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ImageNet (1,2) is a dataset composed of millions of im-
ages of the natural world. ImageNet, as an open source 

dataset, has been a central resource for deriving sophisti-
cated models in computer vision. Unlike ImageNet, pub-
licly available medical imaging databases for research pur-
poses are in scarcity because of the difficulty of curation, 
anonymization, or annotations of clinical data (3). Only a 
few well-curated annotated medical imaging datasets with 
high-quality ground truth pathologic labels are publicly 
available. The U.K. Biobank (4,5) contains multimodal 
images in more than 100 000 participants. However, most 
U.K. Biobank participants are healthy. The Cancer Imag-
ing Archive (6) contains a large database of national lung 
screening trials, which consists of low-dose helical CT im-
ages in 53 454 participants (7). The National Institutes of 
Health ChestX-ray8 contains 108 948 chest radiographs in 
32 717 patients, with eight disease labels (8). Most current 
publicly available medical imaging datasets are limited in 
sample size, diversity of disease labels, or modality variety 

for artificial intelligence (AI) practice or lack pathologic 
findings.

Limited sample size may create barriers to develop-
ing successful AI models. In cases of limited sample size, 
transfer learning (9) is a commonly used deep learning 
approach whereby a model designed for one problem can 
be reused to initiate a different but related task in deep 
learning. Due to the lack of annotated images and limited 
resources of computing power to train new models from 
scratch, transfer learning has become a popular method in 
deep learning, which can thus speed up the training pro-
cess with fewer input data and improve the performance 
and generalizability of a deep learning model (10). Transfer 
learning with models trained using ImageNet has been ex-
tensively explored in medical imaging AI applications. The 
architectures of ResNet (11), Inception networks (12,13), 
and DenseNet (14) pretrained with ImageNet have been 
widely adopted and used in medical imaging applications 
for COVID-19 diagnosis at chest CT (15), classification of 
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Purpose:  To demonstrate the value of pretraining with millions of radiologic images compared with ImageNet photographic images on 
downstream medical applications when using transfer learning.

Materials and Methods:  This retrospective study included patients who underwent a radiologic study between 2005 and 2020 at an out-
patient imaging facility. Key images and associated labels from the studies were retrospectively extracted from the original study inter-
pretation. These images were used for RadImageNet model training with random weight initiation. The RadImageNet models were 
compared with ImageNet models using the area under the receiver operating characteristic curve (AUC) for eight classification tasks 
and using Dice scores for two segmentation problems.

Results:  The RadImageNet database consists of 1.35 million annotated medical images in 131 872 patients who underwent CT, MRI, 
and US for musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, abdominal, and pulmonary pathologic conditions. 
For transfer learning tasks on small datasets—thyroid nodules (US), breast masses (US), anterior cruciate ligament injuries (MRI), 
and meniscal tears (MRI)—the RadImageNet models demonstrated a significant advantage (P , .001) to ImageNet models (9.4%, 
4.0%, 4.8%, and 4.5% AUC improvements, respectively). For larger datasets—pneumonia (chest radiography), COVID-19 (CT), 
SARS-CoV-2 (CT), and intracranial hemorrhage (CT)—the RadImageNet models also illustrated improved AUC (P , .001) by 
1.9%, 6.1%, 1.7%, and 0.9%, respectively. Additionally, lesion localizations of the RadImageNet models were improved by 64.6% and 
16.4% on thyroid and breast US datasets, respectively.

Conclusion:  RadImageNet pretrained models demonstrated better interpretability compared with ImageNet models, especially for 
smaller radiologic datasets.
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Collection of RadImageNet Key Images
Each study was interpreted by a reading radiologist during 
daily clinical practice. A total of 20 board-certified, fellowship-
trained radiologists participated in the original clinical in-
terpretation. The radiologists had between 1 and 40 years of 
postfellowship experience at the time of clinical interpretation. 
As part of the interpretation of each study, the reading radiolo-
gist chose individual images representative of the pathologic 
finding or findings shown in each examination. The pathologic 
finding label was assigned to each of these “key images,” and 
a region of interest was created to localize the imaging find-
ings. These original clinical interpretations were retrospectively 
extracted from the key images and provided the basis for the 
RadImageNet classes. The key images could be axial, sagittal, 
and/or coronal views and could include any sequence. The only 
requirement was that the image clearly represented substantial 
pathologic findings in the study.

