the Th17 pathway.
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OVERVIEW OF TH17 CELLS

Th17 cells secrete IL-17, which recruits monocytes and 
neutrophils and acts in synergy with other proinflam-
matory cytokines [3]. Transforming growth factor β, 
IL-6, and IL-1β mediate the induction of immature 
Th17 cells [15,16]. However, they have a different nuclear 
transcript factor profile compared to classical Th1 cells; 
i.e., RORγt (RAR-related orphan receptor γt) and signal 
transducer and activator of transcription 3 (STAT3) [3,17]. 
Finally, differentiation into effector Th17 cells is medi-
ated by the IL-23–IL-23R interaction [18]. Mature Th17 
cells produce IL-22, express C-C motif chemokine re-
ceptor (CCR)-6, -4, and -10, and do not produce IL-10 
(Fig. 1) [19-21].

TH17 CELLS IN KIDNEY ALLOGRAFT TISSUE 
WITH ACUTE ALLOGRAFT REJECTION

Acute allograft rejection is initiated by alloreactive 
T-cells primed in secondary lymphoid organs and re-
cruited to the graft. The production of various proin-
flammatory cytokines by infiltrating cells is increased 
during acute kidney allograft rejection [22-24]. There-
fore, diagnosis and staging of allograft rejection are 

based on the severity or pattern of immune cell infiltra-
tion and evidence of local immune system activation in 
allograft tissue [25-28]. Increased expression of IL-17 in 
local tissue is associated with allograft rejection in vivo 
[7,14,29]. Also, greater infiltration of Th17 cells compared 
to FOXP3+ (forkhead box P3+) regulatory T-cells (Tregs) 
is associated with both the severity of T-cell–mediated 
rejection (TCMR) and the subsequent clinical progno-
sis. A lower Treg/Th17 infiltration ratio is significant-
ly associated with reduced allograft function and more 
severe interstitial and tubular injury [26]. Also, greater 
infiltration of Th17 cells is significantly associated with 
steroid-resistant rejection, incomplete recovery, re-
current TCMR, and a lower allograft survival rate after 
rejection. Several mechanisms have been suggested to 
underlie the above. First, renal epithelial cells exposed 
to IL-17 produce inflammatory mediators that stimulate 
early alloimmune responses [13]. Second, IL-17 induces 
neutrophil recruitment during severe rejection, as seen 
in biopsies [30]. Third, Th17 cells drive alloimmune re-
sponses by promoting lymphoid neogenesis [12]. Thus, 
Th17 cells induce stronger and more sustained alloim-
mune responses, which can result in severe injury to al-
lograft tissue.
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Figure 1. Differentiation of T helper 17 (Th17) cells in mice and humans and the functions of Th17 cytokines and chemokines. 
Th17 cells secrete interleukin 17A/F (IL-17A/F), interleukin 22 (IL-22), interleukin 21 (IL-21), and C-C motif chemokine ligand 
20 (CCL20), which modulate inflammation and immune cell recruitment. TGF-β, transforming growth factor β; STAT3, sig-
nal transducer and activator of transcription 3; RORγt, RAR-related orphan receptor γt; CCR, C-C motif chemokine receptor; 
ACT1, actin 1; TRAP6, thrombin receptor-activating peptide-6; NF-κB, nuclear factor κB; MAPK, mitogen-activated protein 
kinase; IgG, immunoglobulin G.
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ROLE OF TH17 CELLS IN CHRONIC KIDNEY 
ALLOGRAFT DYSFUNCTION

Th17 cells may be associated with severe allograft rejec-
tion. Therefore, we investigated whether Th17 cells are 
involved in chronic allograft dysfunction (CAD), which 
is the main cause of allograft failure. In human prox-
imal renal tubular epithelial cells (HPRTEpiCs), IL-17 
not only increases the production of markers of acute 
inflammation (IL-6 and IL-8) but also modulates the ex-
pression of profibrotic markers; e.g., CTGF (connective 
tissue growth factor) and ACTA-2 (α-actin 2) [31-33]. The 
proportion of peripheral blood Th17 cells from KT re-
cipients with CAD was significantly increased in com-
parison to those of KT recipients with stable allograft 
function, irrespective of follow-up duration. Interest-
ingly, the proportion of Th17 cells was higher in CAD 
patients than in transplant-naïve chronic kidney disease 
(CKD) patients, although renal function was lower in the 
CKD patients. This is important because uremia itself 
can increase the proportion of IL-17–producing effector 
T-cells [34]. Our results suggest that the immune re-
sponse rather than renal dysfunction is responsible for 
the increased proportion of Th17 cells in patients with 
CAD (Fig. 2) [33].

