

The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases

Jin Sun^{1,2}, Bokai Cheng^{1,2}, Yongkang Su^{1,2}, Man Li^{1,2}, Shouyuan Ma³, Yan Zhang⁴, Anhang Zhang^{1,2}, Shuang Cai^{1,2}, Qiligeer Bao^{1,2}, Shuxia Wang^{1,2*} and Ping Zhu^{1,2*}

¹Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China, ²Medical School of Chinese PLA, Beijing, China, ³Department of Geriatric Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China, ⁴Department of Outpatient, The First Medical Center, Chinese PLA General Hospital, Beijing, China

OPEN ACCESS

Edited by:

Giovanni Nigita, The Ohio State University, United States

Reviewed by:

Xiangting Wang, University of Science and Technology of China, China Piyush Khandelia, Birla Institute of Technology and Science, India

*Correspondence:

Ping Zhu zhuping301hospital@163.com Shuxia Wang wangsx301@163.com

Specialty section:

This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics

Received: 05 February 2022 Accepted: 31 March 2022 Published: 20 April 2022

Citation:

Sun J, Cheng B, Su Y, Li M, Ma S, Zhang Y, Zhang A, Cai S, Bao Q, Wang S and Zhu P (2022) The Potential Role of m6A RNA Methylation in the Aging Process and Aging-Associated Diseases. Front. Genet. 13:869950. doi: 10.3389/fgene.2022.869950 N6-methyladenosine (m⁶A) is the most common and conserved internal eukaryotic mRNA modification. m⁶A modification is a dynamic and reversible post-transcriptional regulatory modification, initiated by methylase and removed by RNA demethylase. m⁶A-binding proteins recognise the m⁶A modification to regulate gene expression. Recent studies have shown that altered m⁶A levels and abnormal regulator expression are crucial in the ageing process and the occurrence of age-related diseases. In this review, we summarise some key findings in the field of m⁶A modification in the ageing process and age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases (CVDs). We focused on the biological function and potential molecular mechanisms of m⁶A RNA methylation in ageing and age-related disease progression. We believe that m⁶A modification may provide a new target for anti-ageing therapies.

Keywords: N6-methyladenosine, aging, aging-related disease, epigenetics, RNA methylation

1 INTRODUCTION

Ageing is a process of molecular and cellular damage accumulating over time, leading to a progressive decline in physical and mental capacity and an increased risk of disease and death (Borghesan et al., 2020). At present, changes in molecular and cellular ageing processes are believed to be the basis of age-related diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA damage, telomere depletion, protease inactivation, and epigenetic disorders (Ungvari et al., 2020). Ageing is the greatest risk factor for most chronic diseases, leading to morbidity and mortality (Kennedy et al., 2014). Presently, the field of ageing has focused on understanding the molecular mechanisms that regulate the ageing process and identifying biomarkers that could help to predict age-related processes. New therapeutic targets mainly focus on improving the health of the elderly population.

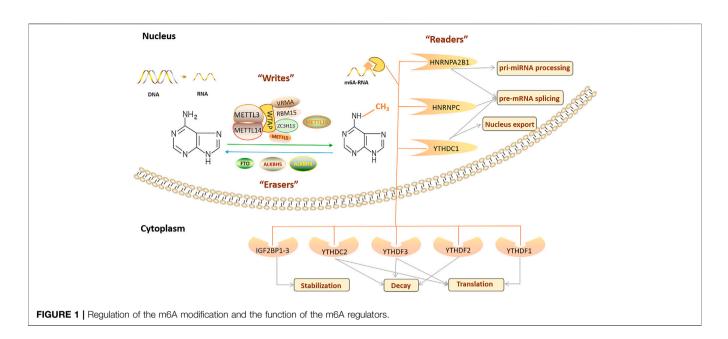
Epigenetics regulate gene and non-coding RNA expression without altering primary DNA sequences through many mechanisms, such as DNA methylation, histone modification, and nucleosome localisation (Portela and Esteller, 2010). Epigenetic imprinting persists during development and can be passed on to the offspring (Fraga et al., 2005; Kaminsky et al., 2009). Known epigenetic mechanisms include DNA methylation, histone modification, chromatin remodelling, and RNA methylation (Wang and Chang, 2018). At present, it is believed that during the ageing process, a decrease in histone synthesis and a change in chromatin structure

1

leads to a general loss of structural heterochromatin (Lee et al., 2020). Histone variants have also been observed in ageing organisms, which have different primary sequences and properties compared to typical histones, thus changing the gene transcription program (Henikoff and Smith, 2015). In addition, the ageing process involves DNA methylation changes (Day et al., 2013; Horvath, 2015; Unnikrishnan et al., 2019), ATP-dependent chromatin remodelling (Clapier et al., 2017), histone modifications (including methylation, acetylation, ubiquitination) (Lawrence et al., 2016), and miRNA changes (Huan et al., 2018).

As one of the most common post-transcriptional modifications in eukaryotic mRNA, N6-methyladenosine (m⁶A) adds a methyl group to the nitrogen-containing base at the sixth position of the adenine residue of RNA. It was first found in the eukaryotic mRNA of Novikov hepatoma cells and mouse L cells (Desrosiers et al., 1974; Schäfer, 1982). m⁶A modification has a conservative identification motif, RRACH (R = G/A, H = A/C/U) (Csepany et al., 1990). The evolutionary conservatism and dynamic reversibility of its modification make it unique for gene expression regulation. m⁶A RNA methylation has become a key regulator of various post-transcriptional gene regulation processes and acts as a translation initiation mechanism in protein synthesis (Karthiya and Khandelia, 2020). In addition, numerous reports have indicated that m⁶A modification may cause important changes in the ageing process and affect the occurrence and development of many age-related diseases. In this review, we focused on m⁶A RNA methylation mechanisms related to the ageing process and emphasised their significance in age-related diseases. We believe that m⁶A RNA methylation is a potential target for treating agerelated diseases.

2 OVERVIEW OF N6-METHYLADENOSINE MODIFICATION


RNA modification is a post-transcriptional process that regulates gene expression by binding to proteins without involving the RNA sequence. More than 160 types of RNA modifications, ubiquitous in both coding and non-coding RNA, have been identified. First discovered in 1974, m⁶A modification refers to the methylation of the sixth nitrogen atom of adenylate. It is considered the most abundant internal modification in eukaryotic mRNA (Desrosiers et al., 1974). With recent improvements in detection techniques, such as highthroughput sequencing, the study of m⁶A RNA methylation is booming. Presently, it has been reported that there are three m⁶A residues per average mRNA transcript in mammalian cells (Dominissini et al., 2012). In addition to mRNA, m⁶A RNA methylation covers almost all types of RNA, including transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), cyclic RNAs (circRNAs), microRNAs, and small nucleolar RNA (snoRNA) (Sergiev et al., 2016).

m⁶A RNA methylation is a dynamic and reversible RNA modification, and its function is determined by three types of enzymes: RNA methyltransferase, RNA demethylase, and

 m^6 A-binding proteins (Figure 1) (Fu et al., 2014). m^6 A modification is crucial in regulating gene expression, splicing, RNA editing, RNA stability, controlling mRNA lifespan and degradation, and mediating ring RNA translation (Zhao et al., 2017). In addition, m^6 A modification is related to many physiological processes, pathological processes, and human diseases, including the circadian rhythm (Zhong et al., 2018), reproductive system development (Hongay and Orr-Weaver, 2011; Hsu et al., 2017; Ivanova et al., 2017; Kasowitz et al., 2018), haematopoietic system development (Wang et al., 2014a; Zhang et al., 2017), nervous system development and degeneration (Hess et al., 2013; Lence et al., 2016; Li et al., 2017a; Yen and Chen, 2021), cardiovascular diseases (Wu et al., 2020a), and tumorigenesis (Wang et al., 2020a; Zhou et al., 2020).

2.1 RNA Methyltransferases

RNA methyltransferases, including RNA methyltransferase-like protein 3 (METTL3) (Bokar et al., 1997), RNA methyltransferaselike protein 14 (METTL14) (Liu et al., 2014), Wilms' tumour 1associating protein (WTAP) (Agarwala et al., 2012), RNAbinding motif protein 15 (RBM15) and its analogue RBM15B (Patil et al., 2016), Vir-like m⁶A RNA methyltransferase associated protein (VIRMA)/KIAA1429 (Schwartz et al., 2014), Zinc finger CCCH domain-containing protein 13 (ZC3H13) (Wen et al., 2018), RNA methyltransferase-like protein 16 (METTL16) (Pendleton et al., 2017), and RNA methyltransferase-like protein 5 (METTL5) (van Tran et al., 2019; Richard et al., 2019), mediate m⁶A modification, are mainly located in nuclear speckles, and are called "m⁶A writers." Among these, METTL3 was the first key RNA methyltransferase and core RNA methyltransferase subunit of m⁶A methylation. It is critical in the occurrence of m⁶A modifications and participates in various physiological processes (Bokar et al., 1997). Abnormal METTL3 expression changes m⁶A RNA methylation levels. As the structural support for METTL3, METTL14 is co-located in the nucleus in a 1:1 ratio and forms a stable RNA methyltransferase complex responsible for m⁶A modification (Liu et al., 2014). WTAP in the RNA methyltransferase complex is primarily used as a connecting protein between METTL3 and METTL14. WTAP lacks a conserved catalytic methylation domain and cannot catalyse m⁶A modification, but its deletion significantly affects m⁶A modification levels and physiological processes, such as embryonic differentiation (Ping et al., 2014). METTL3/ METTL14/WTAP is considered to be the core RNA methyltransferase component, and in recent years, some studies have reported new RNA methyltransferase complex components, such as RBM15/15B, which assists in the binding of METTL3 and WTAP, and its deletion leads to damage to X-inactive specific transcript (XIST)-mediated gene silencing on the X chromosome (Knuckles et al., 2018). ZC3H13 (Wen et al., 2018), VIRMA (Yue et al., 2018), and other proteins also participate in m⁶A RNA methylation as cofactors of the m⁶A RNA methyltransferase complex. In addition, Warda et al. (2017) reported on an independent m⁶A writer, METTL16, finding that its binding site does not overlap with the METTL3/METTL14

methylation complex, and it regulates the stability and splicing of mRNA by catalysing m⁶A modification in snoRNAs, U6 small nuclear RNAs (snRNAs), and other long non-coding RNAs (lncRNAs). There are continuous reports of new RNA methyltransferases, such as METTL5, the enzyme responsible for 18S rRNA m⁶A modification, and ZCCHC4, a confirmed 28S rRNA m⁶A modification enzyme (van Tran et al., 2019; Richard et al., 2019). Some studies reported that WTAP interacts with many proteins and lncRNAs, of which more than 100 may bind to METTL3 or METTL14 (Schöller et al., 2018). Therefore, "writer" may include the reported proteins and other components that need further exploration.

2.2 RNA Demethylases

RNA demethylases, including fat mass and obesity-related proteins (FTO) (Jia et al., 2011), AlkB homologue 5 (ALKBH5) (Huang et al., 2020a), and AlkB homologue 3 (ALKBH3) (Ueda et al., 2017; Sun et al., 2019), can remove the m⁶A modification. They are called "m⁶A erasers" and are located in nuclear spots with RNA methyltransferase. In 2011, FTO was identified as the first m⁶A RNA demethylase, verifying that m⁶A RNA methylation is a dynamic and reversible RNA modification. FTO-mediated m⁶A demethylation acts in various biological processes, inhibiting peroxisome proliferator-activated receptor (PPAR β/δ) and AMP-activated protein kinase (AMPK) pathways, disrupting skeletal muscle lipid utilisation, inhibiting macrophage lipid influx by downregulating PPARy protein expression, and accelerating cholesterol outflow via AMPK phosphorylation. foam Thus, cell formation and atherosclerosis development were inhibited (Yang et al., 2022). FTO regulates the alternative splicing of RUNT-related transcription factor 1 (RUNX1) through m⁶A modifications (Zhao et al., 2014), whereas FTO regulates fat formation and deposition by altering the expression of PPAR γ (Lee et al., 2011) and angiopoietin-like 4 (ANGPTL4) (Wang et al., 2015a). In

addition, FTO is widely involved in regulating the cell cycle (Li et al., 2019a), tumour growth (Li et al., 2019b), proliferation and migration (Tang et al., 2019), stem cell maintenance (Su et al., 2020) and other biological processes.

ALKBH5 is the second m^6A RNA demethylase and is expressed in most tissues, especially the testes (Aik et al., 2014). ALKBH5 inactivation increases m^6A RNA methylation levels, leading to male-mouse infertility (Tang et al., 2018a). In addition, ALKBH3 has recently been considered a new m^6A RNA demethylase that preferentially catalyses m^6A demethylation in tRNA (Ueda et al., 2017; Woo and Chambers, 2019).

2.3 N6-Methyladenosine Binding Proteins

The "m⁶A writers" and "m⁶A erasers" determine whether RNA is methylated, but m⁶A-binding proteins ("m⁶A readers") determine the final biological function of m⁶A modification. "m⁶A readers" recognise and bind to an m⁶A modified transcript, then regulate mRNA stability (Zhao et al., 2014), mRNA splicing (Xiao et al., 2016), mRNA structure (Spitale et al., 2015), mRNA output (Roundtree et al., 2017), translation efficiency (Wang et al., 2015b) and microRNA (miRNA) biogenesis (Alarcón et al., 2015). "Readers" include proteins containing YTH domains (YTHDF1/2/3 and YTHDC1/2), heterogeneous ribonucleoproteins including heterogenous nuclear ribonucleoprotein (HNRNP) C (HNRNPC), HNRNP G (HNRNPG), and HNRNP A2B1 (HNRNPA2B1), and insulin-like growth factor 2 binding proteins (IGF2BPs), which are members of a protein family involved in regulating some aspects of ageing. Different "readers" have different cellular localisations and thus perform various biological functions. YTH domain containing 1 (YTHDC1) regulates mRNA splicing by recruiting the splicing factor serine- and arginine-rich splicing factor 3 (SRSF3) or blocking serine- and arginine-rich splicing factor 10 (SRSF10) in the nucleus (Xiao et al., 2016). In addition, it

