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N6-methyladenosine (m6A) is the most common and conserved internal eukaryotic mRNA
modification. m6A modification is a dynamic and reversible post-transcriptional regulatory
modification, initiated by methylase and removed by RNA demethylase. m6A-binding
proteins recognise the m6A modification to regulate gene expression. Recent studies have
shown that altered m6A levels and abnormal regulator expression are crucial in the ageing
process and the occurrence of age-related diseases. In this review, we summarise some
key findings in the field of m6A modification in the ageing process and age-related
diseases, including cell senescence, autophagy, inflammation, oxidative stress, DNA
damage, tumours, neurodegenerative diseases, diabetes, and cardiovascular diseases
(CVDs). We focused on the biological function and potential molecular mechanisms of m6A
RNA methylation in ageing and age-related disease progression. We believe that m6A
modification may provide a new target for anti-ageing therapies.
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1 INTRODUCTION

Ageing is a process of molecular and cellular damage accumulating over time, leading to a
progressive decline in physical and mental capacity and an increased risk of disease and death
(Borghesan et al., 2020). At present, changes in molecular and cellular ageing processes are believed
to be the basis of age-related diseases, including cell senescence, autophagy, inflammation, oxidative
stress, DNA damage, telomere depletion, protease inactivation, and epigenetic disorders (Ungvari
et al., 2020). Ageing is the greatest risk factor for most chronic diseases, leading to morbidity and
mortality (Kennedy et al., 2014). Presently, the field of ageing has focused on understanding the
molecular mechanisms that regulate the ageing process and identifying biomarkers that could help to
predict age-related processes. New therapeutic targets mainly focus on improving the health of the
elderly population.

Epigenetics regulate gene and non-coding RNA expression without altering primary DNA
sequences through many mechanisms, such as DNA methylation, histone modification, and
nucleosome localisation (Portela and Esteller, 2010). Epigenetic imprinting persists during
development and can be passed on to the offspring (Fraga et al., 2005; Kaminsky et al., 2009).
Known epigenetic mechanisms include DNA methylation, histone modification, chromatin
remodelling, and RNA methylation (Wang and Chang, 2018). At present, it is believed that
during the ageing process, a decrease in histone synthesis and a change in chromatin structure

Edited by:
Giovanni Nigita,

The Ohio State University,
United States

Reviewed by:
Xiangting Wang,

University of Science and Technology
of China, China

Piyush Khandelia,
Birla Institute of Technology and

Science, India

*Correspondence:
Ping Zhu

zhuping301hospital@163.com
Shuxia Wang

wangsx301@163.com

Specialty section:
This article was submitted to

Epigenomics and Epigenetics,
a section of the journal
Frontiers in Genetics

Received: 05 February 2022
Accepted: 31 March 2022
Published: 20 April 2022

Citation:
Sun J, Cheng B, Su Y, Li M, Ma S,
Zhang Y, Zhang A, Cai S, Bao Q,

Wang S and Zhu P (2022) The
Potential Role of m6A RNAMethylation

in the Aging Process and Aging-
Associated Diseases.

Front. Genet. 13:869950.
doi: 10.3389/fgene.2022.869950

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8699501

REVIEW
published: 20 April 2022

doi: 10.3389/fgene.2022.869950

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.869950&domain=pdf&date_stamp=2022-04-20
https://www.frontiersin.org/articles/10.3389/fgene.2022.869950/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.869950/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.869950/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhuping301hospital@163.com
mailto:wangsx301@163.com
https://doi.org/10.3389/fgene.2022.869950
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.869950


leads to a general loss of structural heterochromatin (Lee et al.,
2020). Histone variants have also been observed in ageing
organisms, which have different primary sequences and
properties compared to typical histones, thus changing the
gene transcription program (Henikoff and Smith, 2015). In
addition, the ageing process involves DNA methylation
changes (Day et al., 2013; Horvath, 2015; Unnikrishnan et al.,
2019), ATP-dependent chromatin remodelling (Clapier et al.,
2017), histone modifications (including methylation, acetylation,
ubiquitination) (Lawrence et al., 2016), and miRNA changes
(Huan et al., 2018).

As one of the most common post-transcriptional
modifications in eukaryotic mRNA, N6-methyladenosine
(m6A) adds a methyl group to the nitrogen-containing base at
the sixth position of the adenine residue of RNA. It was first
found in the eukaryotic mRNA of Novikov hepatoma cells and
mouse L cells (Desrosiers et al., 1974; Schäfer, 1982). m6A
modification has a conservative identification motif, RRACH
(R = G/A, H = A/C/U) (Csepany et al., 1990). The
evolutionary conservatism and dynamic reversibility of its
modification make it unique for gene expression regulation.
m6A RNA methylation has become a key regulator of various
post-transcriptional gene regulation processes and acts as a
translation initiation mechanism in protein synthesis (Karthiya
and Khandelia, 2020). In addition, numerous reports have
indicated that m6A modification may cause important changes
in the ageing process and affect the occurrence and development
of many age-related diseases. In this review, we focused on m6A
RNA methylation mechanisms related to the ageing process and
emphasised their significance in age-related diseases. We believe
that m6A RNA methylation is a potential target for treating age-
related diseases.

2 OVERVIEW OF N6-METHYLADENOSINE
MODIFICATION

RNA modification is a post-transcriptional process that regulates
gene expression by binding to proteins without involving the
RNA sequence. More than 160 types of RNA modifications,
ubiquitous in both coding and non-coding RNA, have been
identified. First discovered in 1974, m6A modification refers to
the methylation of the sixth nitrogen atom of adenylate. It is
considered the most abundant internal modification in
eukaryotic mRNA (Desrosiers et al., 1974). With recent
improvements in detection techniques, such as high-
throughput sequencing, the study of m6A RNA methylation is
booming. Presently, it has been reported that there are three m6A
residues per average mRNA transcript in mammalian cells
(Dominissini et al., 2012). In addition to mRNA, m6A RNA
methylation covers almost all types of RNA, including transfer
RNAs (tRNAs), ribosomal RNAs (rRNAs), cyclic RNAs
(circRNAs), microRNAs, and small nucleolar RNA (snoRNA)
(Sergiev et al., 2016).

m6A RNA methylation is a dynamic and reversible RNA
modification, and its function is determined by three types of
enzymes: RNA methyltransferase, RNA demethylase, and

m6A-binding proteins (Figure 1) (Fu et al., 2014). m6A
modification is crucial in regulating gene expression, splicing,
RNA editing, RNA stability, controlling mRNA lifespan and
degradation, and mediating ring RNA translation (Zhao et al.,
2017). In addition, m6A modification is related to many
physiological processes, pathological processes, and human
diseases, including the circadian rhythm (Zhong et al., 2018),
reproductive system development (Hongay and Orr-Weaver,
2011; Hsu et al., 2017; Ivanova et al., 2017; Kasowitz et al.,
2018), haematopoietic system development (Wang et al.,
2014a; Zhang et al., 2017), nervous system development and
degeneration (Hess et al., 2013; Lence et al., 2016; Li et al., 2017a;
Yen and Chen, 2021), cardiovascular diseases (CVDs) (Chen
et al., 2021a), nutritional and metabolic diseases (Wu et al.,
2020a), and tumorigenesis (Wang et al., 2020a; Zhou et al., 2020).