EFFECTS OF IMMUNOSUPPRESSIVE AGENTS 
ON TH17 CELLS

The incidence of early allograft loss due to acute re-
jection can be significantly reduced by use of immune 
suppressants [35]. T-cells are suppressed by treatment 
with a combination of tacrolimus (Tac), mycopheno-
late mofetil, and steroid. In addition, induction therapy 
using basiliximab, an anti-CD25 monoclonal antibody, 
suppresses the proliferation of T-cells [1]. Although 
maintenance immune suppression can improve the al-
lograft survival rate in the first year after KT, there has 
been little improvement in the long-term outcomes [36], 
suggesting that the currently used immune-suppressant 
regimen has limitations. Tac, the major immune-sup-
pressant used in KT recipients, blocks Th1- and Th2-as-
sociated alloimmune responses [37-39]. In contrast, few 
animal studies have investigated the effect of calcineurin 
inhibitors (CNIs) on Th17 responses. In an animal mod-
el of heart transplantation, CNI did not suppress the 
Th17-associated response [40]. Both Th1 and Th2 cyto-
kines are required to reduce the IL-17 level, while ad-
ministration of an anti-Th1 or -Th2 cytokine antibody 
increases the IL-17 level [3]. Therefore, administration 
of Tac may actually enhance the Th17 response. Inter-
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Figure 2. Activation of the T helper 17 (Th17) pathway in kidney transplantation recipients with chronic allograft dysfunction 
(CAD). The proportion of Th17 cells (interleukin 17+ [IL-17+]/cluster of differentiation 4+ [CD4+]); the IL-1β, receptor for ad-
vanced glycation end products (RAGE), and high mobility group box 1 (HMGB-1) messenger RNA (mRNA) levels; and the IL-
17, interleukin 33 (IL-33), and RAGE levels in peripheral blood are higher in patients with CAD. Modified from Chung et al. [41]. 
LTS, long-term stable; ES, early stable; ESRD, end stage renal disease; HC, healthy control; PCR, polymerase chain reaction; 
ELISA, enzyme-linked immunosorbent assay. ap < 0.05 for each comparison. 
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estingly, the percentage of Th17 cells and production of 
IL‑17 by effector memory T-cells (TEM) are significantly 
(p < 0.05) increased at 3 months after KT compared to 
baseline, whereas the proportions of Th1/Th2 cells and 
TEM cells are decreased in the early post-transplantation 
period [41]. In addition, Tac suppresses Th1 and Th2 
cells in a concentration-dependent manner, but even a 
high concentration has no effect on Th17 cells in vitro [41]. 
This suggests that Tac-based immunosuppression may 
be inadequate to suppress Th17 cells in KT recipients.

STRATEGIES TARGETING TH17 CELLS

mTOR inhibitors
Activation of Th17 cells is related to more severe allograft 
rejection and subsequent adverse outcomes [26,42]. In ad-
dition, an increased proportion of Th17 cells in peripheral 
blood is associated with CAD [33]. Therefore, modulation 
of the Th17 response may improve allograft outcomes 
in KT. Mammalian target of rapamycin (mTOR) is an 
important regulator of helper T-cell differentiation [43-
47]. Cluster of differentiation 4+ (CD4+) T-cells lacking or 
deficient in mTOR fail to differentiate into effector cells 
or Treg cells under appropriate conditions [48,49]. Also, 
mTOR inhibition abrogates the reprogramming of Treg 
cells into pathogenic Th1/Th17 effector cells [50]. Sirolim-
us (SRL), an mTOR inhibitor, suppresses Th17 cells in KT 
recipients [50,51]. Moreover, conversion from Tac to SRL 
inhibits the proliferation of allogeneic CD4+ T-cells and 
Th17 cells in vitro and ex vivo [52].

Regulation of Th17 cells by 1α,25-dihydroxyvitamin D3
Another strategy to regulate Th17 cells is to compensate 
Tac instead of conversion to mTOR inhibitor. Metabol-
ic regulators, such as vitamin D, have therapeutic effects 
on immunologic disorders that involve the Th17 re-
sponse [53-55]. Indeed, a low serum 25‑hydroxyvitamin D 
(25-[OH]D) level is associated with high Th17 activity in 
patients with autoimmune diseases or graft-versus-host 
disease after hematopoietic stem-cell transplantation. 
Furthermore, treatment with 1α,25-dihydroxyvitamin 
D3 (1,25[OH]2D3) ameliorates these disorders by modu-
lating the Th17 response [53,56-58] through suppression 
of the mTOR/STAT3 pathway [57,59,60]. Indeed, addi-
tion of 1,25(OH)2D3 to Tac significantly inhibits Th17 

cells in vitro and reduces the IL-17 and IL-22 mRNA lev-
els in peripheral blood mononuclear cells [61]. In Jur-
kat cells, the mTOR/STAT3 pathway is downregulated 
by the addition of 1,25(OH)2D3 to Tac [61]. In an ex vivo 
study, treatment with 1,25(OH)2D3 for 6 months signifi-
cantly decreased the Th17 level compared to baseline in 
42 KT recipients [61]. Furthermore, resveratrol regulates 
the Th17 pathway by activating AMPK and suppressing 
mTOR (unpublished data). mTOR-targeted therapy 
suppresses Th17-related immune responses in KT re-
cipients (Fig. 3).

CONCLUSIONS 

This review summarizes the role of Th17 cells in KT. 
The Th17 pathway plays an important role in various 
types of allograft injury. Tac-based immunosuppres-
sion has a limited impact on Th17-cell-induced allograft 
injury. Several recent studies, including ours, suggest 
that mTOR-targeted strategies could suppress the Th17 
pathway, but the clinical relevance is unclear. Therefore, 
development of strategies targeting the Th17 pathway is 
required to improve allograft outcomes.
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