TABLE 1 The role of m ⁶ A modification in the fundamental processes

The Processes related to aging	m ⁶ A regulator	Organism	Role in processes	Mechanism	Reference
Autophagy	MTC	Cells, Drosophila	Suppression	Promote the degradation of ATG transcripts	Tang et al. (2021)
,	METTL14	Leydig Cells	Suppression	Reduce AMPK activity	Chen et al. (2021b)
	ALKBH5	Leydig Cells	Promotion	Promote the activity of AMPK	Chen et al. (2021b)
		ovarian cancer cells	Suppression	Regulation of bcl-2 expression	Zhu et al. (2019)
	FTO, YTHDF2	Cells	Promotion	Increase the expression of ULK1	Jin et al. (2018)
Inflammation	METTL3	Cells	Promotion	Regulate alternative splicing of MyD88	Feng et al. (2018)
	METTL14	Endothelial cell, mice	Promotion	Promote FOXO1 expression	Jian et al. (2020)
	ALKBH5	HK-2 cells	Promotion	Up-regulate MALAT1 expression by demethylation	Zhu and Lu, (2020)
	FTO	Cells	Promotion	Promote M1 and M2 macrophage activation	Gu et al. (2020)
	RBM4, YTHDF2	Cells	Suppression	Decrease m ⁶ A modified STAT1 mRNA levels and inhibite the	Huangfu et al.
				polarization of M1 macrophages	(2020)
Oxidative	METTL3	mRTECs	Suppression	Regulate Keap1-Nrf2 pathway	Wang et al. (2019c)
stress	METTL14	Cardiomyocytes, mice	Suppression	Regulate Wnt1/β-Catenin Signaling Pathway	Pang et al. (2021)
	WTAP	Cells and rat	Promotion	Regulate m ⁶ A modification of ATF4 mRNA	Wang et al. (2021)
	FTO	Cell, human samples	Promotion	Increased the translation efficiency of $PGC1\alphamRNA$	Zhuang et al. (2019)
	YTHDF1/3	Cells	Promotion	Promote stress granule formation	Fu and Zhuang, (2020)
DNA damage	METTL3, YTHDC1	Cells	Suppression	Modulates accumulation of DNA-RNA hybrids at DSBs sites and recruit RAD51 and BRCA1	Zhang et al. (2020c)
	METTL3/14, YTHDC1	Cells	Suppression	Active on ssDNA and lesion-containing dsDNA	Yu et al. (2021)
	YTHDF1	Cells, mice	Suppression	Upregulates HR-related factors RAD51 and BRCA1	Sun et al. (2022)
Cell	METTL3	Cells	Promotion	Target NF- κ B, drives the senescence-associated secretory phenotype	Liu et al. (2021)
senescence	METTL14	Clinical Sample	Promotion	Participates in the TNF- α -induced m ⁶ A modification of miR-34a-5p to promote cell senescence	Zhu et al. (2021b)
	FTO	Granulosa cells	Suppression	Regulates the expression of FOS	Jiang et al. (2021)
	METTL3, IGF2BP2	hMSC	Suppression	Stabilizate of the MIS12 transcript	Wu et al. (2020b)

increases the output of circRNA NOP2/SUN domain family, member 2 (circNSUN2) in the cytoplasm by interacting with nuclear output factor 1 (Chen et al., 2019a). HNRNPA2B1 and HNRNPC are also located in the nucleus. HNRNPA2B1 regulates RNA splicing and promotes miRNA maturation by recognising pri-miRNA markers and interacting with DiGeorge syndrome critical region 8 (DGCR8) (Zhao et al., 2017). HNRNPC selectively recognizes m⁶A modified transcripts to promote pre-RNA processing (Liu et al., 2015). YTHDF1/2/3, YTH domain containing 2 (YTHDC2), and IGF2BP1/2/3 are localised in the cytoplasm. YTH domain family protein 1 (YTHDF1) initiates RNA translation by interacting with translation initiation factors and ribosomes, whereas YTH domain family protein 2 (YTHDF2) selectively binds m⁶A modified transcripts and accelerates their degradation (Wang et al., 2015b). On the other hand, YTH domain family protein 3 (YTHDF3) and YTHDF1/2 play a synergistic role, not only promoting YTHDF1-mediated translation but also affecting the decline in YTHDF2mediated m⁶A modification (Wang et al., 2014b; Shi et al., 2017). Like YTHDF3, YTHDC2 is an RNA helicase, and its helix-unwinding region contributes to RNA binding and promotes mRNA translation or degradation (Hsu et al.,

2017). Other proteins located in the cytoplasm are IGF2BP1-3, which recognise and bind to m^6A modified transcripts, thus enhancing mRNA stability (Huang et al., 2018).

3 N6-METHYLADENOSINE CHANGES IN MOLECULAR PROCESSES ASSOCIATED WITH AGEING

Many studies have confirmed that m^6A methylation regulates several physiological processes that are crucial in the ageing process. Here, we focused on the mechanisms of m^6A RNA methylation in autophagy, inflammation, oxidative stress, DNA damage, and cell senescence (**Table 1**).

3.1 N6-Methyladenosine and Autophagy

Autophagy is a highly conserved intracellular clearance mechanism regulated by various proteins and is important for maintaining homeostasis in the internal environment. The mammalian target of rapamycin (mTOR) is a key factor in autophagy regulation. Protein kinase B (AKT) and mitogenactivated protein kinase (MAPK) signalling pathways activate

mTOR to inhibit autophagy, whereas AMPK and p53 pathways negatively regulate mTOR to promote autophagy (Alers et al., 2012). After mTOR inactivation, UNC-51-like kinase 1/2 (ULK1/2) is activated and binds to the focal adhesion kinase family interacting protein of 200 kDa (FIP200) to form a ULK1 complex with autophagy-related 13 (ATG13) proteins, promoting autophagosome formation (Codogno et al., 2011). m⁶A methylation and related regulators regulate autophagy by regulating ATG expression or by affecting autophagy-related signalling pathways. In 2018, Jin et al. first reported a positive regulatory effect of FTO on autophagy, accomplished by affecting the abundance of Unc-51 like autophagy activating kinase 1 (ULK1) (Jin et al., 2018). Another RNA demethylase, ALKBH5, has been shown to enhance autophagy by reducing m⁶A methylation in FIP200 transcripts (Li et al., 2020), suggesting a negative correlation between m⁶A modification and autophagy. A study of RNA methyltransferases further confirmed this. METTL3 upregulates methylation and triggers YTHDF1 and Forkhead box O3 (FOXO3) binding to promote the translation of FOXO mRNA. FOXO further blocks ATG gene expression to inhibit autophagy (Lin et al., 2020). A decrease in METTL14 levels increases the stability of calcium/calmodulin-dependent protein kinase 2 (CAMKK2) mRNA and activates the AMPK and ULK1 complex to initiate autophagy (Chen et al., 2021b).

Abnormal autophagy can lead to diseases, some of which may be associated with ageing. Studies have shown that autophagy decreases with age. Increasing autophagy levels can inhibit the accumulation of damaged proteins, delay the occurrence of degenerative changes, and prolong life (Rubinsztein et al., 2011; Papp et al., 2016). There is evidence that autophagy regulates some age-related diseases in lower organisms (such as Drosophila and Caenorhabditis elegans), but this hypothesis has not been confirmed in mammals. Accelerating ageing by decreasing autophagy is controversial. Nevertheless, several studies have reported that deleting autophagy proteins leads to the accumulation of misfolded proteins and abnormal mitochondria in cells, resulting in premature senescence, organ dysfunction, and eventually the development of various ageing-related diseases, such as neurodegenerative diseases, cancer, CVDs, and metabolic syndrome (Linton et al., 2015; Guo et al., 2018; Luo et al., 2020). In summary, autophagy regulation is closely related to ageing, in which m⁶A modification plays an important role. Therefore, further studies on the relationship between m⁶A modification and autophagy in ageing may provide a new method for antiageing research.

3.2 N6-Methyladenosine and Inflammation

RNA methylation is involved in inflammation. m^6A methylation affects pathways related to metabolic reprogramming, stress response, and ageing by regulating type I interferon (IFN) mRNA stability (Rubio et al., 2018). Lipopolysaccharides (LPSs) induce inflammation. It has been found that LPS stimulation promotes METTL3 expression and biological activity in macrophages, and METTL3 overexpression alleviates lipopolysaccharide-induced inflammation through the nuclear factor- κ B (NF- κ B) signalling pathway, further confirming the relationship between m⁶A methylation and inflammation (Wang et al., 2019a). In addition, the interaction between m⁶A modification and inflammation is crucial for various diseases to occur. YTHDF2 deletion aggravates the inflammatory state and metastasis of human hepatocellular carcinoma cells (Hou et al., 2019). After an ischaemic stroke, FTO expression is downregulated, and m⁶A methylation is increased in the main inflammatory pathways, including interleukin (IL)-6 cytokines, tumour necrosis factor (TNF), toll-like receptor (TLR), and NF- κ B signalling pathways (Chokkalla et al., 2019). It has been suggested that m⁶A may regulate secondary brain injury after cerebral ischaemia by affecting inflammation.

In summary, m⁶A methylation affects inflammation under physiological and pathological conditions. Presently, the chronic inflammatory state is considered one of the characteristics of ageing, namely "inflammatory ageing" (inflamm-ageing), which is mainly characterised by inflammatory cell infiltration and an increase in pro-inflammatory factors [TNF- α , IL-1 β , IL-6, C-reactive protein (CRP), etc.] Although most current studies on the relationship between m⁶A modification and inflammation are based on specific diseases and signalling pathways, the study of epigenetic changes in inflammation potentiates the development of effective drugs with specific anti-ageing targets.

3.3 N6-Methyladenosine and Mitochondria: Oxidative Stress

Oxidative damage accumulates with ageing in many species and tissues. RNA modification is mobilised to activate or inhibit stress-resistant signalling pathways (Peters et al., 2021). Li et al. (2017b) found that the activities of METTL3/METLL14, p21, and senescence-related β -galactosidase (SA- β GAL) increased significantly after oxidative damage stimulated HCT116 p53^{-/-}cells, indicating that METTL3/METLL14 may trigger the p53 independent effect of ageing in the oxidative damage response, which needs to be further tested. Arsenite et al. stimulated human keratinocytes to induce reactive oxygen species (ROS) production, increasing WTAP, METTL14, and total m⁶A expression levels (Zhao et al., 2019). FTO induces oxidative stress and increases ROS levels by reducing m⁶A methylation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1a) (an important regulator of mitochondrial metabolism that is also affected by the ageing process) and increasing PGC1a mRNA translation efficiency.

3.4 N6-Methyladenosine and DNA Damage

DNA damage refers to changes in DNA structure caused by physical or chemical stimuli in the environment. The persistence of DNA damage can lead to a prolonged DNA damage response (DDR) and induce senescence (Di Micco et al., 2021). m⁶A is critical in DNA damage and repair. It has been reported that METTL3/METTL14 and METTL16 are recruited to DNA damage sites to facilitate DNA repair and the DDR by adjusting m⁶A modifications under ultraviolet (UV) radiation

stimulation (Svobodová Kovaříková et al., 2020). This repair is carried out through the nucleotide excision repair (NER) pathway because knockout of the non-homologous end junction (NHEJ) enzyme SUV391H/H2 does not affect m⁶A recruitment under UV stimulation (Svobodová Kovaříková et al., 2020).

3.5 N6-Methyladenosine and Cell Senescence

Cell senescence results from many processes, including telomere wear, macromolecular damage, and oncogene-activated signal transduction (Childs et al., 2015). Senescent cells widely exist in ageing and diseased tissues, secreting numerous proinflammatory cytokines, called the ageing-associated secretory phenotype [senescence-associated secretory phenotype (SASP)]. These cytokines regulate the tissue microenvironment and affect how nearby normal cells function. Studies have shown that senescent cells are involved in atherosclerosis (Ito et al., 2014), Alzheimer's disease (AD) (Boccardi et al., 2015), Parkinson's disease (PD) (Chinta et al., 2013), chronic obstructive pulmonary disease (Barnes et al., 2019), insulin resistance (Aravinthan et al., 2015), age-related chronic inflammation (Campisi and Robert, 2014), cancer (Calcinotto et al., 2019), osteoporosis (Farr and Khosla, 2019), and loss of haematopoietic stem cell function (de Haan and Lazare, 2018) in the elderly.

In 2017, Li et al. (2017b) reported a link between m⁶A methylation and cellular senescence. They found that p21 protein methylation increased with m⁶A methylation, whereas the p21 mRNA level was not affected by m⁶A, suggesting that m⁶A methylation regulates p21 translation. In another study, breast cancer cells were exposed to sublethal concentrations of ammonium trifluoride (SFN). m⁶A methylation levels decreased, the activity of SA-βGAL increased, and p53, p21, and p27 protein levels increased, but the corresponding mRNA levels remained unchanged. SFN may lead to senescence by reducing m⁶A methylation levels (Lewinska et al., 2017). Min et al. reported an m⁶A RNA modification map of human peripheral blood mononuclear cells (PBMCs) from young and old groups. They found that the total level of m⁶A modification in PBMCs of the elderly was significantly lower than that in the young PBMCs, while the expression of m⁶A modified transcripts was higher than that of unmodified transcripts (Min et al., 2018). Shafik et al. have reported dynamic changes in m⁶A RNA methylation during brain ageing. In their study, they compared the m⁶A spectra of Brodmann area 9 (BA9) in the cerebral cortex of 6-week-old and 52-week-old mice and post-mortem pubertal and elderly human brains, and the results showed that the m⁶A modification sites were significantly increased with increasing age, both in mice and humans. Functional enrichment analysis showed that differential m⁶A loci mainly occurred in the untranslated regions of genes that affect ageing-related pathways, which are related to the strong negative effect of mRNA expression (Shafik et al., 2021).

A recent study reported that METTL3 downregulation decreased m⁶A modification of human bone marrow mesenchymal stem cells (hMSC) with premature senescence, and hMSCs showed accelerated ageing after METTL3 gene

knockout. The m⁶A modifications in Hutchinson-Gilford progeria (HGPS) and Werner syndrome (WS) increased with METTL3 overexpression and delayed disease progression. They identified MIS12 as the specific target of m⁶A modification deletion in the premature ageing process using RNA sequencing (RNA-seq) and m⁶A methylation RNA immunoprecipitation sequencing (MERIP-seq) analysis. m⁶A deletion accelerates hMSC ageing, while IGF2BP2 recognises and stabilizes m⁶A modified MIS12 mRNA to prevent accelerating senescence in hMSCs. Based on the above results, Wu et al. (2020b) proposed a regulatory model in which METTL3-mediated m⁶A modification improves the stability of IGF2BP2-mediated MIS12 mRNA, thus reversing the ageing phenotype of hMSCs.

Cellular senescence is an important component of the ageing process. Selective clearance of senescent cells is currently the focus of anti-senescence research. Senolytics (a mixture of dasatinib and quercetin), agents that target cellular senescence, have completed small clinical trials in patients with idiopathic fibrosis with promising efficacy and safety results (Justice et al., 2019). The results need to be validated in larger samples and populations with other age-related diseases. The link between m⁶A methylation and cellular senescence may provide novel therapeutic targets for localising senescent cells, with important clinical implications.

4 N6-METHYLADENOSINE CHANGES IN AGEING ASSOCIATED DISEASES/ DISORDERS

The study of m^6A RNA methylation and the ageing process has laid the foundation for more comprehensive and in-depth exploration into the epigenetic mechanisms of various ageingrelated diseases. At present, several studies focus on the role of m^6A RNA methylation in ageing-related pathological processes, such as cancer. Here, we summarise the latest reports on m^6A modification and ageing-related diseases, focusing on cancer, neurodegenerative diseases, diabetes mellitus, and CVDs (**Table 2**).

4.1 Cancer

In recent years, many studies on m⁶A RNA methylation have reported that changes in m⁶A modification levels and the imbalance of regulatory factors are related to the activation and inhibition of cancer-related signalling pathways. Therefore, m⁶A modification is widely involved in the occurrence (Uddin et al., 2021), progression (Wang et al., 2020a), and drug resistance of cancer (Huang et al., 2020a) and may be a promising biomarker and potential therapeutic target for the diagnosis and prognosis of many kinds of tumours. High METTL3 (Vu et al., 2017), WTAP (Bansal et al., 2014; Naren et al., 2021), FTO (Li et al., 2017c), ALKBH5 (Shen et al., 2020a; Wang et al., 2020b), and YTHDF2 (Paris et al., 2019) expression has been observed in all subtypes of acute myelogenous leukaemia (AML), and high WTAP (Naren et al., 2020), ALKBH5 (Shen et al., 2020a; Wang et al., 2020b) and

TABLE 2 | The functional roles of RNA m⁶A modification in various types of human disease.