2.1 RNA Methyltransferases
RNA methyltransferases, including RNA methyltransferase-like
protein 3 (METTL3) (Bokar et al., 1997), RNAmethyltransferase-
like protein 14 (METTL14) (Liu et al., 2014), Wilms’ tumour 1-
associating protein (WTAP) (Agarwala et al., 2012), RNA-
binding motif protein 15 (RBM15) and its analogue RBM15B
(Patil et al., 2016), Vir-like m6A RNA methyltransferase
associated protein (VIRMA)/KIAA1429 (Schwartz et al., 2014),
Zinc finger CCCH domain-containing protein 13 (ZC3H13)
(Wen et al., 2018), RNA methyltransferase-like protein 16
(METTL16) (Pendleton et al., 2017), and RNA
methyltransferase-like protein 5 (METTL5) (van Tran et al.,
2019; Richard et al., 2019), mediate m6A modification, are
mainly located in nuclear speckles, and are called “m6A
writers.” Among these, METTL3 was the first key RNA
methyltransferase and core RNA methyltransferase subunit of
m6A methylation. It is critical in the occurrence of m6A
modifications and participates in various physiological
processes (Bokar et al., 1997). Abnormal METTL3 expression
changes m6A RNA methylation levels. As the structural support
for METTL3, METTL14 is co-located in the nucleus in a 1:1 ratio
and forms a stable RNA methyltransferase complex responsible
for m6A modification (Liu et al., 2014). WTAP in the RNA
methyltransferase complex is primarily used as a connecting
protein between METTL3 and METTL14. WTAP lacks a
conserved catalytic methylation domain and cannot catalyse
m6A modification, but its deletion significantly affects m6A
modification levels and physiological processes, such as
embryonic differentiation (Ping et al., 2014). METTL3/
METTL14/WTAP is considered to be the core RNA
methyltransferase component, and in recent years, some
studies have reported new RNA methyltransferase complex
components, such as RBM15/15B, which assists in the binding
of METTL3 and WTAP, and its deletion leads to damage to
X-inactive specific transcript (XIST)-mediated gene silencing on
the X chromosome (Knuckles et al., 2018). ZC3H13 (Wen et al.,
2018), VIRMA (Yue et al., 2018), and other proteins also
participate in m6A RNA methylation as cofactors of the m6A
RNAmethyltransferase complex. In addition, Warda et al. (2017)
reported on an independent m6A writer, METTL16, finding that
its binding site does not overlap with the METTL3/METTL14
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methylation complex, and it regulates the stability and splicing of
mRNA by catalysing m6A modification in snoRNAs, U6 small
nuclear RNAs (snRNAs), and other long non-coding RNAs
(lncRNAs). There are continuous reports of new RNA
methyltransferases, such as METTL5, the enzyme responsible
for 18S rRNA m6A modification, and ZCCHC4, a confirmed 28S
rRNA m6A modification enzyme (van Tran et al., 2019; Richard
et al., 2019). Some studies reported that WTAP interacts with
many proteins and lncRNAs, of whichmore than 100may bind to
METTL3 or METTL14 (Schöller et al., 2018). Therefore, “writer”
may include the reported proteins and other components that
need further exploration.

2.2 RNA Demethylases
RNA demethylases, including fat mass and obesity-related
proteins (FTO) (Jia et al., 2011), AlkB homologue 5
(ALKBH5) (Huang et al., 2020a), and AlkB homologue 3
(ALKBH3) (Ueda et al., 2017; Sun et al., 2019), can remove
the m6A modification. They are called “m6A erasers” and are
located in nuclear spots with RNA methyltransferase. In 2011,
FTO was identified as the first m6A RNA demethylase, verifying
that m6A RNA methylation is a dynamic and reversible RNA
modification. FTO-mediated m6A demethylation acts in various
biological processes, inhibiting peroxisome proliferator-activated
receptor (PPARβ/δ) and AMP-activated protein kinase (AMPK)
pathways, disrupting skeletal muscle lipid utilisation, inhibiting
macrophage lipid influx by downregulating PPARγ protein
expression, and accelerating cholesterol outflow via AMPK
phosphorylation. Thus, foam cell formation and
atherosclerosis development were inhibited (Yang et al., 2022).
FTO regulates the alternative splicing of RUNT-related
transcription factor 1 (RUNX1) through m6A modifications
(Zhao et al., 2014), whereas FTO regulates fat formation and
deposition by altering the expression of PPARγ (Lee et al., 2011)
and angiopoietin-like 4 (ANGPTL4) (Wang et al., 2015a). In

addition, FTO is widely involved in regulating the cell cycle (Li
et al., 2019a), tumour growth (Li et al., 2019b), proliferation and
migration (Tang et al., 2019), stem cell maintenance (Su et al.,
2020) and other biological processes.

ALKBH5 is the second m6A RNA demethylase and is
expressed in most tissues, especially the testes (Aik et al.,
2014). ALKBH5 inactivation increases m6A RNA methylation
levels, leading to male-mouse infertility (Tang et al., 2018a). In
addition, ALKBH3 has recently been considered a newm6A RNA
demethylase that preferentially catalyses m6A demethylation in
tRNA (Ueda et al., 2017; Woo and Chambers, 2019).

2.3 N6-Methyladenosine Binding Proteins
The “m6A writers” and “m6A erasers” determine whether RNA
is methylated, but m6A-binding proteins (“m6A readers”)
determine the final biological function of m6A modification.
“m6A readers” recognise and bind to an m6A modified
transcript, then regulate mRNA stability (Zhao et al., 2014),
mRNA splicing (Xiao et al., 2016), mRNA structure (Spitale
et al., 2015), mRNA output (Roundtree et al., 2017), translation
efficiency (Wang et al., 2015b) and microRNA (miRNA)
biogenesis (Alarcón et al., 2015). “Readers” include proteins
containing YTH domains (YTHDF1/2/3 and YTHDC1/2),
heterogeneous ribonucleoproteins including heterogenous
nuclear ribonucleoprotein (HNRNP) C (HNRNPC), HNRNP
G (HNRNPG), and HNRNP A2B1 (HNRNPA2B1), and
insulin-like growth factor 2 binding proteins (IGF2BPs),
which are members of a protein family involved in
regulating some aspects of ageing. Different “readers” have
different cellular localisations and thus perform various
biological functions. YTH domain containing 1 (YTHDC1)
regulates mRNA splicing by recruiting the splicing factor
serine- and arginine-rich splicing factor 3 (SRSF3) or
blocking serine- and arginine-rich splicing factor 10
(SRSF10) in the nucleus (Xiao et al., 2016). In addition, it

FIGURE 1 | Regulation of the m6A modification and the function of the m6A regulators.
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increases the output of circRNA NOP2/SUN domain family,
member 2 (circNSUN2) in the cytoplasm by interacting with
nuclear output factor 1 (Chen et al., 2019a). HNRNPA2B1 and
HNRNPC are also located in the nucleus. HNRNPA2B1
regulates RNA splicing and promotes miRNA maturation by
recognising pri-miRNA markers and interacting with
DiGeorge syndrome critical region 8 (DGCR8) (Zhao et al.,
2017). HNRNPC selectively recognizes m6A modified
transcripts to promote pre-RNA processing (Liu et al.,
2015). YTHDF1/2/3, YTH domain containing 2 (YTHDC2),
and IGF2BP1/2/3 are localised in the cytoplasm. YTH domain
family protein 1 (YTHDF1) initiates RNA translation by
interacting with translation initiation factors and ribosomes,
whereas YTH domain family protein 2 (YTHDF2) selectively
binds m6A modified transcripts and accelerates their
degradation (Wang et al., 2015b). On the other hand, YTH
domain family protein 3 (YTHDF3) and YTHDF1/2 play a
synergistic role, not only promoting YTHDF1-mediated
translation but also affecting the decline in YTHDF2-
mediated m6A modification (Wang et al., 2014b; Shi et al.,
2017). Like YTHDF3, YTHDC2 is an RNA helicase, and its
helix-unwinding region contributes to RNA binding and
promotes mRNA translation or degradation (Hsu et al.,

2017). Other proteins located in the cytoplasm are
IGF2BP1–3, which recognise and bind to m6A modified
transcripts, thus enhancing mRNA stability (Huang et al.,
2018).