Age-related disease	Organism	Role in disease	m ⁶ A regulator	Functional in disease	Ref
Cancer:					
Respiratory neoplasn Lung cancer	ns Clinical Samples; cells	Oncogene	METTL3; FTO; YTHDF1/2; IGF2BP1	Promote LC growth and progress; induce invasion and metastasis of NSCLC	(Lin et al., 2016; Chen et al., 2020a) (Liu et al., 2018a; Chen et al., 2018 Müller et al., 2019)
Nasopharyngeal carcinoma	Cells Cells	Suppressor Oncogene	ALKBH5 METTL3	Inhibits tumor growth and metastasis Promote proliferation and invasion of NPC cells	Jin et al. (2020) Zheng et al. (2019)
Leukemia	Clinical Samples; cells; mice	Oncogene	METTL3; METTL14; WTAP; YTHDF1; FTO; IGF2BP1	Promote AML cells proliferation and leukemia cells self-renewal, growth and metabolism	(Bansal et al., 2014; Vu et al., 2017 Li et al., 2018a; Weng et al., 2018
Gastroinestinal tumo	r				
Hepatocellular carcinoma	Clinical Samples; cells; mice	Oncogene	METTL3; METTL14; YTHDF1; KIAA1429; WTAP; YTHDF2	Induce HCC cells proliferation, migration, invasion and metastasis	(Chen et al., 2018; Cheng et al., 2019; Müller et al., 2019)
Gastric carcinoma	Cells; mice Suppressor METTL14		Suppress tumor invasion and metastasis Promote proliferation, tumor angiogenesis, invasion and metastasis of GC	Ma et al. (2017) (Zhang et al., 2019a; Wang et al., 2020e)	
Colorectal cancer	Cells, Clinical samples, mice	Oncogene	METTL3; FTO; WTAP; YTHDC2; YTHDF1; IGF2BPs	Promote the proliferation, migration, invasion and EMT of CRC cells	(Tanabe et al., 2016; Zhang et al., 2016; Shen et al., 2018; Wu et al. 2019b; Li et al., 2019c)
	Cells, clinical samples	Suppressor	METTL3; METTL14	Suppress CRC proliferation and migration	(Deng et al., 2019; Chen et al., 2020b)
Pancreatic cancer	Cells, clinical samples	Oncogene	METTL3; YTHDF2	Promote cell proliferation, migration, and invasion	(Chen et al., 2017; Zhang et al., 2019b)
	Cells, clinical samples	Suppressor	ALKBH5; YTHDF2	Suppress cancer migration, invasion, and EMT	(Chen et al., 2017; He et al., 2018
Urological cancers	0	0			
Bladder cancer	Cells, clinical samples, mice	Oncogene	METTL3; FTO; ALKBH5	Promote BC cells proliferation, colony formation, invasion and metastasis; inhibit cell apoptosis	(Cai et al., 2018; Wang et al., 2020)
	Clinical samples	Suppressor	METTL14	Inhibit bladder TIC self-renewal and tumorigenesis	Gu et al. (2019)
Renal cell cancer	Cells, clinical samples, mice	Oncogene	WTAP	Enhance cell proliferation abilities	Tang et al. (2018b)
	Cells, clinical samples, mice	Suppressor	METTL3; FTO	Suppress tumor growth, proliferation, migration, invasion function and cell cycle of RCC and induce apoptosis	(Li et al., 2017d ; Zhuang et al., 2019)
Prostate cancer	Cells	Oncogene METTL3; YTHDF2		Promote tumor cells proliferation, survival, colony formation, and migration	Cai et al. (2019)
Reproductive neopla					
Breast cancer	Cells, clinical samples, mice	Oncogene	METTL3; FTO; ALKBH5	Promote BC cells proliferation, colony formation and metastasis; inhibit the apoptosis	(Niu et al., 2019; Wang et al., 2020)
Ovarian cancer	Cells, clinical samples, mice	Oncogene	METTL3; ALKBH5; IGF2BP1	Promote the proliferation and invasion in vitro and in vivo	(Hua et al., 2018; Müller et al., 2019
Cervical carcinom	Cells, clinical samples	Oncogene	FTO	Promote cell proliferation and migration; induce resistance	Zou et al. (2019)
Endometrial cancer	Cells, clinical samples, mice	Suppressor	METTL3/METTL14	Inhibit the proliferation and tumorigenicity	Liu et al. (2018b)
Skin tumors Melanoma	Cells, clinical samples, mice	Oncogene	FTO	Increase tumor growth	Yang et al. (2019a)
	Cells, clinical samples, mice	Suppressor	YTHDF1	Restrain cell growth and migratory ability	Jia et al. (2019)
Squamous cell carcinoma	Cells, clinical samples, mice	Oncogene	METTL3	Promote tumorigenicity	Zhou et al. (2019)
Neurodegenerative d Alzheimer's disease	Mice, clinical samples	Up- regulation	METTL3; IGF2BP2; RBM15B	-	(Han et al., 2020; Deng et al., 2021
	Cells, mice, clinical samples	Down- regulation	METTL3; FTO	-	(Huang et al., 2020b; Han et al., 2020), (Zhao et al., 2021)
		Down-			Quan et al. (2021)

(Continued on following page)

Age-related disease	Organism	Role in disease	m ⁶ A regulator	Functional in disease	Ref
Cardiovascular di	sease:				
Hypertension	Rat	_	_	The m ⁶ A methylation level reduce	Wu et al. (2019a)
Cardiac hypertrophy	Cells, mice	Up- regulation	METTL3; FTO	Promote cardiomyocyte hypertrophy both in vitro and in vivo	(Gan et al., 2013; Dorn et al., 2019), (Berulava et al., 2020)
Heart failure	Clinical samples and mice	Up- regulation	METTL3, METTL4, KIAA1429, FTO, YTHDF2	Data from MeRIP-seq	Zhang et al. (2021)
	Clinical sample, preclinical pig, mice, cells	Down- regulation	FTO	Increase m ⁶ A in RNA and decrease cardiomyocyte contractile function	Mathiyalagan et al. (2019)
Atherosclerosis	Cells, mice, clinical sample	Up- regulation	METTL3, METTL14, IGF2BP1	Promote cardiovascular endothelial cell proliferation and invasion; aggravates endothelial inflammation, angiogenesis and atherosclerosis	(Zhang et al., 2020b; Jian et al., 2020; Dong et al., 2021)
Diabete mellitus	Clinical sample, cells	Up- regulation	FTO, METTL3	Induce mRNA expression of FOXO1, G6PC, and DGAT2	(Yang et al., 2019b; Yang et al., 2020b)
	Cells, mice, clinical sample	Down- regulation	METTL3, METTL14	regulated functional maturation and mass expansion of neonatal β -cells	(De Jesus et al., 2019; Liu et al., 2019; Men et al., 2019; Wang et al., 2020d)

IGF2BP1 expression (Elcheva et al., 2020) are related to the poor prognosis of AML patients. The same phenomenon has been observed in solid tumours. METTL3, RBM15, KIAA1429, YTHDF1, YTHDF2, HNRNPA2B1, HNRNPC, and IGF2BP1/ 2/3 expression levels in lung cancer tissues are significantly higher than those in normal tissues (Shi et al., 2019; Zhang et al., 2020a; Li and Zhan, 2020; Sheng et al., 2020).

METTL3 may regulate the growth, differentiation, and apoptosis of AML cells by affecting the phosphoinositide 3kinases (PI3K)/AKT pathway (Vu et al., 2017). Mechanistically, METTL3 promotes c-MYC, B-cell CLL/ lymphoma 2 (BCL2), and phosphatase and tensin homologue (PTEN) mRNA translation by regulating m⁶A modification levels. Deleting METTL3 increases phosphorylated AKT (p-AKT) levels. METTL3 also regulates drug resistance and invasiveness of lung cancer cells by inducing m⁶A modification of enhancer of zeste homologue 2 (EZH2) mRNA in A549 cells (Chen et al., 2020a). In addition, it has been reported that the tumour suppressor miR-33a targets the 3'-UTR of METTL3 mRNA to reduce METTL3 expression, thus inhibiting A549 and NCI-H460 cell proliferation (Du et al., 2017). This suggests that METTL3 may be a new target for lung cancer therapy. Recently, Yankova et al. found that STM2457, a small molecule METTL3 inhibitor, reduced AML growth and increased apoptosis by reducing the expression of an mRNA known to cause leukaemia. Further animal experiments showed that STM2457 prolongs the survival time of various AML mouse models (Yankova et al., 2021). METTL14 acts in various solid tumours and leukaemia through different mechanisms. METTL14 expression is downregulated in AML cells. However, it still plays a carcinogenic role in AML. METTL14 increases MYB/MYC expression through the SPI1-METTL14-MYB/MYC signal axis to promote AML occurrence (Weng et al., 2018). METTL14 inhibits the migration and invasion of renal

cancer cells by downregulating purinergic receptor P2X 6 (P2RX6) protein translation and ATP-P2RX6-Ca²⁺-p-ERK_{1/2}-MMP9 signalling in renal cell carcinomas (Wang et al., 2019b).

The RNA demethylases FTO and ALKBH5 are also crucial in tumours. FTO may act as a tumour promoter. FTO increases the expression of myeloid zinc finger 1 (MZF1) by reducing m⁶A mRNA modification, and promotes lung cancer progression (Liu et al., 2018a). Knockdown of FTO increases the expression of tumour suppressor genes ASB2 and retinoic acid receptor alpha (RARA) and inhibits AML proliferation and differentiation (Li et al., 2017c). It also reduces the mRNA stability of ubiquitinspecific protease (USP7) and inhibits cancer cell growth (Li et al., 2019b).

In addition, some studies have focused on the function of m⁶A-binding proteins in tumours. YTHDF1 and YTHDF2 can be used as oncogenes and tumour suppressors. YTHDF1 deficiency regulates the transformation efficiency of cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin D1 (CCND1) through the Keap1-Nrf2-AKR1C1 pathway to inhibit tumour cell proliferation and xenograft tumorigenesis. YTHDF1 deletion also inhibits new lung adenocarcinoma (ADC) progression (Shi et al., 2019). However, the study also found that YTHDF1 knockdown leads to cell resistance to cisplatin, whereas high YTHDF1 expression leads to better clinical outcomes (Shi et al., 2019). The results of studies on the role of YTHDF2 in lung cancer are complex. One study reported that YTHDF2 promotes METTL3induced tumorigenesis by increasing suppressor of cytokine signalling 2 (SOCS2) degradation (Chen et al., 2018). However, another study found that YTHDF2 overexpression inhibits non-small cell lung cancer (NSCLC) cell growth and invasion by promoting a decrease in yes-associated protein (YAP) mRNA in NSCLC cells (Jin et al., 2020). However, these studies have repeatedly confirmed the dual role of YTHDF1/2 in

tumorigenesis and progression. IGF2BP1 exerts its carcinogenic function by regulating the expression of key transcriptional and metabolic factors, such as TNF receptor 2 (TNFR2), MYB, and MYC (Li et al., 2018a; Paris et al., 2019; Elcheva et al., 2020).

At present, m⁶A modification and its regulatory factors have proven to be crucial in the occurrence, metastasis, immune escape, and drug resistance of various tumours, including haematological tumours (Vu et al., 2017), respiratory tumours [lung cancer (Du et al., 2018) and nasopharyngeal carcinoma (Zheng et al., 2019)], digestive tract tumours (gastric cancer (Yang et al., 2020a), colorectal cancer (Ni et al., 2019; Shen et al., 2020b; Chen et al., 2021c), pancreatic cancer (Geng et al., 2020), and hepatocellular carcinoma (Chen and Wong, 2020)), urinary tumours [bladder cancer (Han et al., 2019), renal cell carcinoma (Zhuang et al., 2019), and prostate cancer (Zhu et al., 2021a)], reproductive system tumours [breast cancer (Cai et al., 2018), cervical squamous cell carcinoma (Wang et al., 2020c), epithelial ovarian cancer (Hua et al., 2018), and endometrial cancer (Liu et al., 2018b)], skin tumours [melanoma (Yang et al., 2019a; Jia et al., 2019), skin squamous cell carcinoma (Zhou et al., 2019)], and glioblastoma (Cui et al., 2017). Current research results show that m⁶A regulators may play a dual role in the pathogenesis of tumours, not only as oncogenes but as tumour suppressors. The biological effects of the same m⁶A regulator are different in different tumours. Some studies have reported the opposite role for an m⁶A regulator in the same cancer. In short, m⁶A modification can be used as a marker for a variety of tumours to diagnose and evaluate prognosis and potential therapeutic targets. However, our understanding of the role of m⁶A modification in tumours is still in its infancy. Numerous studies are still needed to explore the exact molecular mechanism of m⁶A and tumours to develop new targeted drugs for clinical treatment.

4.2 Diabetes Mellitus

m⁶A plays an important role in the pathogenesis of type 2 diabetes mellitus (T2D). It has been reported that the mRNA expression of RNA demethylase FTO in T2D patients is upregulated compared with that in a normal control group, inducing the increased expression of key genes involved in glucose and fat metabolisms, such as FOXO1, FASN, G6PC, and DGAT2. This suggests that FTO participates in glucose metabolism by regulating target gene expression (Yang et al., 2019b). In addition, some studies have found that METTL3/14 expression in the β cells of T2D patients and diabetic mice is decreased, leading to decreased β cell proliferation and impaired insulin secretion by reducing the m⁶A modification levels of several transcripts related to cell cycle progression, insulin secretion, and insulin/IGF1-AKT-PDX1 pathway (De Jesus et al., 2019; Wang et al., 2020d). In addition, loss of METTL3/ 14 is associated with abnormal glucose tolerance, hyperglycaemia, and hypoinsulinemia in neonatal mice (Liu et al., 2019; Men et al., 2019; Wang et al., 2020d). A recent study found that METTL3 mRNA and miR-25-3p expression were downregulated in PBMCs and retinal pigment epithelial (RPE) cells stimulated by high glucose. RPE cells overexpressing METTL3 could upregulate p-AKT levels through the miR-25-3p/PTEN axis,

thus rescuing the viability of RPE cells stimulated by high glucose (Zha et al., 2020). However, inconsistently, Yang et al. found that METTL3 expression was upregulated in human diabetic cataract tissue samples and high glucose-induced human lens epithelial cells (HLECs), and the total level of m^6A modification increased (Yang et al., 2020b). In summary, m^6A modification is involved in the occurrence of T2D and its related complications. It is expected to provide a new diagnostic and treatment strategy for T2D and its complications.

4.3 Neurodegenerative Diseases

Currently, m⁶A modification is considered very important for nervous system development (Hess et al., 2013; Lence et al., 2016; Li et al., 2017a). In addition, some studies have found that abnormal m⁶A modifications are related to degenerative changes in the nervous system. Neurodegenerative diseases, including AD and PD, are caused by the gradual loss of neuronal structure or function. It has been reported that m⁶A modification levels are downregulated in 6-hydroxydopamine (6-OHDA)-treated PC12 cells and rat striatum, whereas 6-OHDA increases the level of oxidative stress and Ca²⁺ influx by inducing N-methyl-D-aspartate (NMDA) receptor one expression, leading to the death of dopaminergic neurons that eventually develops into PD (Chen et al., 2019b). In addition, some studies have focused on the correlation between m⁶A modification and AD. Compared with the control group, METTL3 expression in the cerebral cortex and hippocampus of AD model mice was upregulated, FTO expression was downregulated, and modification levels were significantly increased, suggesting that m⁶A methylation promotes AD development (Han et al., 2020). Mechanistic studies have reported that FTO activates the TSC1mTOR-Tau signalling pathway by reducing m⁶A modification levels and then participates in the occurrence of AD (Li et al., 2018b; Annapoorna et al., 2019; Chen et al., 2019b). However, FTO expression was increased in the brains of ternary transgenic AD mice, and conditional knockout of FTO in the neurons of AD mice improved their cognitive ability (Li et al., 2018b). Previous studies have reported that FTO is associated with structural brain atrophy in healthy elderly subjects (Ho et al., 2010), and a prospective cohort study also found that FTO interacts with apolipoprotein E (APOE) to increase the risk of dementia, especially AD (Keller et al., 2011). In summary, the above studies showed that m⁶A modification is related to neurodegenerative changes, and its regulatory factors may be used as candidate therapeutic targets for neurodegenerative diseases. However, its role and mechanism need further exploration.