3 N6-METHYLADENOSINE CHANGES IN
MOLECULAR PROCESSES ASSOCIATED
WITH AGEING
Many studies have confirmed that m6A methylation regulates
several physiological processes that are crucial in the ageing
process. Here, we focused on the mechanisms of m6A RNA
methylation in autophagy, inflammation, oxidative stress,
DNA damage, and cell senescence (Table 1).

3.1 N6-Methyladenosine and Autophagy
Autophagy is a highly conserved intracellular clearance
mechanism regulated by various proteins and is important
for maintaining homeostasis in the internal environment. The
mammalian target of rapamycin (mTOR) is a key factor in
autophagy regulation. Protein kinase B (AKT) and mitogen-
activated protein kinase (MAPK) signalling pathways activate

TABLE 1 | The role of m6A modification in the fundamental processes.

The
Processes
related to
aging

m6A regulator Organism Role in
processes

Mechanism Reference

Autophagy MTC Cells, Drosophila Suppression Promote the degradation of ATG transcripts Tang et al. (2021)
METTL14 Leydig Cells Suppression Reduce AMPK activity Chen et al. (2021b)
ALKBH5 Leydig Cells Promotion Promote the activity of AMPK Chen et al. (2021b)

ovarian cancer cells Suppression Regulation of bcl-2 expression Zhu et al. (2019)
FTO, YTHDF2 Cells Promotion Increase the expression of ULK1 Jin et al. (2018)

Inflammation METTL3 Cells Promotion Regulate alternative splicing of MyD88 Feng et al. (2018)
METTL14 Endothelial cell, mice Promotion Promote FOXO1 expression Jian et al. (2020)
ALKBH5 HK-2 cells Promotion Up-regulate MALAT1 expression by demethylation Zhu and Lu, (2020)
FTO Cells Promotion Promote M1 and M2 macrophage activation Gu et al. (2020)
RBM4, YTHDF2 Cells Suppression Decrease m6A modified STAT1 mRNA levels and inhibite the

polarization of M1 macrophages
Huangfu et al.
(2020)

Oxidative
stress

METTL3 mRTECs Suppression Regulate Keap1-Nrf2 pathway Wang et al. (2019c)
METTL14 Cardiomyocytes,

mice
Suppression Regulate Wnt1/β-Catenin Signaling Pathway Pang et al. (2021)

WTAP Cells and rat Promotion Regulate m6A modification of ATF4 mRNA Wang et al. (2021)
FTO Cell, human samples Promotion Increased the translation efficiency of PGC1αmRNA Zhuang et al.

(2019)
YTHDF1/3 Cells Promotion Promote stress granule formation Fu and Zhuang,

(2020)
DNA damage METTL3,

YTHDC1
Cells Suppression Modulates accumulation of DNA-RNA hybrids at DSBs sites and

recruit RAD51 and BRCA1
Zhang et al.
(2020c)

METTL3/14,
YTHDC1

Cells Suppression Active on ssDNA and lesion-containing dsDNA Yu et al. (2021)

YTHDF1 Cells, mice Suppression Upregulates HR-related factors RAD51 and BRCA1 Sun et al. (2022)
Cell
senescence

METTL3 Cells Promotion Target NF-κB, drives the senescence-associated secretory phenotype Liu et al. (2021)
METTL14 Clinical Sample Promotion Participates in the TNF-α-induced m6A modification of miR-34a-5p to

promote cell senescence
Zhu et al. (2021b)

FTO Granulosa cells Suppression Regulates the expression of FOS Jiang et al. (2021)
METTL3,
IGF2BP2

hMSC Suppression Stabilizate of the MIS12 transcript Wu et al. (2020b)
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mTOR to inhibit autophagy, whereas AMPK and p53
pathways negatively regulate mTOR to promote autophagy
(Alers et al., 2012). After mTOR inactivation, UNC-51-like
kinase 1/2 (ULK1/2) is activated and binds to the focal
adhesion kinase family interacting protein of 200 kDa
(FIP200) to form a ULK1 complex with autophagy-related
13 (ATG13) proteins, promoting autophagosome formation
(Codogno et al., 2011). m6A methylation and related
regulators regulate autophagy by regulating ATG expression
or by affecting autophagy-related signalling pathways. In 2018,
Jin et al. first reported a positive regulatory effect of FTO on
autophagy, accomplished by affecting the abundance of Unc-
51 like autophagy activating kinase 1 (ULK1) (Jin et al., 2018).
Another RNA demethylase, ALKBH5, has been shown to
enhance autophagy by reducing m6A methylation in FIP200
transcripts (Li et al., 2020), suggesting a negative correlation
between m6A modification and autophagy. A study of RNA
methyltransferases further confirmed this. METTL3
upregulates methylation and triggers YTHDF1 and
Forkhead box O3 (FOXO3) binding to promote the
translation of FOXO mRNA. FOXO further blocks ATG
gene expression to inhibit autophagy (Lin et al., 2020). A
decrease in METTL14 levels increases the stability of
calcium/calmodulin-dependent protein kinase 2 (CAMKK2)
mRNA and activates the AMPK and ULK1 complex to initiate
autophagy (Chen et al., 2021b).

Abnormal autophagy can lead to diseases, some of which may
be associated with ageing. Studies have shown that autophagy
decreases with age. Increasing autophagy levels can inhibit the
accumulation of damaged proteins, delay the occurrence of
degenerative changes, and prolong life (Rubinsztein et al.,
2011; Papp et al., 2016). There is evidence that autophagy
regulates some age-related diseases in lower organisms (such
as Drosophila and Caenorhabditis elegans), but this hypothesis
has not been confirmed in mammals. Accelerating ageing by
decreasing autophagy is controversial. Nevertheless, several
studies have reported that deleting autophagy proteins leads to
the accumulation of misfolded proteins and abnormal
mitochondria in cells, resulting in premature senescence,
organ dysfunction, and eventually the development of various
ageing-related diseases, such as neurodegenerative diseases,
cancer, CVDs, and metabolic syndrome (Linton et al., 2015;
Guo et al., 2018; Luo et al., 2020). In summary, autophagy
regulation is closely related to ageing, in which m6A
modification plays an important role. Therefore, further
studies on the relationship between m6A modification and
autophagy in ageing may provide a new method for anti-
ageing research.