4.4 CVDs

Age is an independent risk factor for CVDs. Studies have shown that m^6A modification may affect the occurrence and development of various CVDs. The level of m^6A RNA methylation in pericytes of spontaneously hypertensive rats was decreased, suggesting that m^6A is involved in blood pressure regulation (Wu et al., 2019a). In addition, under pressure overload stimulation, METTL3 induces compensatory cardiac hypertrophy by regulating the m^6A modification of kinase

and intracellular signal pathway transcripts. However, mice with conditional knockout of the METTL3 gene show the morphology and function of heart failure after stress or ageing stimulation (Dorn et al., 2019). Another study found that FTO expression increased after adipose factor-induced cardiomyocyte hypertrophy, whereas FTO knockout inhibited the hypertrophy of neonatal rat cardiomyocytes (Gan et al., 2013). Berulava et al. (2020) further confirmed these results. They found that the ejection fraction was significantly decreased in cardiomyocyte-specific knockout FTO mice, and heart failure progressed faster (Gan et al., 2013). However, another study found that increasing FTO expression in the hearts of mice with heart failure prevented the myocardial contractile transcript from degrading by reducing its m⁶A modification then reducing the decrease in myocardial contractility caused by ischaemia (Mathiyalagan et al., 2019). These studies suggest that m⁶A modification and its regulatory factors are crucial in maintaining normal myocardial homeostasis, compensatory myocardial hypertrophy, and heart failure progression.

In addition, m^6A also acts in atherosclerosis progression. METTL14 increases the expression of mature miR-19a by upregulating the m^6A modification of miR-19a and accelerates the proliferation of cardiovascular endothelial cells (Zhang et al., 2020b). Additionally, a study reported that METTL14 mediates endothelial cell inflammation, interacts with FOXO1, and promotes vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) transcription, while METTL14 knockout inhibits the progression of atherosclerotic plaques in mice (Jian et al., 2020). It is believed that m^6A modification affects the process of atherosclerosis by regulating cardiovascular endothelial proliferation and endothelial cell inflammation.

In summary, numerous studies have confirmed the correlation between m⁶A modification and CVDs, but further research needs to verify its established molecular changes and pathological process. In addition, most of the current reports focus on METTL3 and FTO, and the role of other m⁶A regulators, such as m⁶A binding proteins in CVDs, is still unclear. m⁶A modification still needs further exploration to provide a new treatment strategy for CVDs.

5 CONCLUSION AND PERSPECTIVES

Alterations in the epigenetic transcriptome are key regulators of gene expression and cellular physiology. m⁶A, the most abundant internal modification of mRNAs and lncRNAs, is widely involved in regulating various cellular processes. Therefore, exploring the changes and molecular mechanisms of m⁶A modification in a pathological state and developing new targeted drugs will provide a new strategy for the early diagnosis and accurate treatment of diseases in the future.

Although several studies have reported on the functional role of m⁶A RNA methylation in ageing and related diseases, many major knowledge gaps remain to be filled. First, numerous studies have confirmed the correlation between m⁶A and age-related diseases. However, current research results are controversial. In tumours, for example, the same m⁶A regulatory factor may play different roles in different tumour types. For instance, METTL14 promotes the migration and invasion of breast cancer (Yi et al., 2020), whereas METTL14 downregulates the cancer-causing long-chain non-coding RNA X-inactive specific transcript (lncRNA XIST) and inhibits tumour proliferation and metastasis in colon cancer (Yang et al., 2020c). This may be due to the difference in disease types, but research on m⁶A is still in its infancy. The level of m⁶A modification, the biological role of regulatory factors in the occurrence and development of various diseases, and their molecular mechanisms require further study. There is still a way to go before m^6A related drugs can be applied. Second, the epigenetic clock based on the DNA methylation site is recognised as the most promising marker of ageing and has been used to evaluate anti-ageing efficacy. m⁶A, a methylated form of epigenetics and DNA methylation, has been shown to function in ageing and ageing-related diseases. Whether it cooperates with DNA methylation to regulate gene expression during ageing or whether it has a potential relationship with other types of RNA modification or epigenetic methods remains to be further studied.

In addition, several reports have shown that m⁶A modification has great potential as a diagnostic marker and therapeutic target in the treatment of anti-ageing and age-related diseases, but few have identified inhibitors specifically targeting m⁶A regulatory proteins. Previous studies have found that the natural product rhein competitively binds the FTO active site *in vitro* (Chen et al., 2012), inhibits inflammation (Hu et al., 2019) and improves virus-induced lung injury (Shen et al., 2019). However, it is unclear whether m⁶A methylation regulation mediates these effects. Therefore, more drugs modified by m⁶A are required to fill this gap. In addition, the exact function of each m⁶A regulatory factor is not consistent in different cells, diseases, and even different stages of disease development. Our understanding of this is not comprehensive, which is also a challenge for applying m⁶A in anti-ageing therapy.

AUTHOR CONTRIBUTIONS

JS proposed the idea and drafted the manuscript, BC, YS, ML, SM, and YZ revised and corrected the initial manuscript, AZ, SC, and QB were involved in the accumulation of the relevant references, SW and PZ contributed to the conception of the study and helped perform the revision with constructive discussions. All authors read and approved the final manuscript.

FUNDING

This study was supported by the "National Key R&D Program of China" (Funding No. 2020YFC2008900), co-funded by Logistics Scientific Research Project of the Chinese PLA (Funding No.19BJZ30), National defense science and technology innovation projects (Funding No. 19-163-15-ZD-009-001-10) and Health care project of Second Medical Center of PLA General Hospital (Funding No. NLBJ-2019012).

REFERENCE

- Agarwala, S. D., Blitzblau, H. G., Hochwagen, A., and Fink, G. R. (2012). RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast. *Plos Genet.* 8 (6), e1002732. doi:10.1371/journal.pgen.1002732
- Aik, W., Scotti, J. S., Choi, H., Gong, L., Demetriades, M., Schofield, C. J., et al. (2014). Structure of Human RNA N6-Methyladenine Demethylase ALKBH5 Provides Insights into its Mechanisms of Nucleic Acid Recognition and Demethylation. *Nucleic Acids Res.* 42 (7), 4741–4754. doi:10.1093/nar/gku085
- Alarcón, C. R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S. F. (2015). N6methyladenosine marks Primary microRNAs for Processing. *Nature* 519 (7544), 482–485. doi:10.1038/nature14281
- Alers, S., Löffler, A. S., Wesselborg, S., and Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the Regulation of Autophagy: Cross Talk, Shortcuts, and Feedbacks. *Mol. Cel Biol* 32 (1), 2–11. doi:10.1128/mcb.06159-11
- Annapoorna, P. K., Iyer, H., Parnaik, T., Narasimhan, H., Bhattacharya, A., and Kumar, A. (2019). FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. *Neuroscience* 418, 15–24. doi:10.1016/j.neuroscience.2019.08.021
- Aravinthan, A., Challis, B., Shannon, N., Hoare, M., Heaney, J., and Alexander, G. J. M. (2015). Selective Insulin Resistance in Hepatocyte Senescence. *Exp. Cel. Res.* 331 (1), 38–45. doi:10.1016/j.yexcr.2014.09.025
- Bansal, H., Yihua, Q., Iyer, S. P., Ganapathy, S., Proia, D., Penalva, L. O., et al. (2014). WTAP Is a Novel Oncogenic Protein in Acute Myeloid Leukemia. *Leukemia* 28 (5), 1171–1174. doi:10.1038/leu.2014.16
- Barnes, P. J., Baker, J., and Donnelly, L. E. (2019). Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases. Am. J. Respir. Crit. Care Med. 200 (5), 556–564. doi:10.1164/rccm.201810-1975TR
- Berulava, T., Buchholz, E., Elerdashvili, V., Pena, T., Islam, M. R., Lbik, D., et al. (2020). Changes in m6A RNA Methylation Contribute to Heart Failure Progression by Modulating Translation. *Eur. J. Heart Fail.* 22 (1), 54–66. doi:10.1002/ejhf.1672
- Boccardi, V., Pelini, L., Ercolani, S., Ruggiero, C., and Mecocci, P. (2015). From Cellular Senescence to Alzheimer's Disease: The Role of Telomere Shortening. *Ageing Res. Rev.* 22, 1–8. doi:10.1016/j.arr.2015.04.003
- Bokar, J. A., Shambaugh, M. E., Polayes, D., Matera, A. G., and Rottman, F. M. (1997). Purification and cDNA Cloning of the AdoMet-Binding Subunit of the Human mRNA (N6-Adenosine)-Methyltransferase. *Rna* 3 (11), 1233–1247.
- Borghesan, M., Hoogaars, W. M. H., Varela-Eirin, M., Talma, N., and Demaria, M. (2020). A Senescence-Centric View of Aging: Implications for Longevity and Disease. *Trends Cell Biology* 30 (10), 777–791. doi:10.1016/j.tcb.2020.07.002
- Cai, J., Yang, F., Zhan, H., Situ, J., Li, W., Mao, Y., et al. (2019). RNA m6A Methyltransferase METTL3 Promotes the Growth of Prostate Cancer by Regulating Hedgehog Pathway. Ott 12, 9143–9152. doi:10.2147/ott.S226796
- Cai, X., Wang, X., Cao, C., Gao, Y., Zhang, S., Yang, Z., et al. (2018). HBXIPelevated Methyltransferase METTL3 Promotes the Progression of Breast Cancer via Inhibiting Tumor Suppressor Let-7g. *Cancer Lett.* 415, 11–19. doi:10.1016/j.canlet.2017.11.018
- Calcinotto, A., Kohli, J., Zagato, E., Pellegrini, L., Demaria, M., and Alimonti, A. (2019). Cellular Senescence: Aging, Cancer, and Injury. *Physiol. Rev.* 99 (2), 1047–1078. doi:10.1152/physrev.00020.2018
- Campisi, J., and Robert, L. (2014). Cell Senescence: Role in Aging and Age-Related Diseases. *Interdiscip. Top. Gerontol.* 39, 45–61. doi:10.1159/000358899
- Chen, B., Ye, F., Yu, L., Jia, G., Huang, X., Zhang, X., et al. (2012). Development of Cell-Active N6-Methyladenosine RNA Demethylase FTO Inhibitor. J. Am. Chem. Soc. 134 (43), 17963–17971. doi:10.1021/ja3064149
- Chen, H., Gao, S., Liu, W., Wong, C.-C., Wu, J., Wu, J., et al. (2021). RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. *Gastroenterology* 160 (4), 1284–1300. e1216. doi:10.1053/j.gastro.2020.11.013
- Chen, J., Sun, Y., Xu, X., Wang, D., He, J., Zhou, H., et al. (2017). YTH Domain Family 2 Orchestrates Epithelial-Mesenchymal Transition/proliferation Dichotomy in Pancreatic Cancer Cells. Cell Cycle 16 (23), 2259–2271. doi:10.1080/15384101.2017.1380125
- Chen, M., Wei, L., Law, C.-T., Tsang, F. H.-C., Shen, J., Cheng, C. L.-H., et al. (2018). RNA N6-Methyladenosine Methyltransferase-like 3 Promotes Liver Cancer Progression through YTHDF2-dependent Posttranscriptional Silencing of SOCS2. *Hepatology* 67 (6), 2254–2270. doi:10.1002/hep.29683

- Chen, M., and Wong, C.-M. (2020). The Emerging Roles of N6-Methyladenosine (m6A) Deregulation in Liver Carcinogenesis. *Mol. Cancer* 19 (1), 44. doi:10. 1186/s12943-020-01172-y
- Chen, R.-X., Chen, X., Xia, L.-P., Zhang, J.-X., Pan, Z.-Z., Ma, X.-D., et al. (2019). N6-methyladenosine Modification of circNSUN2 Facilitates Cytoplasmic export and Stabilizes HMGA2 to Promote Colorectal Liver Metastasis. *Nat. Commun.* 10 (1), 4695. doi:10.1038/s41467-019-12651-2
- Chen, W. W., Qi, J. W., Hang, Y., Wu, J. X., Zhou, X. X., Chen, J. Z., et al. (2020). Simvastatin Is Beneficial to Lung Cancer Progression by Inducing METTL3-Induced m6A Modification on EZH2 mRNA. *Eur. Rev. Med. Pharmacol. Sci.* 24 (8), 4263–4270. doi:10.26355/eurrev_202004_21006
- Chen, X., Xu, M., Xu, X., Zeng, K., Liu, X., Sun, L., et al. (2020). METTL14 Suppresses CRC Progression via Regulating N6-methyladenosine-dependent Primary miR-375 Processing. *Mol. Ther.* 28 (2), 599–612. doi:10.1016/j.ymthe. 2019.11.016
- Chen, X., Yu, C., Guo, M., Zheng, X., Ali, S., Huang, H., et al. (2019). Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chem. Neurosci. 10 (5), 2355–2363. doi:10.1021/acschemneuro. 8b00657
- Chen, Y.-s., Ouyang, X.-p., Yu, X.-h., Novák, P., Zhou, L., He, P.-p., et al. (2021). N6-Adenosine Methylation (m6A) RNA Modification: an Emerging Role in Cardiovascular Diseases. J. Cardiovasc. Trans. Res. 14, 857–872. doi:10.1007/ s12265-021-10108-w
- Chen, Y., Wang, J., Xu, D., Xiang, Z., Ding, J., Yang, X., et al. (2021). m6A mRNA Methylation Regulates Testosterone Synthesis through Modulating Autophagy in Leydig Cells. *Autophagy* 17 (2), 457–475. doi:10.1080/15548627.2020. 1720431
- Cheng, X., Li, M., Rao, X., Zhang, W., Li, X., Wang, L., et al. (2019). KIAA1429 Regulates the Migration and Invasion of Hepatocellular Carcinoma by Altering m6A Modification of ID2 mRNA. *Ott* 12, 3421–3428. doi:10.2147/ott.S180954
- Childs, B. G., Durik, M., Baker, D. J., and van Deursen, J. M. (2015). Cellular Senescence in Aging and Age-Related Disease: from Mechanisms to Therapy. *Nat. Med.* 21 (12), 1424–1435. doi:10.1038/nm.4000
- Chinta, S. J., Lieu, C. A., Demaria, M., Laberge, R.-M., Campisi, J., and Andersen, J. K. (2013). Environmental Stress, Ageing and Glial Cell Senescence: a Novel Mechanistic Link to Parkinson's Disease? J. Intern. Med. 273 (5), 429–436. doi:10.1111/joim.12029
- Chokkalla, A. K., Mehta, S. L., Kim, T., Chelluboina, B., Kim, J., and Vemuganti, R. (2019). Transient Focal Ischemia Significantly Alters the M 6 A Epitranscriptomic Tagging of RNAs in the Brain. *Stroke* 50 (10), 2912–2921. doi:10.1161/strokeaha.119.026433
- Clapier, C. R., Iwasa, J., Cairns, B. R., and Peterson, C. L. (2017). Mechanisms of Action and Regulation of ATP-dependent Chromatin-Remodelling Complexes. *Nat. Rev. Mol. Cel Biol* 18 (7), 407–422. doi:10.1038/nrm.2017.26
- Codogno, P., Mehrpour, M., and Proikas-Cezanne, T. (2011). Canonical and Noncanonical Autophagy: Variations on a Common Theme of Self-Eating? *Nat. Rev. Mol. Cel Biol* 13 (1), 7–12. doi:10.1038/nrm3249
- Csepany, T., Lin, A., Baldick, C. J., Jr., and Beemon, K. (1990). Sequence Specificity of mRNA N6-Adenosine Methyltransferase. J. Biol. Chem. 265 (33), 20117–20122. doi:10.1016/s0021-9258(17)30477-5
- Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., et al. (2017). m 6 A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem CellsA RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cel Rep. 18 (11), 2622–2634. doi:10.1016/j.celrep. 2017.02.059
- Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks, J. D., et al. (2013). Differential DNA Methylation with Age Displays Both Common and Dynamic Features across Human Tissues that Are Influenced by CpG Landscape. *Genome Biol.* 14 (9), R102. doi:10.1186/gb-2013-14-9-r102
- de Haan, G., and Lazare, S. S. (2018). Aging of Hematopoietic Stem Cells. *Blood* 131 (5), 479–487. doi:10.1182/blood-2017-06-746412
- De Jesus, D. F., Zhang, Z., Kahraman, S., Brown, N. K., Chen, M., Hu, J., et al. (2019). m6A mRNA Methylation Regulates Human β -cell Biology in Physiological States and in Type 2 diabetesA mRNA Methylation Regulates Human β -Cell Biology in Physiological States and in Type 2 Diabetes. *Nat. Metab.* 1 (8), 765–774. doi:10.1038/s42255-019-0089-9
- Deng, R., Cheng, Y., Ye, S., Zhang, J., Huang, R., Li, P., et al. (2019). m6A Methyltransferase METTL3 Suppresses Colorectal Cancer Proliferation and