3.2 N6-Methyladenosine and Inflammation
RNA methylation is involved in inflammation. m6A methylation
affects pathways related to metabolic reprogramming, stress
response, and ageing by regulating type I interferon (IFN)
mRNA stability (Rubio et al., 2018). Lipopolysaccharides
(LPSs) induce inflammation. It has been found that LPS
stimulation promotes METTL3 expression and biological
activity in macrophages, and METTL3 overexpression

alleviates lipopolysaccharide-induced inflammation through
the nuclear factor-κB (NF-κB) signalling pathway, further
confirming the relationship between m6A methylation and
inflammation (Wang et al., 2019a). In addition, the interaction
between m6A modification and inflammation is crucial for
various diseases to occur. YTHDF2 deletion aggravates the
inflammatory state and metastasis of human hepatocellular
carcinoma cells (Hou et al., 2019). After an ischaemic stroke,
FTO expression is downregulated, and m6A methylation is
increased in the main inflammatory pathways, including
interleukin (IL)-6 cytokines, tumour necrosis factor (TNF),
toll-like receptor (TLR), and NF-κB signalling pathways
(Chokkalla et al., 2019). It has been suggested that m6A may
regulate secondary brain injury after cerebral ischaemia by
affecting inflammation.

In summary, m6A methylation affects inflammation under
physiological and pathological conditions. Presently, the chronic
inflammatory state is considered one of the characteristics of
ageing, namely “inflammatory ageing” (inflamm-ageing), which
is mainly characterised by inflammatory cell infiltration and an
increase in pro-inflammatory factors [TNF-α, IL-1β, IL-6,
C-reactive protein (CRP), etc.] Although most current studies
on the relationship between m6A modification and inflammation
are based on specific diseases and signalling pathways, the study
of epigenetic changes in inflammation potentiates the
development of effective drugs with specific anti-ageing targets.

3.3 N6-Methyladenosine and Mitochondria:
Oxidative Stress
Oxidative damage accumulates with ageing in many species and
tissues. RNA modification is mobilised to activate or inhibit
stress-resistant signalling pathways (Peters et al., 2021). Li
et al. (2017b) found that the activities of METTL3/METLL14,
p21, and senescence-related β-galactosidase (SA-βGAL)
increased significantly after oxidative damage stimulated
HCT116 p53−/−cells, indicating that METTL3/METLL14 may
trigger the p53 independent effect of ageing in the oxidative
damage response, which needs to be further tested. Arsenite et al.
stimulated human keratinocytes to induce reactive oxygen species
(ROS) production, increasing WTAP, METTL14, and total m6A
expression levels (Zhao et al., 2019). FTO induces oxidative stress
and increases ROS levels by reducing m6A methylation of
peroxisome proliferator-activated receptor gamma coactivator-
1 alpha (PGC1α) (an important regulator of mitochondrial
metabolism that is also affected by the ageing process) and
increasing PGC1α mRNA translation efficiency.

3.4 N6-Methyladenosine and DNA Damage
DNA damage refers to changes in DNA structure caused by
physical or chemical stimuli in the environment. The persistence
of DNA damage can lead to a prolonged DNA damage response
(DDR) and induce senescence (Di Micco et al., 2021). m6A is
critical in DNA damage and repair. It has been reported that
METTL3/METTL14 and METTL16 are recruited to DNA
damage sites to facilitate DNA repair and the DDR by
adjusting m6A modifications under ultraviolet (UV) radiation
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stimulation (Svobodová Kovaříková et al., 2020). This repair is
carried out through the nucleotide excision repair (NER) pathway
because knockout of the non-homologous end junction (NHEJ)
enzyme SUV391H/H2 does not affect m6A recruitment under
UV stimulation (Svobodová Kovaříková et al., 2020).

3.5 N6-Methyladenosine and Cell
Senescence
Cell senescence results from many processes, including telomere
wear, macromolecular damage, and oncogene-activated signal
transduction (Childs et al., 2015). Senescent cells widely exist in
ageing and diseased tissues, secreting numerous pro-
inflammatory cytokines, called the ageing-associated secretory
phenotype [senescence-associated secretory phenotype (SASP)].
These cytokines regulate the tissue microenvironment and affect
how nearby normal cells function. Studies have shown that
senescent cells are involved in atherosclerosis (Ito et al., 2014),
Alzheimer’s disease (AD) (Boccardi et al., 2015), Parkinson’s
disease (PD) (Chinta et al., 2013), chronic obstructive pulmonary
disease (Barnes et al., 2019), insulin resistance (Aravinthan et al.,
2015), age-related chronic inflammation (Campisi and Robert,
2014), cancer (Calcinotto et al., 2019), osteoporosis (Farr and
Khosla, 2019), and loss of haematopoietic stem cell function (de
Haan and Lazare, 2018) in the elderly.

In 2017, Li et al. (2017b) reported a link between m6A
methylation and cellular senescence. They found that p21
protein methylation increased with m6A methylation, whereas
the p21 mRNA level was not affected by m6A, suggesting that
m6A methylation regulates p21 translation. In another study,
breast cancer cells were exposed to sublethal concentrations of
ammonium trifluoride (SFN). m6A methylation levels decreased,
the activity of SA-βGAL increased, and p53, p21, and p27 protein
levels increased, but the corresponding mRNA levels remained
unchanged. SFN may lead to senescence by reducing m6A
methylation levels (Lewinska et al., 2017). Min et al. reported
an m6A RNA modification map of human peripheral blood
mononuclear cells (PBMCs) from young and old groups. They
found that the total level of m6A modification in PBMCs of the
elderly was significantly lower than that in the young PBMCs,
while the expression of m6A modified transcripts was higher than
that of unmodified transcripts (Min et al., 2018). Shafik et al. have
reported dynamic changes in m6A RNA methylation during
brain ageing. In their study, they compared the m6A spectra
of Brodmann area 9 (BA9) in the cerebral cortex of 6-week-old
and 52-week-old mice and post-mortem pubertal and elderly
human brains, and the results showed that the m6A modification
sites were significantly increased with increasing age, both in mice
and humans. Functional enrichment analysis showed that
differential m6A loci mainly occurred in the untranslated
regions of genes that affect ageing-related pathways, which are
related to the strong negative effect of mRNA expression (Shafik
et al., 2021).

A recent study reported that METTL3 downregulation
decreased m6A modification of human bone marrow
mesenchymal stem cells (hMSC) with premature senescence,
and hMSCs showed accelerated ageing after METTL3 gene

knockout. The m6A modifications in Hutchinson-Gilford
progeria (HGPS) and Werner syndrome (WS) increased with
METTL3 overexpression and delayed disease progression. They
identified MIS12 as the specific target of m6A modification
deletion in the premature ageing process using RNA
sequencing (RNA-seq) and m6A methylation RNA
immunoprecipitation sequencing (MERIP-seq) analysis. m6A
deletion accelerates hMSC ageing, while IGF2BP2 recognises
and stabilizes m6A modified MIS12 mRNA to prevent
accelerating senescence in hMSCs. Based on the above results,
Wu et al. (2020b) proposed a regulatory model in which
METTL3-mediated m6A modification improves the stability of
IGF2BP2-mediated MIS12 mRNA, thus reversing the ageing
phenotype of hMSCs.

Cellular senescence is an important component of the ageing
process. Selective clearance of senescent cells is currently the
focus of anti-senescence research. Senolytics (a mixture of
dasatinib and quercetin), agents that target cellular senescence,
have completed small clinical trials in patients with idiopathic
fibrosis with promising efficacy and safety results (Justice et al.,
2019). The results need to be validated in larger samples and
populations with other age-related diseases. The link between
m6A methylation and cellular senescence may provide novel
therapeutic targets for localising senescent cells, with
important clinical implications.

4 N6-METHYLADENOSINE CHANGES IN
AGEING ASSOCIATED DISEASES/
DISORDERS
The study of m6A RNA methylation and the ageing process has
laid the foundation for more comprehensive and in-depth
exploration into the epigenetic mechanisms of various ageing-
related diseases. At present, several studies focus on the role of
m6A RNA methylation in ageing-related pathological processes,
such as cancer. Here, we summarise the latest reports on m6A
modification and ageing-related diseases, focusing on cancer,
neurodegenerative diseases, diabetes mellitus, and CVDs
(Table 2).

4.1 Cancer
In recent years, many studies on m6A RNA methylation have
reported that changes in m6A modification levels and the
imbalance of regulatory factors are related to the activation
and inhibition of cancer-related signalling pathways.
Therefore, m6A modification is widely involved in the
occurrence (Uddin et al., 2021), progression (Wang et al.,
2020a), and drug resistance of cancer (Huang et al., 2020a)
and may be a promising biomarker and potential therapeutic
target for the diagnosis and prognosis of many kinds of tumours.
High METTL3 (Vu et al., 2017), WTAP (Bansal et al., 2014;
Naren et al., 2021), FTO (Li et al., 2017c), ALKBH5 (Shen et al.,
2020a; Wang et al., 2020b), and YTHDF2 (Paris et al., 2019)
expression has been observed in all subtypes of acute
myelogenous leukaemia (AML), and high WTAP (Naren et al.,
2021), ALKBH5 (Shen et al., 2020a; Wang et al., 2020b) and
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TABLE 2 | The functional roles of RNA m6A modification in various types of human disease.

Age-related
disease

Organism Role in
disease

m6A regulator Functional in
disease

Ref

Cancer:
Respiratory neoplasms
Lung cancer Clinical Samples;

cells
Oncogene METTL3; FTO;

YTHDF1/2; IGF2BP1
Promote LC growth and progress; induce
invasion and metastasis of NSCLC

(Lin et al., 2016; Chen et al., 2020a),
(Liu et al., 2018a; Chen et al., 2018;
Müller et al., 2019)

Cells Suppressor ALKBH5 Inhibits tumor growth and metastasis Jin et al. (2020)
Nasopharyngeal

carcinoma
Cells Oncogene METTL3 Promote proliferation and invasion of NPC

cells
Zheng et al. (2019)

Leukemia Clinical Samples;
cells; mice

Oncogene METTL3; METTL14;
WTAP; YTHDF1; FTO;
IGF2BP1

Promote AML cells proliferation and
leukemia cells self-renewal, growth and
metabolism

(Bansal et al., 2014; Vu et al., 2017;
Li et al., 2018a; Weng et al., 2018)

Gastroinestinal tumor
Hepatocellular

carcinoma
Clinical Samples;
cells; mice

Oncogene METTL3; METTL14;
YTHDF1; KIAA1429;
WTAP; YTHDF2

Induce HCC cells proliferation, migration,
invasion and metastasis

(Chen et al., 2018; Cheng et al.,
2019; Müller et al., 2019)

Cells; mice Suppressor METTL14 Suppress tumor invasion and metastasis Ma et al. (2017)
Gastric carcinoma Cells, Clinical

samples
Oncogene METTL3; ALKBH5 Promote proliferation, tumor angiogenesis,

invasion and metastasis of GC
(Zhang et al., 2019a; Wang et al.,
2020e)

Colorectal cancer Cells, Clinical
samples, mice

Oncogene METTL3; FTO; WTAP;
YTHDC2; YTHDF1;
IGF2BPs

Promote the proliferation, migration,
invasion and EMT of CRC cells

(Tanabe et al., 2016; Zhang et al.,
2016; Shen et al., 2018; Wu et al.,
2019b; Li et al., 2019c)

Cells, clinical
samples

Suppressor METTL3; METTL14 Suppress CRC proliferation and migration (Deng et al., 2019; Chen et al.,
2020b)

Pancreatic cancer Cells, clinical
samples

Oncogene METTL3; YTHDF2 Promote cell proliferation, migration, and
invasion

(Chen et al., 2017; Zhang et al.,
2019b)

Cells, clinical
samples

Suppressor ALKBH5; YTHDF2 Suppress cancer migration, invasion,
and EMT

(Chen et al., 2017; He et al., 2018)

Urological cancers
Bladder cancer Cells, clinical

samples, mice
Oncogene METTL3; FTO; ALKBH5 Promote BC cells proliferation, colony

formation, invasion and metastasis; inhibit
cell apoptosis

(Cai et al., 2018; Wang et al., 2020f)

Clinical samples Suppressor METTL14 Inhibit bladder TIC self-renewal and
tumorigenesis

Gu et al. (2019)

Renal cell cancer Cells, clinical
samples, mice

Oncogene WTAP Enhance cell proliferation abilities Tang et al. (2018b)

Cells, clinical
samples, mice

Suppressor METTL3; FTO Suppress tumor growth, proliferation,
migration, invasion function and cell cycle of
RCC and induce apoptosis

(Li et al., 2017d; Zhuang et al.,
2019)

Prostate cancer Cells Oncogene METTL3; YTHDF2 Promote tumor cells proliferation, survival,
colony formation, and migration

Cai et al. (2019)

Reproductive neoplasms
Breast cancer Cells, clinical

samples, mice
Oncogene METTL3; FTO; ALKBH5 Promote BC cells proliferation, colony

formation and metastasis; inhibit the
apoptosis

(Niu et al., 2019; Wang et al., 2020f)

Ovarian cancer Cells, clinical
samples, mice

Oncogene METTL3; ALKBH5;
IGF2BP1

Promote the proliferation and invasion
in vitro and in vivo

(Hua et al., 2018; Müller et al., 2019)

Cervical carcinom Cells, clinical
samples

Oncogene FTO Promote cell proliferation and migration;
induce resistance

Zou et al. (2019)

Endometrial cancer Cells, clinical
samples, mice

Suppressor METTL3/METTL14 Inhibit the proliferation and tumorigenicity Liu et al. (2018b)

Skin tumors
Melanoma Cells, clinical

samples, mice
Oncogene FTO Increase tumor growth Yang et al. (2019a)

Cells, clinical
samples, mice

Suppressor YTHDF1 Restrain cell growth and migratory ability Jia et al. (2019)

Squamous cell
carcinoma

Cells, clinical
samples, mice

Oncogene METTL3 Promote tumorigenicity Zhou et al. (2019)

Neurodegenerative diseases:
Alzheimer’s disease Mice, clinical

samples
Up-
regulation

METTL3; IGF2BP2;
RBM15B

— (Han et al., 2020; Deng et al., 2021)

Cells, mice, clinical
samples

Down-
regulation

METTL3; FTO — (Huang et al., 2020b; Han et al.,
2020), (Zhao et al., 2021)

Parkinson’s disease Cells Down-
regulation

HNRNPC — Quan et al. (2021)

(Continued on following page)
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IGF2BP1 expression (Elcheva et al., 2020) are related to the poor
prognosis of AML patients. The same phenomenon has been
observed in solid tumours. METTL3, RBM15, KIAA1429,
YTHDF1, YTHDF2, HNRNPA2B1, HNRNPC, and IGF2BP1/
2/3 expression levels in lung cancer tissues are significantly higher
than those in normal tissues (Shi et al., 2019; Zhang et al., 2020a;
Li and Zhan, 2020; Sheng et al., 2020).