Migration through P38/ERK pathwaysA Methyltransferase METTL3 Suppresses Colorectal Cancer Proliferation and Migration through P38/ERK Pathways. *Ott* 12, 4391–4402. doi:10.2147/ott.S201052

- Deng, Y., Zhu, H., Xiao, L., Liu, C., Liu, Y.-L., and Gao, W. (2021). Identification of the Function and Mechanism of m6A Reader IGF2BP2 in Alzheimer's Disease. *Aging* 13 (21), 24086–24100. doi:10.18632/aging.203652
- Desrosiers, R., Friderici, K., and Rottman, F. (1974). Identification of Methylated Nucleosides in Messenger RNA from Novikoff Hepatoma Cells. Proc. Natl. Acad. Sci. U.S.A. 71 (10), 3971–3975. doi:10.1073/pnas.71.10.3971
- Di Micco, R., Krizhanovsky, V., Baker, D., and d'Adda di Fagagna, F. (2021). Cellular Senescence in Ageing: from Mechanisms to Therapeutic Opportunities. *Nat. Rev. Mol. Cel Biol* 22 (2), 75–95. doi:10.1038/s41580-020-00314-w
- Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., et al. (2012). Topology of the Human and Mouse m6A RNA Methylomes Revealed by m6A-Seq. *Nature* 485 (7397), 201–206. doi:10.1038/nature11112
- Dong, G., Yu, J., Shan, G., Su, L., Yu, N., and Yang, S. (2021). N6-Methyladenosine Methyltransferase METTL3 Promotes Angiogenesis and Atherosclerosis by Upregulating the JAK2/STAT3 Pathway via m6A Reader IGF2BP1. Front. Cel Dev. Biol. 9, 731810. doi:10.3389/fcell.2021.731810
- Dorn, L. E., Lasman, L., Chen, J., Xu, X., Hund, T. J., Medvedovic, M., et al. (2019). The N 6 -Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. *Circulation* 139 (4), 533–545. doi:10.1161/ circulationaha.118.036146
- Du, M., Zhang, Y., Mao, Y., Mou, J., Zhao, J., Xue, Q., et al. (2017). MiR-33a Suppresses Proliferation of NSCLC Cells via Targeting METTL3 mRNA. *Biochem. biophysical Res. Commun.* 482 (4), 582–589. doi:10.1016/j.bbrc. 2016.11.077
- Du, Y., Hou, G., Zhang, H., Dou, J., He, J., Guo, Y., et al. (2018). SUMOylation of the m6A-RNA Methyltransferase METTL3 Modulates its Function. *Nucleic Acids Res.* 46 (10), 5195–5208. doi:10.1093/nar/gky156
- Elcheva, I. A., Wood, T., Chiarolanzio, K., Chim, B., Wong, M., Singh, V., et al. (2020). RNA-binding Protein IGF2BP1 Maintains Leukemia Stem Cell Properties by Regulating HOXB4, MYB, and ALDH1A1. *Leukemia* 34 (5), 1354–1363. doi:10.1038/s41375-019-0656-9
- Farr, J. N., and Khosla, S. (2019). Cellular Senescence in Bone. Bone 121, 121–133. doi:10.1016/j.bone.2019.01.015
- Feng, Z., Li, Q., Meng, R., Yi, B., and Xu, Q. (2018). METTL 3 Regulates Alternative Splicing of MyD88 upon the Lipopolysaccharide-induced Inflammatory Response in Human Dental Pulp Cells. J. Cel Mol Med 22 (5), 2558–2568. doi:10.1111/jcmm.13491
- Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic Differences Arise during the Lifetime of Monozygotic Twins. *Proc. Natl. Acad. Sci. U.S.A.* 102 (30), 10604–10609. doi:10.1073/pnas. 0500398102
- Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene Expression Regulation Mediated through Reversible m6A RNA Methylation. *Nat. Rev. Genet.* 15 (5), 293–306. doi:10.1038/nrg3724
- Fu, Y., and Zhuang, X. (2020). m6A-binding YTHDF Proteins Promote Stress Granule Formation. Nat. Chem. Biol. 16 (9), 955–963. doi:10.1038/s41589-020-0524-y
- Gan, X. T., Zhao, G., Huang, C. X., Rowe, A. C., Purdham, D. M., and Karmazyn, M. (2013). Identification of Fat Mass and Obesity Associated (FTO) Protein Expression in Cardiomyocytes: Regulation by Leptin and its Contribution to Leptin-Induced Hypertrophy. *PloS one* 8 (9), e74235. doi:10.1371/journal.pone. 0074235
- Geng, Y., Guan, R., Hong, W., Huang, B., Liu, P., Guo, X., et al. (2020). Identification of m6A-Related Genes and m6A RNA Methylation Regulators in Pancreatic Cancer and Their Association with Survival. *Ann. Transl Med.* 8 (6), 387. doi:10.21037/atm.2020.03.98
- Gu, C., Wang, Z., Zhou, N., Li, G., Kou, Y., Luo, Y., et al. (2019). Mettl14 Inhibits Bladder TIC Self-Renewal and Bladder Tumorigenesis through N6-Methyladenosine of Notch1. *Mol. Cancer* 18 (1), 168. doi:10.1186/s12943-019-1084-1
- Gu, X., Zhang, Y., Li, D., Cai, H., Cai, L., and Xu, Q. (2020). N6-methyladenosine Demethylase FTO Promotes M1 and M2 Macrophage Activation. *Cell Signal.* 69, 109553. doi:10.1016/j.cellsig.2020.109553

- Guo, F., Liu, X., Cai, H., and Le, W. (2018). Autophagy in Neurodegenerative Diseases: Pathogenesis and Therapy. Brain Pathol. 28 (1), 3–13. doi:10.1111/bpa.12545
- Han, J., Wang, J.-z., Yang, X., Yu, H., Zhou, R., Lu, H.-C., et al. (2019). METTL3 Promote Tumor Proliferation of Bladder Cancer by Accelerating Pri-miR221/ 222 Maturation in m6A-dependent Manner. *Mol. Cancer* 18 (1), 110. doi:10. 1186/s12943-019-1036-9
- Han, M., Liu, Z., Xu, Y., Liu, X., Wang, D., Li, F., et al. (2020). Abnormality of m6A mRNA Methylation Is Involved in Alzheimer's Disease. *Front. Neurosci.* 14, 98. doi:10.3389/fnins.2020.00098
- He, Y., Hu, H., Wang, Y., Yuan, H., Lu, Z., Wu, P., et al. (2018). ALKBH5 Inhibits Pancreatic Cancer Motility by Decreasing Long Non-coding RNA KCNK15-AS1 Methylation. *Cell Physiol Biochem* 48 (2), 838–846. doi:10. 1159/000491915
- Henikoff, S., and Smith, M. M. (2015). Histone Variants and Epigenetics. Cold Spring Harb Perspect. Biol. 7 (1), a019364. doi:10.1101/cshperspect.a019364
- Hess, M. E., Hess, S., Meyer, K. D., Verhagen, L. A. W., Koch, L., Brönneke, H. S., et al. (2013). The Fat Mass and Obesity Associated Gene (Fto) Regulates Activity of the Dopaminergic Midbrain Circuitry. *Nat. Neurosci.* 16 (8), 1042–1048. doi:10.1038/nn.3449
- Ho, A. J., Stein, J. L., Hua, X., Lee, S., Hibar, D. P., Leow, A. D., et al. (2010). A Commonly Carried Allele of the Obesity-Related FTO Gene Is Associated with Reduced Brain Volume in the Healthy Elderly. *Proc. Natl. Acad. Sci. U S A.* 107 (18), 8404–8409. doi:10.1073/pnas.0910878107
- Hongay, C. F., and Orr-Weaver, T. L. (2011). Drosophila Inducer of MEiosis 4 (IME4) Is Required for Notch Signaling during Oogenesis. Proc. Natl. Acad. Sci. U.S.A. 108 (36), 14855–14860. doi:10.1073/pnas.1111577108
- Horvath, S. (2015). Erratum to: DNA Methylation Age of Human Tissues and Cell Types. *Genome Biol.* 16 (1), 96. doi:10.1186/s13059-015-0649-6
- Hou, J., Zhang, H., Liu, J., Zhao, Z., Wang, J., Lu, Z., et al. (2019). YTHDF2 Reduction Fuels Inflammation and Vascular Abnormalization in Hepatocellular Carcinoma. *Mol. Cancer* 18 (1), 163. doi:10.1186/s12943-019-1082-3
- Hsu, P. J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., et al. (2017). Ythdc2 Is an N6-Methyladenosine Binding Protein that Regulates Mammalian Spermatogenesis. *Cell Res* 27 (9), 1115–1127. doi:10.1038/cr.2017.99
- Hu, F., Zhu, D., Pei, W., Lee, I., Zhang, X., Pan, L., et al. (2019). Rhein Inhibits ATP-Triggered Inflammatory Responses in Rheumatoid Rat Fibroblast-like Synoviocytes. *Int. immunopharmacology* 75, 105780. doi:10.1016/j.intimp. 2019.105780
- Hua, W., Zhao, Y., Jin, X., Yu, D., He, J., Xie, D., et al. (2018). METTL3 Promotes Ovarian Carcinoma Growth and Invasion through the Regulation of AXL Translation and Epithelial to Mesenchymal Transition. *Gynecol. Oncol.* 151 (2), 356–365. doi:10.1016/j.ygyno.2018.09.015
- Huan, T., Chen, G., Liu, C., Bhattacharya, A., Rong, J., Chen, B. H., et al. (2018). Age-associated microRNA Expression in Human Peripheral Blood Is Associated with All-Cause Mortality and Age-Related Traits. *Aging Cell* 17 (1), e12687. doi:10.1111/acel.12687
- Huang, H., Camats-Perna, J., Medeiros, R., Anggono, V., and Widagdo, J. (2020b). Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer's Disease. *eNeuro* 7 (5), 0125–220. doi:10.1523/eneuro.0125-20.2020
- Huang, H., Weng, H., and Chen, J. (2020a). m6A Modification in Coding and Noncoding RNAs: Roles and Therapeutic Implications in CancerA Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. *Cancer cell* 37 (3), 270–288. doi:10.1016/j.ccell.2020.02.004
- Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., et al. (2018). Recognition of RNA N6-Methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation. *Nat. Cel Biol* 20 (3), 285–295. doi:10.1038/s41556-018-0045-z
- Huangfu, N., Zheng, W., Xu, Z., Wang, S., Wang, Y., Cheng, J., et al. (2020). RBM4 Regulates M1 Macrophages Polarization through Targeting STAT1-Mediated Glycolysis. *Int. immunopharmacology* 83, 106432. doi:10.1016/j.intimp.2020.106432
- Ito, T. K., Yokoyama, M., Yoshida, Y., Nojima, A., Kassai, H., Oishi, K., et al. (2014). A Crucial Role for CDC42 in Senescence-Associated Inflammation and Atherosclerosis. *PloS one* 9 (7), e102186. doi:10.1371/journal.pone.0102186
- Ivanova, I., Much, C., Di Giacomo, M., Azzi, C., Morgan, M., Moreira, P. N., et al. (2017). The RNA M 6 A Reader YTHDF2 Is Essential for the Posttranscriptional Regulation of the Maternal Transcriptome and Oocyte Competence. *Mol. Cel.* 67 (6), 1059–1067. e1054. doi:10.1016/j.molcel.2017. 08.003

- Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011). N6methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO. *Nat. Chem. Biol.* 7 (12), 885–887. doi:10.1038/nchembio.687
- Jia, R., Chai, P., Wang, S., Sun, B., Xu, Y., Yang, Y., et al. (2019). m6A Modification Suppresses Ocular Melanoma through Modulating HINT2 mRNA Translation. *Mol. Cancer* 18 (1), 161. doi:10.1186/s12943-019-1088-x
- Jian, D., Wang, Y., Jian, L., Tang, H., Rao, L., Chen, K., et al. (2020). METTL14 Aggravates Endothelial Inflammation and Atherosclerosis by Increasing FOXO1 N6-Methyladeosine Modifications. *Theranostics* 10 (20), 8939–8956. doi:10.7150/thno.45178
- Jiang, Z.-x., Wang, Y.-n., Li, Z.-y., Dai, Z.-h., He, Y., Chu, K., et al. (2021). The m6A mRNA Demethylase FTO in Granulosa Cells Retards FOS-dependent Ovarian Aging. Cell Death Dis 12 (8), 744. doi:10.1038/s41419-021-04016-9
- Jin, D., Guo, J., Wu, Y., Yang, L., Wang, X., Du, J., et al. (2020). m6A Demethylase ALKBH5 Inhibits Tumor Growth and Metastasis by Reducing YTHDFs-Mediated YAP Expression and Inhibiting miR-107/lats2-Mediated YAP Activity in NSCLCA Demethylase ALKBH5 Inhibits Tumor Growth and Metastasis by Reducing YTHDFs-Mediated YAP Expression and Inhibiting miR-107/lats2-Mediated YAP Activity in NSCLC. *Mol. Cancer* 19 (1), 40. doi:10.1186/s12943-020-01161-1
- Jin, S., Zhang, X., Miao, Y., Liang, P., Zhu, K., She, Y., et al. (2018). m6A RNA Modification Controls Autophagy through Upregulating ULK1 Protein abundanceA RNA Modification Controls Autophagy through Upregulating ULK1 Protein Abundance. *Cel Res* 28 (9), 955–957. doi:10.1038/s41422-018-0069-8
- Justice, J. N., Nambiar, A. M., Tchkonia, T., LeBrasseur, N. K., Pascual, R., Hashmi, S. K., et al. (2019). Senolytics in Idiopathic Pulmonary Fibrosis: Results from a First-In-Human, Open-Label, Pilot Study. *EBioMedicine* 40, 554–563. doi:10. 1016/j.ebiom.2018.12.052
- Kaminsky, Z. A., Tang, T., Wang, S.-C., Ptak, C., Oh, G. H. T., Wong, A. H. C., et al. (2009). DNA Methylation Profiles in Monozygotic and Dizygotic Twins. *Nat. Genet.* 41 (2), 240–245. doi:10.1038/ng.286
- Karthiya, R., and Khandelia, P. (2020). m6A RNA Methylation: Ramifications for Gene Expression and Human Health. *Mol. Biotechnol.* 62 (10), 467–484. doi:10. 1007/s12033-020-00269-5
- Kasowitz, S. D., Ma, J., Anderson, S. J., Leu, N. A., Xu, Y., Gregory, B. D., et al. (2018). Nuclear m6A Reader YTHDC1 Regulates Alternative Polyadenylation and Splicing during Mouse Oocyte Development. *Plos Genet.* 14 (5), e1007412. doi:10.1371/journal.pgen.1007412
- Keller, L., Xu, W., Wang, H.-X., Winblad, B., Fratiglioni, L., and Graff, C. (2011). The Obesity Related Gene, FTO, Interacts with APOE, and Is Associated with Alzheimer's Disease Risk: a Prospective Cohort Study. *Jad* 23 (3), 461–469. doi:10.3233/jad-2010-101068
- Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., Epel, E. S., et al. (2014). Geroscience: Linking Aging to Chronic Disease. *Cell* 159 (4), 709–713. doi:10.1016/j.cell.2014.10.039
- Knuckles, P., Lence, T., Haussmann, I. U., Jacob, D., Kreim, N., Carl, S. H., et al. (2018). Zc3h13/Flacc Is Required for Adenosine Methylation by Bridging the mRNA-Binding Factor Rbm15/Spenito to the m6A Machinery Component Wtap/Fl(2)d. Genes Dev. 32 (5-6), 415–429. doi:10.1101/gad.309146.117
- Lawrence, M., Daujat, S., and Schneider, R. (2016). Lateral Thinking: How Histone Modifications Regulate Gene Expression. *Trends Genet.* 32 (1), 42–56. doi:10. 1016/j.tig.2015.10.007
- Lee, E. K., Lee, M. J., Abdelmohsen, K., Kim, W., Kim, M. M., Srikantan, S., et al. (2011). miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor γ Expression. *Mol. Cel Biol* 31 (4), 626–638. doi:10.1128/mcb.00894-10
- Lee, J.-H., Kim, E. W., Croteau, D. L., and Bohr, V. A. (2020). Heterochromatin: an Epigenetic point of View in Aging. *Exp. Mol. Med.* 52 (9), 1466–1474. doi:10. 1038/s12276-020-00497-4
- Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C. H., et al. (2016). m6A Modulates Neuronal Functions and Sex Determination in DrosophilaA Modulates Neuronal Functions and Sex Determination in Drosophila. *Nature* 540 (7632), 242–247. doi:10.1038/nature20568
- Lewinska, A., Adamczyk-Grochala, J., Kwasniewicz, E., and Wnuk, M. (2017). Downregulation of Methyltransferase Dnmt2 Results in Condition-dependent Telomere Shortening and Senescence or Apoptosis in Mouse Fibroblasts. J. Cel Physiol 232 (12), 3714–3726. doi:10.1002/jcp.25848