METTL3 may regulate the growth, differentiation, and
apoptosis of AML cells by affecting the phosphoinositide 3-
kinases (PI3K)/AKT pathway (Vu et al., 2017).
Mechanistically, METTL3 promotes c-MYC, B-cell CLL/
lymphoma 2 (BCL2), and phosphatase and tensin homologue
(PTEN) mRNA translation by regulating m6A modification
levels. Deleting METTL3 increases phosphorylated AKT
(p-AKT) levels. METTL3 also regulates drug resistance and
invasiveness of lung cancer cells by inducing m6A
modification of enhancer of zeste homologue 2 (EZH2)
mRNA in A549 cells (Chen et al., 2020a). In addition, it has
been reported that the tumour suppressor miR-33a targets the 3′-
UTR of METTL3 mRNA to reduce METTL3 expression, thus
inhibiting A549 andNCI-H460 cell proliferation (Du et al., 2017).
This suggests that METTL3 may be a new target for lung cancer
therapy. Recently, Yankova et al. found that STM2457, a small
molecule METTL3 inhibitor, reduced AML growth and increased
apoptosis by reducing the expression of an mRNA known to
cause leukaemia. Further animal experiments showed that
STM2457 prolongs the survival time of various AML mouse
models (Yankova et al., 2021). METTL14 acts in various solid
tumours and leukaemia through different mechanisms.
METTL14 expression is downregulated in AML cells.
However, it still plays a carcinogenic role in AML. METTL14
increases MYB/MYC expression through the SPI1-METTL14-
MYB/MYC signal axis to promote AML occurrence (Weng et al.,
2018). METTL14 inhibits the migration and invasion of renal

cancer cells by downregulating purinergic receptor P2X 6
(P2RX6) protein translation and ATP-P2RX6-Ca2+-p-ERK1/2-
MMP9 signalling in renal cell carcinomas (Wang et al., 2019b).

The RNA demethylases FTO and ALKBH5 are also crucial in
tumours. FTO may act as a tumour promoter. FTO increases the
expression of myeloid zinc finger 1 (MZF1) by reducing m6A
mRNA modification, and promotes lung cancer progression (Liu
et al., 2018a). Knockdown of FTO increases the expression of
tumour suppressor genes ASB2 and retinoic acid receptor alpha
(RARA) and inhibits AML proliferation and differentiation (Li
et al., 2017c). It also reduces the mRNA stability of ubiquitin-
specific protease (USP7) and inhibits cancer cell growth (Li et al.,
2019b).

In addition, some studies have focused on the function of
m6A-binding proteins in tumours. YTHDF1 and YTHDF2 can be
used as oncogenes and tumour suppressors. YTHDF1 deficiency
regulates the transformation efficiency of cyclin-dependent
kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and
cyclin D1 (CCND1) through the Keap1-Nrf2-AKR1C1
pathway to inhibit tumour cell proliferation and xenograft
tumorigenesis. YTHDF1 deletion also inhibits new lung
adenocarcinoma (ADC) progression (Shi et al., 2019).
However, the study also found that YTHDF1 knockdown
leads to cell resistance to cisplatin, whereas high YTHDF1
expression leads to better clinical outcomes (Shi et al., 2019).
The results of studies on the role of YTHDF2 in lung cancer are
complex. One study reported that YTHDF2 promotes METTL3-
induced tumorigenesis by increasing suppressor of cytokine
signalling 2 (SOCS2) degradation (Chen et al., 2018).
However, another study found that YTHDF2 overexpression
inhibits non-small cell lung cancer (NSCLC) cell growth and
invasion by promoting a decrease in yes-associated protein (YAP)
mRNA in NSCLC cells (Jin et al., 2020). However, these studies
have repeatedly confirmed the dual role of YTHDF1/2 in

TABLE 2 | (Continued) The functional roles of RNA m6A modification in various types of human disease.

Age-related
disease

Organism Role in
disease

m6A regulator Functional in
disease

Ref

Cardiovascular disease:
Hypertension Rat — — The m6A methylation level reduce Wu et al. (2019a)
Cardiac

hypertrophy
Cells, mice Up-

regulation
METTL3; FTO Promote cardiomyocyte hypertrophy both

in vitro and in vivo
(Gan et al., 2013; Dorn et al., 2019),
(Berulava et al., 2020)

Heart failure Clinical samples
and mice

Up-
regulation

METTL3, METTL4,
KIAA1429, FTO,
YTHDF2

Data from MeRIP-seq Zhang et al. (2021)

Clinical sample,
preclinical pig,
mice, cells

Down-
regulation

FTO Increase m6A in RNA and decrease
cardiomyocyte contractile function

Mathiyalagan et al. (2019)

Atherosclerosis Cells, mice, clinical
sample

Up-
regulation

METTL3, METTL14,
IGF2BP1

Promote cardiovascular endothelial cell
proliferation and invasion; aggravates
endothelial inflammation, angiogenesis and
atherosclerosis

(Zhang et al., 2020b; Jian et al.,
2020; Dong et al., 2021)

Diabete mellitus Clinical sample,
cells

Up-
regulation

FTO, METTL3 Induce mRNA expression of FOXO1,
G6PC, and DGAT2

(Yang et al., 2019b; Yang et al.,
2020b)

Cells, mice, clinical
sample

Down-
regulation

METTL3, METTL14 regulated functional maturation and mass
expansion of neonatal β-cells

(De Jesus et al., 2019; Liu et al.,
2019; Men et al., 2019; Wang et al.,
2020d)
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tumorigenesis and progression. IGF2BP1 exerts its carcinogenic
function by regulating the expression of key transcriptional and
metabolic factors, such as TNF receptor 2 (TNFR2), MYB, and
MYC (Li et al., 2018a; Paris et al., 2019; Elcheva et al., 2020).

At present, m6A modification and its regulatory factors have
proven to be crucial in the occurrence, metastasis, immune
escape, and drug resistance of various tumours, including
haematological tumours (Vu et al., 2017), respiratory tumours
[lung cancer (Du et al., 2018) and nasopharyngeal carcinoma
(Zheng et al., 2019)], digestive tract tumours (gastric cancer
(Yang et al., 2020a), colorectal cancer (Ni et al., 2019; Shen
et al., 2020b; Chen et al., 2021c), pancreatic cancer (Geng
et al., 2020), and hepatocellular carcinoma (Chen and Wong,
2020)), urinary tumours [bladder cancer (Han et al., 2019), renal
cell carcinoma (Zhuang et al., 2019), and prostate cancer (Zhu
et al., 2021a)], reproductive system tumours [breast cancer (Cai
et al., 2018), cervical squamous cell carcinoma (Wang et al.,
2020c), epithelial ovarian cancer (Hua et al., 2018), and
endometrial cancer (Liu et al., 2018b)], skin tumours
[melanoma (Yang et al., 2019a; Jia et al., 2019), skin squamous
cell carcinoma (Zhou et al., 2019)], and glioblastoma (Cui et al.,
2017). Current research results show that m6A regulators may
play a dual role in the pathogenesis of tumours, not only as
oncogenes but as tumour suppressors. The biological effects of
the same m6A regulator are different in different tumours. Some
studies have reported the opposite role for an m6A regulator in
the same cancer. In short, m6A modification can be used as a
marker for a variety of tumours to diagnose and evaluate
prognosis and potential therapeutic targets. However, our
understanding of the role of m6A modification in tumours is
still in its infancy. Numerous studies are still needed to explore
the exact molecular mechanism of m6A and tumours to develop
new targeted drugs for clinical treatment.

4.2 Diabetes Mellitus
m6A plays an important role in the pathogenesis of type 2
diabetes mellitus (T2D). It has been reported that the mRNA
expression of RNA demethylase FTO in T2D patients is
upregulated compared with that in a normal control group,
inducing the increased expression of key genes involved in
glucose and fat metabolisms, such as FOXO1, FASN, G6PC,
and DGAT2. This suggests that FTO participates in glucose
metabolism by regulating target gene expression (Yang et al.,
2019b). In addition, some studies have found that METTL3/14
expression in the β cells of T2D patients and diabetic mice is
decreased, leading to decreased β cell proliferation and impaired
insulin secretion by reducing the m6A modification levels of
several transcripts related to cell cycle progression, insulin
secretion, and insulin/IGF1-AKT-PDX1 pathway (De Jesus
et al., 2019; Wang et al., 2020d). In addition, loss of METTL3/
14 is associated with abnormal glucose tolerance, hyperglycaemia,
and hypoinsulinemia in neonatal mice (Liu et al., 2019; Men et al.,
2019; Wang et al., 2020d). A recent study found that METTL3
mRNA and miR-25-3p expression were downregulated in
PBMCs and retinal pigment epithelial (RPE) cells stimulated
by high glucose. RPE cells overexpressing METTL3 could
upregulate p-AKT levels through the miR-25-3p/PTEN axis,

thus rescuing the viability of RPE cells stimulated by high
glucose (Zha et al., 2020). However, inconsistently, Yang et al.
found that METTL3 expression was upregulated in human
diabetic cataract tissue samples and high glucose-induced
human lens epithelial cells (HLECs), and the total level of
m6A modification increased (Yang et al., 2020b). In summary,
m6A modification is involved in the occurrence of T2D and its
related complications. It is expected to provide a new diagnostic
and treatment strategy for T2D and its complications.

4.3 Neurodegenerative Diseases
Currently, m6A modification is considered very important for
nervous system development (Hess et al., 2013; Lence et al., 2016;
Li et al., 2017a). In addition, some studies have found that
abnormal m6A modifications are related to degenerative
changes in the nervous system. Neurodegenerative diseases,
including AD and PD, are caused by the gradual loss of
neuronal structure or function. It has been reported that m6A
modification levels are downregulated in 6-hydroxydopamine (6-
OHDA)-treated PC12 cells and rat striatum, whereas 6-OHDA
increases the level of oxidative stress and Ca2+ influx by inducing
N-methyl-D-aspartate (NMDA) receptor one expression, leading
to the death of dopaminergic neurons that eventually develops
into PD (Chen et al., 2019b). In addition, some studies have
focused on the correlation between m6A modification and AD.
Compared with the control group, METTL3 expression in the
cerebral cortex and hippocampus of AD model mice was
upregulated, FTO expression was downregulated, and
modification levels were significantly increased, suggesting that
m6A methylation promotes AD development (Han et al., 2020).
Mechanistic studies have reported that FTO activates the TSC1-
mTOR-Tau signalling pathway by reducing m6A modification
levels and then participates in the occurrence of AD (Li et al.,
2018b; Annapoorna et al., 2019; Chen et al., 2019b). However,
FTO expression was increased in the brains of ternary transgenic
ADmice, and conditional knockout of FTO in the neurons of AD
mice improved their cognitive ability (Li et al., 2018b). Previous
studies have reported that FTO is associated with structural brain
atrophy in healthy elderly subjects (Ho et al., 2010), and a
prospective cohort study also found that FTO interacts with
apolipoprotein E (APOE) to increase the risk of dementia,
especially AD (Keller et al., 2011). In summary, the above
studies showed that m6A modification is related to
neurodegenerative changes, and its regulatory factors may be
used as candidate therapeutic targets for neurodegenerative
diseases. However, its role and mechanism need further
exploration.

4.4 CVDs
Age is an independent risk factor for CVDs. Studies have shown
that m6A modification may affect the occurrence and
development of various CVDs. The level of m6A RNA
methylation in pericytes of spontaneously hypertensive rats
was decreased, suggesting that m6A is involved in blood
pressure regulation (Wu et al., 2019a). In addition, under
pressure overload stimulation, METTL3 induces compensatory
cardiac hypertrophy by regulating the m6Amodification of kinase
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and intracellular signal pathway transcripts. However, mice with
conditional knockout of the METTL3 gene show the morphology
and function of heart failure after stress or ageing stimulation
(Dorn et al., 2019). Another study found that FTO expression
increased after adipose factor-induced cardiomyocyte
hypertrophy, whereas FTO knockout inhibited the
hypertrophy of neonatal rat cardiomyocytes (Gan et al., 2013).
Berulava et al. (2020) further confirmed these results. They found
that the ejection fraction was significantly decreased in
cardiomyocyte-specific knockout FTO mice, and heart failure
progressed faster (Gan et al., 2013). However, another study
found that increasing FTO expression in the hearts of mice
with heart failure prevented the myocardial contractile
transcript from degrading by reducing its m6A modification
then reducing the decrease in myocardial contractility caused
by ischaemia (Mathiyalagan et al., 2019). These studies suggest
that m6A modification and its regulatory factors are crucial in
maintaining normal myocardial homeostasis, compensatory
myocardial hypertrophy, and heart failure progression.

In addition, m6A also acts in atherosclerosis progression.
METTL14 increases the expression of mature miR-19a by
upregulating the m6A modification of miR-19a and accelerates
the proliferation of cardiovascular endothelial cells (Zhang et al.,
2020b). Additionally, a study reported that METTL14 mediates
endothelial cell inflammation, interacts with FOXO1, and
promotes vascular cell adhesion molecule 1 (VCAM-1) and
intercellular adhesion molecule 1 (ICAM-1) transcription,
while METTL14 knockout inhibits the progression of
atherosclerotic plaques in mice (Jian et al., 2020). It is believed
that m6A modification affects the process of atherosclerosis by
regulating cardiovascular endothelial proliferation and
endothelial cell inflammation.

In summary, numerous studies have confirmed the correlation
between m6A modification and CVDs, but further research needs
to verify its established molecular changes and pathological
process. In addition, most of the current reports focus on
METTL3 and FTO, and the role of other m6A regulators, such
as m6A binding proteins in CVDs, is still unclear. m6A
modification still needs further exploration to provide a new
treatment strategy for CVDs.