- Li, G., Song, Y., Liao, Z., Wang, K., Luo, R., Lu, S., et al. (2020). Bone-derived Mesenchymal Stem Cells Alleviate Compression-Induced Apoptosis of Nucleus Pulposus Cells by N6 Methyladenosine of Autophagy. *Cel Death Dis* 11 (2), 103. doi:10.1038/s41419-020-2284-8
- Li, H., Ren, Y., Mao, K., Hua, F., Yang, Y., Wei, N., et al. (2018). FTO Is Involved in Alzheimer's Disease by Targeting TSC1-mTOR-Tau Signaling. *Biochem. biophysical Res. Commun.* 498 (1), 234–239. doi:10.1016/j.bbrc.2018.02.201
- Li, J., Zhu, L., Shi, Y., Liu, J., Lin, L., and Chen, X. (2019). m6A Demethylase FTO Promotes Hepatocellular Carcinoma Tumorigenesis via Mediating PKM2 Demethylation. Am. J. Transl Res. 11 (9), 6084–6092.
- Li, J., Han, Y., Zhang, H., Qian, Z., Jia, W., Gao, Y., et al. (2019). The m6A Demethylase FTO Promotes the Growth of Lung Cancer Cells by Regulating the m6A Level of USP7 mRNA. *Biochem. biophysical Res. Commun.* 512 (3), 479–485. doi:10.1016/j.bbrc.2019.03.093
- Li, L., Zang, L., Zhang, F., Chen, J., Shen, H., Shu, L., et al. (2017). Fat Mass and Obesity-Associated (FTO) Protein Regulates Adult Neurogenesis. *Hum. Mol. Genet.* 26 (13), 2398–2411. doi:10.1093/hmg/ddx128
- Li, N., and Zhan, X. (2020). Identification of Pathology-specific Regulators of m6A RNA Modification to Optimize Lung Cancer Management in the Context of Predictive, Preventive, and Personalized Medicine. *EPMA J.* 11 (3), 485–504. doi:10.1007/s13167-020-00220-3
- Li, Q., Li, X., Tang, H., Jiang, B., Dou, Y., Gorospe, M., et al. (2017). NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance P21 Translation. J. Cel. Biochem. 118 (9), 2587–2598. doi:10.1002/jcb.25957
- Li, T., Hu, P.-S., Zuo, Z., Lin, J.-F., Li, X., Wu, Q.-N., et al. (2019). METTL3 Facilitates Tumor Progression via an m6A-igf2bp2-dependent Mechanism in Colorectal Carcinoma. *Mol. Cancer* 18 (1), 112. doi:10.1186/s12943-019-1038-7
- Li, X., Tang, J., Huang, W., Wang, F., Li, P., Qin, C., et al. (2017). The M6A Methyltransferase METTL3: Acting as a Tumor Suppressor in Renal Cell Carcinoma. Oncotarget 8 (56), 96103–96116. doi:10.18632/oncotarget.21726
- Li, Z., Qian, P., Shao, W., Shi, H., He, X. C., Gogol, M., et al. (2018). Suppression of m6A Reader Ythdf2 Promotes Hematopoietic Stem Cell Expansion. *Cel Res* 28 (9), 904–917. doi:10.1038/s41422-018-0072-0
- Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., et al. (2017). FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. *Cancer cell* 31 (1), 127–141. doi:10.1016/j.ccell.2016.11.017
- Lin, S., Choe, J., Du, P., Triboulet, R., and Gregory, R. I. (2016). The M 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. *Mol. Cel.* 62 (3), 335–345. doi:10.1016/j.molcel.2016.03.021
- Lin, Z., Niu, Y., Wan, A., Chen, D., Liang, H., Chen, X., et al. (2020). RNA M 6 A Methylation Regulates Sorafenib Resistance in Liver Cancer through FOXO 3mediated Autophagy. *Embo J.* 39 (12), e103181. doi:10.15252/embj.2019103181
- Linton, P.-J., Gurney, M., Sengstock, D., Mentzer, R. M., Jr., and Gottlieb, R. A. (2015). This Old Heart: Cardiac Aging and Autophagy. J. Mol. Cell. Cardiol. 83, 44–54. doi:10.1016/j.yjmcc.2014.12.017
- Liu, J., Eckert, M. A., Harada, B. T., Liu, S.-M., Lu, Z., Yu, K., et al. (2018). m6A mRNA Methylation Regulates AKT Activity to Promote the Proliferation and Tumorigenicity of Endometrial cancerA mRNA Methylation Regulates AKT Activity to Promote the Proliferation and Tumorigenicity of Endometrial Cancer. Nat. Cel Biol 20 (9), 1074–1083. doi:10.1038/s41556-018-0174-4
- Liu, J., Luo, G., Sun, J., Men, L., Ye, H., He, C., et al. (2019). METTL14 Is Essential for β-cell Survival and Insulin Secretion. *Biochim. Biophys. Acta (Bba) - Mol. Basis Dis.* 1865 (9), 2138–2148. doi:10.1016/j.bbadis.2019.04.011
- Liu, J., Ren, D., Du, Z., Wang, H., Zhang, H., and Jin, Y. (2018). m 6 A Demethylase FTO Facilitates Tumor Progression in Lung Squamous Cell Carcinoma by Regulating MZF1 expressionA Demethylase FTO Facilitates Tumor Progression in Lung Squamous Cell Carcinoma by Regulating MZF1 Expression. *Biochem. biophysical Res. Commun.* 502 (4), 456–464. doi:10. 1016/j.bbrc.2018.05.175
- Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., et al. (2014). A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation. *Nat. Chem. Biol.* 10 (2), 93–95. doi:10.1038/nchembio.1432
- Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015). N6methyladenosine-dependent RNA Structural Switches Regulate RNA-Protein Interactions. *Nature* 518 (7540), 560–564. doi:10.1038/nature14234
- Liu, P., Li, F., Lin, J., Fukumoto, T., Nacarelli, T., Hao, X., et al. (2021). m6A-independent Genome-wide METTL3 and METTL14 Redistribution Drives the Senescence-

Associated Secretory phenotypeA-independent Genome-wide METTL3 and METTL14 Redistribution Drives the Senescence-Associated Secretory Phenotype. *Nat. Cel Biol* 23 (4), 355–365. doi:10.1038/s41556-021-00656-3

- Luo, R., Su, L.-Y., Li, G., Yang, J., Liu, Q., Yang, L.-X., et al. (2020). Activation of PPARA-Mediated Autophagy Reduces Alzheimer Disease-like Pathology and Cognitive Decline in a Murine Model. *Autophagy* 16 (1), 52–69. doi:10.1080/ 15548627.2019.1596488
- Ma, J. z., Yang, F., Zhou, C. c., Liu, F., Yuan, J. h., Wang, F., et al. (2017). METTL14
 Suppresses the Metastatic Potential of Hepatocellular Carcinoma by
 Modulating N 6 -methyladenosine-dependent Primary MicroRNA
 Processing. Hepatology 65 (2), 529–543. doi:10.1002/hep.28885
- Mathiyalagan, P., Adamiak, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., et al. (2019). FTO-dependent N 6 -Methyladenosine Regulates Cardiac Function during Remodeling and Repair. *Circulation* 139 (4), 518–532. doi:10.1161/circulationaha.118.033794
- Men, L., Sun, J., Luo, G., and Ren, D. (2019). Acute Deletion of METTL14 in β-Cells of Adult Mice Results in Glucose Intolerance. *Endocrinology* 160 (10), 2388–2394. doi:10.1210/en.2019-00350
- Min, K.-W., Zealy, R. W., Davila, S., Fomin, M., Cummings, J. C., Makowsky, D., et al. (2018). Profiling of m6A RNA Modifications Identified an Age-Associated Regulation of AGO2 mRNA Stability. *Aging Cell* 17 (3), e12753. doi:10.1111/ acel.12753
- Müller, S., Glaß, M., Singh, A. K., Haase, J., Bley, N., Fuchs, T., et al. (2019). IGF2BP1 Promotes SRF-dependent Transcription in Cancer in a m6A- and miRNA-dependent Manner. *Nucleic Acids Res.* 47 (1), 375–390. doi:10.1093/ nar/gky1012
- Naren, D., Yan, T., Gong, Y., Huang, J., Zhang, D., Sang, L., et al. (2021). High Wilms' Tumor 1 Associating Protein Expression Predicts Poor Prognosis in Acute Myeloid Leukemia and Regulates m6A Methylation of MYC mRNA. J. Cancer Res. Clin. Oncol. 147 (1), 33–47. doi:10.1007/s00432-020-03373-w
- Ni, W., Yao, S., Zhou, Y., Liu, Y., Huang, P., Zhou, A., et al. (2019). Long Noncoding RNA GAS5 Inhibits Progression of Colorectal Cancer by Interacting with and Triggering YAP Phosphorylation and Degradation and Is Negatively Regulated by the m6A Reader YTHDF3. *Mol. Cancer* 18 (1), 143. doi:10.1186/s12943-019-1079-y
- Niu, Y., Lin, Z., Wan, A., Chen, H., Liang, H., Sun, L., et al. (2019). RNA N6-Methyladenosine Demethylase FTO Promotes Breast Tumor Progression through Inhibiting BNIP3. *Mol. Cancer* 18 (1), 46. doi:10.1186/s12943-019-1004-4
- Pang, P., Qu, Z., Yu, S., Pang, X., Li, X., Gao, Y., et al. (2021). Mettl14 Attenuates Cardiac Ischemia/Reperfusion Injury by Regulating Wnt1/β-Catenin Signaling Pathway. Front. Cel Dev. Biol. 9, 762853. doi:10.3389/fcell.2021.762853
- Papp, D., Kovács, T., Billes, V., Varga, M., Tarnóci, A., Hackler, L., Jr., et al. (2016). AUTEN-67, an Autophagy-Enhancing Drug Candidate with Potent Antiaging and Neuroprotective Effects. *Autophagy* 12 (2), 273–286. doi:10.1080/ 15548627.2015.1082023
- Paris, J., Morgan, M., Campos, J., Spencer, G. J., Shmakova, A., Ivanova, I., et al. (2019). Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. *Cell stem cell* 25 (1), 137–148. e136. doi:10.1016/j.stem.2019.03.021
- Patil, D. P., Chen, C.-K., Pickering, B. F., Chow, A., Jackson, C., Guttman, M., et al. (2016). m6A RNA Methylation Promotes XIST-Mediated Transcriptional repressionA RNA Methylation Promotes XIST-Mediated Transcriptional Repression. *Nature* 537 (7620), 369–373. doi:10.1038/nature19342
- Pendleton, K. E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B. P., et al. (2017). The U6 snRNA M 6 A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. *Cell* 169 (5), 824–835. e814. doi:10.1016/j.cell.2017.05.003
- Peters, A., Nawrot, T. S., and Baccarelli, A. A. (2021). Hallmarks of Environmental Insults. *Cell* 184 (6), 1455–1468. doi:10.1016/j.cell.2021.01.043
- Ping, X.-L., Sun, B.-F., Wang, L., Xiao, W., Yang, X., Wang, W.-J., et al. (2014). Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase. *Cel Res* 24 (2), 177–189. doi:10.1038/cr.2014.3
- Portela, A., and Esteller, M. (2010). Epigenetic Modifications and Human Disease. Nat. Biotechnol. 28 (10), 1057–1068. doi:10.1038/nbt.1685
- Quan, W., Li, J., Liu, L., Zhang, Q., Qin, Y., Pei, X., et al. (2021). Influence of N6-Methyladenosine Modification Gene HNRNPC on Cell Phenotype in Parkinson's Disease. *Parkinson's Dis.* 2021, 1–10. doi:10.1155/2021/9919129
- Richard, E. M., Polla, D. L., Assir, M. Z., Contreras, M., Shahzad, M., Khan, A. A., et al. (2019). Bi-allelic Variants in METTL5 Cause Autosomal-Recessive

Intellectual Disability and Microcephaly. Am. J. Hum. Genet. 105 (4), 869-878. doi:10.1016/j.ajhg.2019.09.007