5 CONCLUSION AND PERSPECTIVES

Alterations in the epigenetic transcriptome are key regulators of
gene expression and cellular physiology. m6A, the most abundant
internal modification of mRNAs and lncRNAs, is widely involved
in regulating various cellular processes. Therefore, exploring the
changes and molecular mechanisms of m6A modification in a
pathological state and developing new targeted drugs will provide
a new strategy for the early diagnosis and accurate treatment of
diseases in the future.

Although several studies have reported on the functional role
of m6A RNA methylation in ageing and related diseases, many
major knowledge gaps remain to be filled. First, numerous studies
have confirmed the correlation between m6A and age-related
diseases. However, current research results are controversial. In

tumours, for example, the same m6A regulatory factor may play
different roles in different tumour types. For instance, METTL14
promotes the migration and invasion of breast cancer (Yi et al.,
2020), whereas METTL14 downregulates the cancer-causing
long-chain non-coding RNA X-inactive specific transcript
(lncRNA XIST) and inhibits tumour proliferation and
metastasis in colon cancer (Yang et al., 2020c). This may be
due to the difference in disease types, but research on m6A is still
in its infancy. The level of m6Amodification, the biological role of
regulatory factors in the occurrence and development of various
diseases, and their molecular mechanisms require further study.
There is still a way to go before m6A related drugs can be applied.
Second, the epigenetic clock based on the DNAmethylation site is
recognised as the most promising marker of ageing and has been
used to evaluate anti-ageing efficacy. m6A, a methylated form of
epigenetics and DNAmethylation, has been shown to function in
ageing and ageing-related diseases. Whether it cooperates with
DNA methylation to regulate gene expression during ageing or
whether it has a potential relationship with other types of RNA
modification or epigenetic methods remains to be further studied.

In addition, several reports have shown that m6Amodification
has great potential as a diagnostic marker and therapeutic target
in the treatment of anti-ageing and age-related diseases, but few
have identified inhibitors specifically targeting m6A regulatory
proteins. Previous studies have found that the natural product
rhein competitively binds the FTO active site in vitro (Chen et al.,
2012), inhibits inflammation (Hu et al., 2019) and improves
virus-induced lung injury (Shen et al., 2019). However, it is
unclear whether m6A methylation regulation mediates these
effects. Therefore, more drugs modified by m6A are required
to fill this gap. In addition, the exact function of each m6A
regulatory factor is not consistent in different cells, diseases, and
even different stages of disease development. Our understanding
of this is not comprehensive, which is also a challenge for
applying m6A in anti-ageing therapy.
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GLOSSARY

6-OHDA 6-hydroxydopamine

AD Alzheimer’s disease

ADC adenocarcinoma

AKT Protein kinase B

ALKBH3 AlkB homologue 3

ALKBH5 AlkB homologue 5

AML acute myeloid leukaemia

AMPK AMP-activated protein kinase

ANGPTL4 angiopoietin-like 4

APOE apolipoprotein E

ASB2 ankyrin repeat and SOCS box containing 2

ATG13 autophagy-related 13

BA9 Brodmann area 9

BCL2 B-cell CLL/lymphoma 2

CAMKK2 calcium/calmodulin-dependent protein kinase kinase 2

CCND1 cyclin D1

CDK2 cyclin-dependent kinase 2

CDK4 cyclin-dependent kinase 4

circNSUN2 circRNA NOP2/SUN domain family, member 2

circRNA cyclic RNA

CRP C-reactive protein

CVD cardiovascular disease

DDR DNA damage response

DGCR8 DiGeorge syndrome critical region 8

DNMT3A DNA methyltransferase 3α

EGFR epidermal growth factor

EZH2 enhancer of zeste homologue 2

FIP200 family interacting protein of 200kDa

FOXO3 Forkhead box O3

FTO fat mass and obesity-related proteins

HDF human diploid fibroblasts

HGPS Hutchinson-Gilford progeria

HLEC human lens epithelial cell

hMSC human bone marrow mesenchymal stem cell

HNRNPC heterogeneous nuclear ribonucleoprotein C

HNRNPG heterogeneous nuclear ribonucleoprotein G

HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2B1

ICAM-1 intercellular adhesion molecule 1

IFN: interferon

IGF2BP insulin-like growth factor 2 binding protein

IL Interleukin

LPS Lipopolysaccharides

lncRNA long non-coding RNA;

lncRNA XIST long-chain non-coding RNA X-inactive specific transcript

m6A N6-methyladenosine; MAPK: mitogen-activated protein kinase

MERIP-seq m6A methylation RNA immunoprecipitation sequencing

METTL3 RNA methyltransferase-like protein 3

METTL5 RNA methyltransferase-like protein 5

METTL14 RNA methyltransferase-like protein 14

METTL16 RNA methyltransferase-like protein 16

miRNA microRNA

MK2 MAPKAPK2

mTOR mammalian target of rapamycin

MZF1 myeloid zinc finger 1

NER nucleotide excision repair

NF-κB nuclear factor-κB

NHEJ non-homologous end junction

NMDA N-methyl-D-aspartate

NSCLC non-small cell lung cancer

P13K phosphoinositide 3-kinases

P2RX6 purinergic receptor P2X 6

p-AKT phosphorylated AKT

PBMC peripheral blood mononuclear cell

PD Parkinson’s disease

PGC1α peroxisome proliferator-activated receptor gamma coactivator-
1 alpha

PPARβ/δ peroxisome proliferator-activated receptor

PTEN phosphatase and tensin homologue

RARA retinoic acid receptor alpha

RBM15 RNA -binding motif protein 15

RNA-seq RNA sequencing

ROS reactive oxygen species

RPE retinal pigment epithelial

rRNA ribosomal RNA

RUNX1 RUNT-related transcription factor 1

SA-βGAL senescence-related β-galactosidase

SAM S-Adenosyl Methionine

SASP senescence-associated secretory phenotype

SFN ammonium trifluoride

snoRNA small nucleolar molecule RNA

snRNA small nuclear RNA

SOCS2 suppressor of cytokine signalling 2

SRSF10 serine- and arginine-rich splicing factor 10

SRSF3 serine- and arginine-rich splicing factor 3

T2D type 2 diabetes mellitus

TAZ PDZ binding motif-based transcriptional coactivator
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TLR toll-like receptors

TNF tumour necrosis factor

TNFR2 tumour necrosis factor receptor 2

tRNA transfer RNA

ULK1 Unc-51 like autophagy activating kinase 1

ULK1/2 UNC-51-like kinase

USP7 ubiquitin specific protease 7

UV ultraviolet

VCAM-1 vascular cell adhesion molecule 1

VIRMA Vir-like m6A RNA methyltransferase associated protein

WS Werner syndrome

WTAP Wilms’ tumour 1-associating protein

XIST X-inactive specific transcript

YAP yes associated protein

YTHDC1 YTH domain containing 1

YTHDC2 YTH domain containing 2

YTHDF1 YTH domain family protein 1

YTHDF2 YTH domain family protein 2

YTHDF3 YTH domain family protein 3

ZCCH4 zinc finger CCHC-type containing 4

ZC3H13 zinc finger CCCH domain-containing protein 13
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