- Roundtree, I. A., Luo, G.-Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et al. (2017). YTHDC1 Mediates Nuclear export of N6-Methyladenosine Methylated mRNAs. *Elife* 6. doi:10.7554/eLife.31311
- Rubinsztein, D. C., Mariño, G., and Kroemer, G. (2011). Autophagy and Aging. Cell 146 (5), 682–695. doi:10.1016/j.cell.2011.07.030
- Rubio, R. M., Depledge, D. P., Bianco, C., Thompson, L., and Mohr, I. (2018). RNA M6 A Modification Enzymes Shape Innate Responses to DNA by Regulating Interferon β. *Genes Dev.* 32 (23-24), 1472–1484. doi:10.1101/gad.319475.118
- Schäfer, K. P. (1982). RNA Synthesis and Processing Reactions in a Subcellular System from Mouse L Cells. *Hoppe-Seyler's Z. für physiologische Chem.* 363 (1), 33–44. doi:10.1515/bchm2.1982.363.1.33
- Schöller, E., Weichmann, F., Treiber, T., Ringle, S., Treiber, N., Flatley, A., et al. (2018). Interactions, Localization, and Phosphorylation of the m6A Generating METTL3-METTL14-WTAP Complex. *Rna* 24 (4), 499–512. doi:10.1261/rna. 064063.117
- Schwartz, S., Mumbach, M. R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G. G., et al. (2014). Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5' Sites. *Cel Rep.* 8 (1), 284–296. doi:10. 1016/j.celrep.2014.05.048
- Sergiev, P. V., Golovina, A. Y., Osterman, I. A., Nesterchuk, M. V., Sergeeva, O. V., Chugunova, A. A., et al. (2016). N6-Methylated Adenosine in RNA: From Bacteria to Humans. J. Mol. Biol. 428 (10 Pt B), 2134–2145. doi:10.1016/j.jmb.2015.12.013
- Shafik, A. M., Zhang, F., Guo, Z., Dai, Q., Pajdzik, K., Li, Y., et al. (2021). N6methyladenosine Dynamics in Neurodevelopment and Aging, and its Potential Role in Alzheimer's Disease. *Genome Biol.* 22 (1), 17. doi:10.1186/s13059-020-02249-z
- Shen, C., Sheng, Y., Zhu, A. C., Robinson, S., Jiang, X., Dong, L., et al. (2020). RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. *Cell stem cell* 27 (1), 64–80. e69. doi:10.1016/j.stem.2020.04.009
- Shen, C., Xuan, B., Yan, T., Ma, Y., Xu, P., Tian, X., et al. (2020). m6A-dependent Glycolysis Enhances Colorectal Cancer progressionA-dependent Glycolysis Enhances Colorectal Cancer Progression. *Mol. Cancer* 19 (1), 72. doi:10. 1186/s12943-020-01190-w
- Shen, C., Zhang, Z., Xie, T., Ji, J., Xu, J., Lin, L., et al. (2019). Rhein Suppresses Lung Inflammatory Injury Induced by Human Respiratory Syncytial Virus through Inhibiting NLRP3 Inflammasome Activation via NF-Kb Pathway in Mice. *Front. Pharmacol.* 10, 1600. doi:10.3389/fphar.2019.01600
- Shen, X. P., Ling, X., Lu, H., Zhou, C. X., Zhang, J. K., and Yu, Q. (2018). Low Expression of microRNA-1266 Promotes Colorectal Cancer Progression via Targeting FTO. *Eur. Rev. Med. Pharmacol. Sci.* 22 (23), 8220–8226. doi:10. 26355/eurrev_201812_16516
- Sheng, H., Li, Z., Su, S., Sun, W., Zhang, X., Li, L., et al. (2020). YTH Domain Family 2 Promotes Lung Cancer Cell Growth by Facilitating 6-phosphogluconate Dehydrogenase mRNA Translation. *Carcinogenesis* 41 (5), 541–550. doi:10. 1093/carcin/bgz152
- Shi, H., Wang, X., Lu, Z., Zhao, B. S., Ma, H., Hsu, P. J., et al. (2017). YTHDF3 Facilitates Translation and Decay of N6-Methyladenosine-Modified RNA. *Cel Res* 27 (3), 315–328. doi:10.1038/cr.2017.15
- Shi, Y., Fan, S., Wu, M., Zuo, Z., Li, X., Jiang, L., et al. (2019). YTHDF1 Links Hypoxia Adaptation and Non-small Cell Lung Cancer Progression. Nat. Commun. 10 (1), 4892. doi:10.1038/s41467-019-12801-6
- Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J.-W., et al. (2015). Structural Imprints *In Vivo* Decode RNA Regulatory Mechanisms. *Nature* 519 (7544), 486–490. doi:10.1038/nature14263
- Su, R., Dong, L., Li, Y., Gao, M., Han, L., Wunderlich, M., et al. (2020). Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. *Cancer* cell 38 (1), 79–96. e11. doi:10.1016/j.ccell.2020.04.017
- Sun, T., Wu, R., and Ming, L. (2019). The Role of m6A RNA Methylation in Cancer. Biomed. Pharmacother. 112, 108613. doi:10.1016/j.biopha.2019.108613
- Sun, Y., Dong, D., Xia, Y., Hao, L., Wang, W., and Zhao, C. (2022). YTHDF1 Promotes Breast Cancer Cell Growth, DNA Damage Repair and Chemoresistance. Cel Death Dis 13 (3), 230. doi:10.1038/s41419-022-04672-5
- Svobodová Kovaříková, A., Stixová, L., Kovařík, A., Komůrková, D., Legartová, S., Fagherazzi, P., et al. (2020). N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-coding RNAs Appear at Microirradiation-Induced DNA Lesions. *Cells* 9 (2), 360. doi:10.3390/cells9020360

- Tanabe, A., Tanikawa, K., Tsunetomi, M., Takai, K., Ikeda, H., Konno, J., et al. (2016). RNA Helicase YTHDC2 Promotes Cancer Metastasis via the Enhancement of the Efficiency by Which HIF-1α mRNA Is Translated. *Cancer Lett.* 376 (1), 34–42. doi:10.1016/j.canlet.2016.02.022
- Tang, C., Klukovich, R., Peng, H., Wang, Z., Yu, T., Zhang, Y., et al. (2018). ALKBH5-dependent m6A Demethylation Controls Splicing and Stability of Long 3'-UTR mRNAs in Male Germ Cells. *Proc. Natl. Acad. Sci. U.S.A.* 115 (2), E325–e333. doi:10.1073/pnas.1717794115
- Tang, H.-W., Weng, J.-H., Lee, W. X., Hu, Y., Gu, L., Cho, S., et al. (2021). mTORC1-chaperonin CCT Signaling Regulates M 6 A RNA Methylation to Suppress Autophagy. *Proc. Natl. Acad. Sci. U.S.A.* 118 (10), e2021945118. doi:10.1073/pnas.2021945118
- Tang, J., Wang, F., Cheng, G., Si, S., Sun, X., Han, J., et al. (2018). Wilms' Tumor 1associating Protein Promotes Renal Cell Carcinoma Proliferation by Regulating CDK2 mRNA Stability. *J. Exp. Clin. Cancer Res.* 37 (1), 40. doi:10.1186/s13046-018-0706-6
- Tang, X., Liu, S., Chen, D., Zhao, Z., and Zhou, J. (2019). The Role of the Fat Mass and Obesity-associated P-rotein in the P-roliferation of P-ancreatic C-ancer C-ells. Oncol. Lett. 17 (2), 2473–2478. doi:10.3892/ol.2018.9873
- Uddin, M. B., Wang, Z., and Yang, C. (2021). The m6A RNA Methylation Regulates Oncogenic Signaling Pathways Driving Cell Malignant Transformation and Carcinogenesis. *Mol. Cancer* 20 (1), 61. doi:10.1186/ s12943-021-01356-0
- Ueda, Y., Ooshio, I., Fusamae, Y., Kitae, K., Kawaguchi, M., Jingushi, K., et al. (2017). AlkB Homolog 3-mediated tRNA Demethylation Promotes Protein Synthesis in Cancer Cells. *Sci. Rep.* 7, 42271. doi:10.1038/srep42271
- Ungvari, Z., Tarantini, S., Sorond, F., Merkely, B., and Csiszar, A. (2020). Mechanisms of Vascular Aging, A Geroscience Perspective. J. Am. Coll. Cardiol. 75 (8), 931–941. doi:10.1016/j.jacc.2019.11.061
- Unnikrishnan, A., Freeman, W. M., Jackson, J., Wren, J. D., Porter, H., and Richardson, A. (2019). The Role of DNA Methylation in Epigenetics of Aging. *Pharmacol. Ther.* 195, 172–185. doi:10.1016/j.pharmthera.2018.11.001
- van Tran, N., Ernst, F. G. M., Hawley, B. R., Zorbas, C., Ulryck, N., Hackert, P., et al. (2019). The Human 18S rRNA m6A Methyltransferase METTL5 Is Stabilized by TRMT112. *Nucleic Acids Res.* 47 (15), 7719–7733. doi:10.1093/ nar/gkz619
- Vu, L. P., Pickering, B. F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., et al. (2017). The N6-Methyladenosine (m6A)-Forming Enzyme METTL3 Controls Myeloid Differentiation of normal Hematopoietic and Leukemia Cells. *Nat. Med.* 23 (11), 1369–1376. doi:10.1038/nm.4416
- Wang, C.-Y., Shie, S.-S., Wen, M.-S., Hung, K.-C., Hsieh, I.-C., Yeh, T.-S., et al. (2015). Loss of FTO in Adipose Tissue Decreases Angptl4 Translation and Alters Triglyceride Metabolism. *Sci. Signal.* 8 (407), ra127. doi:10.1126/ scisignal.aab3357
- Wang, H., Xu, B., and Shi, J. (2020). N6-methyladenosine METTL3 Promotes the Breast Cancer Progression via Targeting Bcl-2. *Gene* 722, 144076. doi:10.1016/j. gene.2019.144076
- Wang, J., Ishfaq, M., Xu, L., Xia, C., Chen, C., and Li, J. (2019). METTL3/m6A/ miRNA-873-5p Attenuated Oxidative Stress and Apoptosis in Colistin-Induced Kidney Injury by Modulating Keap1/Nrf2 Pathway. *Front. Pharmacol.* 10, 517. doi:10.3389/fphar.2019.00517
- Wang, J., Li, Y., Wang, P., Han, G., Zhang, T., Chang, J., et al. (2020). Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis. Cell stem cell 27 (1), 81–97. e88. doi:10.1016/j.stem.2020.04.001
- Wang, J., Yan, S., Lu, H., Wang, S., and Xu, D. (2019). METTL3 Attenuates LPS-Induced Inflammatory Response in Macrophages via NF-Kb Signaling Pathway. *Mediators Inflamm.* 2019, 1–8. doi:10.1155/2019/3120391
- Wang, J., Zhang, J., Ma, Y., Zeng, Y., Lu, C., Yang, F., et al. (2021). WTAP Promotes Myocardial Ischemia/reperfusion Injury by Increasing Endoplasmic Reticulum Stress via Regulating m6A Modification of ATF4 mRNA. *Aging* 13 (8), 11135–11149. doi:10.18632/aging.202770
- Wang, K. C., and Chang, H. Y. (2018). Epigenomics. Circ. Res. 122 (9), 1191–1199. doi:10.1161/circresaha.118.310998
- Wang, Q., Chen, C., Ding, Q., Zhao, Y., Wang, Z., Chen, J., et al. (2020). METTL3mediated m6A Modification of HDGF mRNA Promotes Gastric Cancer Progression and Has Prognostic Significance. *Gut* 69 (7), 1193–1205. doi:10. 1136/gutjnl-2019-319639

- Wang, Q., Guo, X., Li, L., Gao, Z., Su, X., Ji, M., et al. (2020). N6-methyladenosine METTL3 Promotes Cervical Cancer Tumorigenesis and Warburg Effect through YTHDF1/HK2 Modification. *Cel Death Dis* 11 (10), 911. doi:10. 1038/s41419-020-03071-y
- Wang, Q., Zhang, H., Chen, Q., Wan, Z., Gao, X., and Qian, W. (2019). Identification of METTL14 in Kidney Renal Clear Cell Carcinoma Using Bioinformatics Analysis. *Dis. markers* 2019, 1–11. doi:10.1155/2019/5648783
- Wang, T., Kong, S., Tao, M., and Ju, S. (2020). The Potential Role of RNA N6-Methyladenosine in Cancer Progression. *Mol. Cancer* 19 (1), 88. doi:10.1186/ s12943-020-01204-7
- Wang, X., Lu, Z., Gomez, A., Hon, G. C., Yue, Y., Han, D., et al. (2014). N6methyladenosine-dependent Regulation of Messenger RNA Stability. *Nature* 505 (7481), 117–120. doi:10.1038/nature12730
- Wang, X., Zhao, B. S., Roundtree, I. A., Lu, Z., Han, D., Ma, H., et al. (2015). N6methyladenosine Modulates Messenger RNA Translation Efficiency. *Cell* 161 (6), 1388–1399. doi:10.1016/j.cell.2015.05.014
- Wang, Y., Li, Y., Toth, J. I., Petroski, M. D., Zhang, Z., and Zhao, J. C. (2014). N6methyladenosine Modification Destabilizes Developmental Regulators in Embryonic Stem Cells. *Nat. Cel Biol* 16 (2), 191–198. doi:10.1038/ncb2902
- Wang, Y., Sun, J., Lin, Z., Zhang, W., Wang, S., Wang, W., et al. (2020). m6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-CellsA mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells. *Diabetes* 69 (8), 1708–1722. doi:10.2337/db19-0906
- Warda, A. S., Kretschmer, J., Hackert, P., Lenz, C., Urlaub, H., Höbartner, C., et al. (2017). Human METTL16 Is a N 6 -methyladenosine (M 6 A) Methyltransferase that Targets pre-mRNAs and Various Non-coding RNAs. *EMBO Rep.* 18 (11), 2004–2014. doi:10.15252/embr.201744940
- Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., et al. (2018). Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. *Mol. Cel* 69 (6), 1028–1038. e1026. doi:10.1016/j.molcel.2018.02.015
- Weng, H., Huang, H., Wu, H., Qin, X., Zhao, B. S., Dong, L., et al. (2018). METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. *Cell stem cell* 22 (2), 191–205. e199. doi:10.1016/j.stem.2017.11.016
- Woo, H.-H., and Chambers, S. K. (2019). Human ALKBH3-Induced m1A Demethylation Increases the CSF-1 mRNA Stability in Breast and Ovarian Cancer Cells. *Biochim. Biophys. Acta (Bba) - Gene Regul. Mech.* 1862 (1), 35–46. doi:10.1016/j.bbagrm.2018.10.008
- Wu, J., Frazier, K., Zhang, J., Gan, Z., Wang, T., and Zhong, X. (2020). Emerging Role of M 6 A RNA Methylation in Nutritional Physiology and Metabolism. *Obes. Rev.* 21 (1), e12942. doi:10.1111/obr.12942
- Wu, Q., Yuan, X., Han, R., Zhang, H., and Xiu, R. (2019). Epitranscriptomic Mechanisms of N6-Methyladenosine Methylation Regulating Mammalian Hypertension Development by Determined Spontaneously Hypertensive Rats Pericytes. *Epigenomics* 11 (12), 1359–1370. doi:10.2217/epi-2019-0148
- Wu, Y., Yang, X., Chen, Z., Tian, L., Jiang, G., Chen, F., et al. (2019). m6A-induced lncRNA RP11 Triggers the Dissemination of Colorectal Cancer Cells via Upregulation of Zeb1A-Induced lncRNA RP11 Triggers the Dissemination of Colorectal Cancer Cells via Upregulation of Zeb1. *Mol. Cancer* 18 (1), 87. doi:10.1186/s12943-019-1014-2
- Wu, Z., Shi, Y., Lu, M., Song, M., Yu, Z., Wang, J., et al. (2020). METTL3 Counteracts Premature Aging via m6A-dependent Stabilization of MIS12 mRNA. *Nucleic Acids Res.* 48 (19), 11083–11096. doi:10.1093/nar/gkaa816
- Xiao, W., Adhikari, S., Dahal, U., Chen, Y.-S., Hao, Y.-J., Sun, B.-F., et al. (2016). Nuclear M 6 A Reader YTHDC1 Regulates mRNA Splicing. *Mol. Cel* 61 (4), 507–519. doi:10.1016/j.molcel.2016.01.012
- Yang, J., Liu, J., Zhao, S., and Tian, F. (2020). N6-Methyladenosine METTL3 Modulates the Proliferation and Apoptosis of Lens Epithelial Cells in Diabetic Cataract. *Mol. Ther. - Nucleic Acids* 20, 111–116. doi:10.1016/j.omtn.2020.02.002
- Yang, S., Wei, J., Cui, Y.-H., Park, G., Shah, P., Deng, Y., et al. (2019). m6A mRNA Demethylase FTO Regulates Melanoma Tumorigenicity and Response to Anti-PD-1 blockadeA mRNA Demethylase FTO Regulates Melanoma Tumorigenicity and Response to Anti-PD-1 Blockade. *Nat. Commun.* 10 (1), 2782. doi:10.1038/s41467-019-10669-0
- Yang, X., Zhang, S., He, C., Xue, P., Zhang, L., He, Z., et al. (2020). METTL14 Suppresses Proliferation and Metastasis of Colorectal Cancer by Down-Regulating Oncogenic Long Non-coding RNA XIST. *Mol. Cancer* 19 (1), 46. doi:10.1186/s12943-020-1146-4

- Yang, Y., Shen, F., Huang, W., Qin, S., Huang, J.-T., Sergi, C., et al. (2019). Glucose Is Involved in the Dynamic Regulation of m6A in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 104 (3), 665–673. doi:10.1210/jc.2018-00619
- Yang, Z., Jiang, X., Li, D., and Jiang, X. (2020). HBXIP Promotes Gastric Cancer via METTL3-Mediated MYC mRNA m6A Modification. Aging 12 (24), 24967–24982. doi:10.18632/aging.103767
- Yang, Z., Yu, G.-l., Zhu, X., Peng, T.-h., and Lv, Y.-c. (2022). Critical Roles of FTO-Mediated mRNA m6A Demethylation in Regulating Adipogenesis and Lipid Metabolism: Implications in Lipid Metabolic Disorders. *Genes Dis.* 9 (1), 51–61. doi:10.1016/j.gendis.2021.01.005
- Yankova, E., Blackaby, W., Albertella, M., Rak, J., De Braekeleer, E., Tsagkogeorga, G., et al. (2021). Small-molecule Inhibition of METTL3 as a Strategy against Myeloid Leukaemia. *Nature* 593 (7860), 597–601. doi:10.1038/s41586-021-03536-w
- Yen, Y.-P., and Chen, J.-A. (2021). The m6A Epitranscriptome on Neural Development and Degeneration. J. Biomed. Sci. 28 (1), 40. doi:10.1186/ s12929-021-00734-6
- Yi, D., Wang, R., Shi, X., Xu, L., Yilihamu, Y. e., and Sang, J. (2020). METTL14 Promotes the Migration and Invasion of Breast Cancer Cells by Modulating N6-methyladenosine and hsa-miR-146a-5p E-xpression. Oncol. Rep. 43 (5), 1375–1386. doi:10.3892/or.2020.7515
- Yu, D., Horton, J. R., Yang, J., Hajian, T., Vedadi, M., Sagum, C. A., et al. (2021). Human MettL3-MettL14 RNA Adenine Methyltransferase Complex Is Active on Double-Stranded DNA Containing Lesions. *Nucleic Acids Res.* 49 (20), 11629–11642. doi:10.1093/nar/gkab460
- Yue, Y., Liu, J., Cui, X., Cao, J., Luo, G., Zhang, Z., et al. (2018). VIRMA Mediates Preferential m6A mRNA Methylation in 3'UTR and Near Stop Codon and Associates with Alternative Polyadenylation. *Cell Discov* 4, 10. doi:10.1038/ s41421-018-0019-0
- Zha, X., Xi, X., Fan, X., Ma, M., Zhang, Y., and Yang, Y. (2020). Overexpression of METTL3 Attenuates High-Glucose Induced RPE Cell Pyroptosis by Regulating miR-25-3p/PTEN/Akt Signaling cascade through DGCR8. *Aging* 12 (9), 8137–8150. doi:10.18632/aging.103130
- Zhang, B., Xu, Y., Cui, X., Jiang, H., Luo, W., Weng, X., et al. (2021). Alteration of m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction. *Front. Cardiovasc. Med.* 8, 647806. doi:10.3389/fcvm.2021.647806
- Zhang, B. Y., Han, L., Tang, Y. F., Zhang, G. X., Fan, X. L., Zhang, J. J., et al. (2020). METTL14 Regulates M6A Methylation-Modified Primary miR-19a to Promote Cardiovascular Endothelial Cell Proliferation and Invasion. *Eur. Rev. Med. Pharmacol. Sci.* 24 (12), 7015–7023. doi:10.26355/eurrev_202006_21694
- Zhang, C., Chen, L., Peng, D., Jiang, A., He, Y., Zeng, Y., et al. (2020). METTL3 and N6-Methyladenosine Promote Homologous Recombination-Mediated Repair of DSBs by Modulating DNA-RNA Hybrid Accumulation. *Mol. Cel.* 79 (3), 425–442. e427. doi:10.1016/j.molcel.2020.06.017
- Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., et al. (2017). m6A Modulates Haematopoietic Stem and Progenitor Cell specificationA Modulates Haematopoietic Stem and Progenitor Cell Specification. *Nature* 549 (7671), 273–276. doi:10.1038/nature23883
- Zhang, J., Bai, R., Li, M., Ye, H., Wu, C., Wang, C., et al. (2019). Excessive miR-25-3p Maturation via N6-Methyladenosine Stimulated by Cigarette Smoke Promotes Pancreatic Cancer Progression. *Nat. Commun.* 10 (1), 1858. doi:10.1038/s41467-019-09712-x
- Zhang, J., Guo, S., Piao, H.-y., Wang, Y., Wu, Y., Meng, X.-y., et al. (2019). ALKBH5 Promotes Invasion and Metastasis of Gastric Cancer by Decreasing Methylation of the lncRNA NEAT1. J. Physiol. Biochem. 75 (3), 379–389. doi:10.1007/s13105-019-00690-8
- Zhang, J., Tsoi, H., Li, X., Wang, H., Gao, J., Wang, K., et al. (2016). Carbonic Anhydrase IVinhibits colon Cancer Development by Inhibiting the Wnt Signalling Pathway through Targeting the WTAP-WT1-TBL1 axis. *Gut* 65 (9), 1482–1493. doi:10.1136/gutjnl-2014-308614
- Zhang, Y., Liu, X., Liu, L., Li, J., Hu, Q., and Sun, R. (2020). Expression and Prognostic Significance of m6A-Related Genes in Lung Adenocarcinoma. *Med. Sci. Monit.* 26, e919644. doi:10.12659/msm.919644
- Zhao, B. S., Roundtree, I. A., and He, C. (2017). Post-transcriptional Gene Regulation by mRNA Modifications. *Nat. Rev. Mol. Cel Biol* 18 (1), 31–42. doi:10.1038/nrm.2016.132

- Zhao, F., Xu, Y., Gao, S., Qin, L., Austria, Q., Siedlak, S. L., et al. (2021). METTL3dependent RNA m6A Dysregulation Contributes to Neurodegeneration in Alzheimer's Disease through Aberrant Cell Cycle Events. *Mol. Neurodegeneration* 16 (1), 70. doi:10.1186/s13024-021-00484-x
- Zhao, T., Li, X., Sun, D., and Zhang, Z. (2019). Oxidative Stress: One Potential Factor for Arsenite-Induced Increase of N6-Methyladenosine in Human Keratinocytes. *Environ. Toxicol. Pharmacol.* 69, 95–103. doi:10.1016/j.etap. 2019.04.005
- Zhao, X., Yang, Y., Sun, B.-F., Shi, Y., Yang, X., Xiao, W., et al. (2014). FTOdependent Demethylation of N6-Methyladenosine Regulates mRNA Splicing and Is Required for Adipogenesis. *Cel Res* 24 (12), 1403–1419. doi:10.1038/cr. 2014.151
- Zheng, Z.-Q., Li, Z.-X., Zhou, G.-Q., Lin, L., Zhang, L.-L., Lv, J.-W., et al. (2019). Long Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis and Metastasis by Acting as ceRNA to Sponge miR-590-3p/ miR-1275 and Upregulate ITGB3. *Cancer Res.* 79 (18), 4612–4626. doi:10.1158/ 0008-5472.Can-19-0799
- Zhong, X., Yu, J., Frazier, K., Weng, X., Li, Y., Cham, C. M., et al. (2018). Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m6A mRNA Methylation. *Cel Rep.* 25 (7), 1816–1828. e1814. doi:10.1016/j.celrep.2018. 10.068
- Zhou, R., Gao, Y., Lv, D., Wang, C., Wang, D., and Li, Q. (2019). METTL3 Mediated m6A Modification Plays an Oncogenic Role in Cutaneous Squamous Cell Carcinoma by Regulating Δ Np63. *Biochem. biophysical Res. Commun.* 515 (2), 310–317. doi:10.1016/j.bbrc.2019.05.155
- Zhou, Z., Lv, J., Yu, H., Han, J., Yang, X., Feng, D., et al. (2020). Mechanism of RNA Modification N6-Methyladenosine in Human Cancer. *Mol. Cancer* 19 (1), 104. doi:10.1186/s12943-020-01216-3
- Zhu, H., Gan, X., Jiang, X., Diao, S., Wu, H., and Hu, J. (2019). ALKBH5 Inhibited Autophagy of Epithelial Ovarian Cancer through miR-7 and BCL-2. J. Exp. Clin. Cancer Res. 38 (1), 163. doi:10.1186/s13046-019-1159-2
- Zhu, H., Sun, B., Zhu, L., Zou, G., and Shen, Q. (2021). N6-Methyladenosine Induced miR-34a-5p Promotes TNF-α-Induced Nucleus Pulposus Cell Senescence by Targeting SIRT1. Front. Cel Dev. Biol. 9, 642437. doi:10.3389/ fcell.2021.642437
- Zhu, K., Li, Y., and Xu, Y. (2021). The FTO m6A Demethylase Inhibits the Invasion and Migration of Prostate Cancer Cells by Regulating Total m6A Levels. *Life Sci.* 271, 119180. doi:10.1016/j.lfs.2021.119180
- Zhu, S., and Lu, Y. (2020). Dexmedetomidine Suppressed the Biological Behavior of HK-2 Cells Treated with LPS by Down-Regulating ALKBH5. *Inflammation* 43 (6), 2256–2263. doi:10.1007/s10753-020-01293-y
- Zhuang, C., Zhuang, C., Luo, X., Huang, X., Yao, L., Li, J., et al. (2019). N6methyladenosine Demethylase FTO Suppresses clear Cell Renal Cell Carcinoma through a Novel FTO-PGC-1a Signalling axis. J. Cel Mol Med 23 (3), 2163–2173. doi:10.1111/jcmm.14128
- Zou, D., Dong, L., Li, C., Yin, Z., Rao, S., and Zhou, Q. (2019). The m6A Eraser FTO Facilitates Proliferation and Migration of Human Cervical Cancer Cells. *Cancer Cel Int* 19, 321. doi:10.1186/s12935-019-1045-1

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Sun, Cheng, Su, Li, Ma, Zhang, Zhang, Cai, Bao, Wang and Zhu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

GLOSSARY

6-OHDA 6-hydroxydopamine **AD** Alzheimer's disease ADC adenocarcinoma **AKT** Protein kinase B ALKBH3 AlkB homologue 3 ALKBH5 AlkB homologue 5 AML acute myeloid leukaemia AMPK AMP-activated protein kinase ANGPTL4 angiopoietin-like 4 **APOE** apolipoprotein E ASB2 ankyrin repeat and SOCS box containing 2 ATG13 autophagy-related 13 BA9 Brodmann area 9 BCL2 B-cell CLL/lymphoma 2 CAMKK2 calcium/calmodulin-dependent protein kinase kinase 2 CCND1 cyclin D1 CDK2 cyclin-dependent kinase 2 CDK4 cyclin-dependent kinase 4 circNSUN2 circRNA NOP2/SUN domain family, member 2 circRNA cyclic RNA **CRP** C-reactive protein CVD cardiovascular disease **DDR** DNA damage response DGCR8 DiGeorge syndrome critical region 8 DNMT3A DNA methyltransferase 3a EGFR epidermal growth factor EZH2 enhancer of zeste homologue 2 FIP200 family interacting protein of 200kDa FOXO3 Forkhead box O3 FTO fat mass and obesity-related proteins HDF human diploid fibroblasts HGPS Hutchinson-Gilford progeria HLEC human lens epithelial cell hMSC human bone marrow mesenchymal stem cell HNRNPC heterogeneous nuclear ribonucleoprotein C HNRNPG heterogeneous nuclear ribonucleoprotein G HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2B1 ICAM-1 intercellular adhesion molecule 1 **IFN: interferon** IGF2BP insulin-like growth factor 2 binding protein IL Interleukin LPS Lipopolysaccharides

IncRNA long non-coding RNA; IncRNA XIST long-chain non-coding RNA X-inactive specific transcript m6A N6-methyladenosine; MAPK: mitogen-activated protein kinase MERIP-seq m6A methylation RNA immunoprecipitation sequencing METTL3 RNA methyltransferase-like protein 3 METTL5 RNA methyltransferase-like protein 5 METTL14 RNA methyltransferase-like protein 14 METTL16 RNA methyltransferase-like protein 16 miRNA microRNA **MK2** MAPKAPK2 **mTOR** mammalian target of rapamycin MZF1 myeloid zinc finger 1 NER nucleotide excision repair **NF-κB** nuclear factor-κB NHEJ non-homologous end junction NMDA N-methyl-D-aspartate NSCLC non-small cell lung cancer P13K phosphoinositide 3-kinases P2RX6 purinergic receptor P2X 6 p-AKT phosphorylated AKT PBMC peripheral blood mononuclear cell PD Parkinson's disease PGC1a peroxisome proliferator-activated receptor gamma coactivator-1 alpha **PPAR** β/δ peroxisome proliferator-activated receptor PTEN phosphatase and tensin homologue RARA retinoic acid receptor alpha RBM15 RNA -binding motif protein 15 RNA-seq RNA sequencing ROS reactive oxygen species **RPE** retinal pigment epithelial **rRNA** ribosomal RNA RUNX1 RUNT-related transcription factor 1 $SA\text{-}\beta GAL$ senescence-related $\beta\text{-}galactosidase$ SAM S-Adenosyl Methionine SASP senescence-associated secretory phenotype SFN ammonium trifluoride snoRNA small nucleolar molecule RNA snRNA small nuclear RNA **SOCS2** suppressor of cytokine signalling 2 SRSF10 serine- and arginine-rich splicing factor 10 SRSF3 serine- and arginine-rich splicing factor 3 T2D type 2 diabetes mellitus TAZ PDZ binding motif-based transcriptional coactivator

	TATTAD TATE A
TLR toll-like receptors	WTAP Wilms' tu
TNF tumour necrosis factor	XIST X-inactive sp
TNFR2 tumour necrosis factor receptor 2	YAP yes associated
tRNA transfer RNA	YTHDC1 YTH d
ULK1 Unc-51 like autophagy activating kinase 1	YTHDC2 YTH d
ULK1/2 UNC-51-like kinase	YTHDF1 YTH d
USP7 ubiquitin specific protease 7	YTHDF2 YTH d
UV ultraviolet	YTHDF3 YTH d
VCAM-1 vascular cell adhesion molecule 1	ZCCH4 zinc finge
VIRMA Vir-like m6A RNA methyltransferase associated protein	ZC3H13 zinc fing
WS Werner syndrome	

WTAP Wilms' tumour 1-associating protein
XIST X-inactive specific transcript
YAP yes associated protein
YTHDC1 YTH domain containing 1
YTHDC2 YTH domain containing 2
YTHDF1 YTH domain family protein 1
YTHDF2 YTH domain family protein 2
YTHDF3 YTH domain family protein 3
ZCCH4 zinc finger CCHC-type containing 4

ZC3H13 zinc finger CCCH domain-containing protein 13