Normal Studies
To better investigate the characteristics of abnormal key images 
for model development, 8528 normal studies with 263 039 
images were included. Normal studies were identified on the 
basis of a SQL query of the picture archiving and communica-
tion system database, whereby studies with a report containing 
“normal” or “unremarkable” in the impression were flagged. 
The findings and impressions of these studies were reviewed 
by a board-certified radiologist to confirm that the reports did 
indicate a completely normal study. Studies with abnormal but 
not clinically significant findings were excluded. All diagnostic 
sequences and images of these studies were included.

Study Design
This study was designed in four phases (Fig 1). First, key im-
ages and associated diagnoses were annotated by radiologists. 
Second, the images and diagnoses were further grouped by mo-
dalities, anatomic regions, and labels according to their imag-
ing patterns to construct the medical imaging–only database 
RadImageNet. Third, four neural networks as pretrained mod-
els were trained from scratch based on RadImageNet. Finally, 
the pretrained models from RadImageNet and ImageNet were 
used and compared on eight medical imaging applications 
using area under the receiver operating characteristic curve 
(AUC) values and Dice scores if ground truth segmentation 
masks were available.

RadImageNet Model Training
The same architectures of Inception-ResNet-v2 (13), ResNet50 
(11), DenseNet121 (14), and InceptionV3 (12) networks were 
employed to train RadImageNet models from scratch by using 
randomly initiated weights as the starting point. The RadIma-
geNet dataset was split into 75% training set, 10% validation 
set, and 15% test set. Images in the same patient were always 
included in the same set.

Rather than importing the weights from existing models, we 
randomly initiated the weights to develop the individual mod-
els. All images were resized to 224 3 224 pixels and used as the 

fibrotic lung disease (16), classification of skin cancer (17), and 
detection of acute intracranial hemorrhage (18).

Despite the high performance of many medical imaging 
models pretrained with ImageNet, previous works (19–21) have 
shown that pretrained models developed from medical source 
databases could achieve better performance than pretrained 
models from ImageNet. Successful transfer learning requires a 
reasonably large sample size, diversity of images, and similarity 
between the training and the target application images (22). In 
this study, we aim to create and evaluate a large-scale, diverse 
medical imaging dataset, RadImageNet, to generate pretrained 
convolutional neural networks (CNNs) trained solely from 
medical imaging to be used as the basis of transfer learning for 
medical imaging applications.

Materials and Methods

Study Patients
The institutional review boards waived the requirement for 
written informed consent for this retrospective, Health In-
surance Portability and Accountability Act–compliant study, 
which evaluated de-identified data and involved no potential 
risk to patients. To avert any potential breach of confidential-
ity, no link between the patients, data provider, and data re-
ceiver was made available. A third party issued a certification 
of de-identified data transfer from the data provider to the 
data receiver. The RadImageNet dataset was collected between 
January 2005 and January 2020 from 131 872 patients at an 
outpatient radiology facility.

Abbreviations
ACL = anterior cruciate ligament, AI = artificial intelligence, AUC 
= area under the receiver operating characteristic curve, CNN = 
convolutional neural network, Grad-CAM = gradient-weighted 
class activation mapping

Summary
RadImageNet pretrained models could be an effective starting point 
for transfer learning in radiologic imaging artificial intelligence ap-
plications.

Key Points
	n The RadImageNet database is a large-scale dataset consisting 

of 1.35 million radiologic images covering CT, MRI, and US 
modalities and 11 anatomic regions, which were annotated by 
fellowship-trained and board-certified radiologists.

	n RadImageNet pretrained models demonstrated superior perfor-
mance in the classification of eight independent medical applica-
tions as compared with ImageNet pretrained models, showing 
improvements from 0.9% to 9.4% for area under the receiver 
operating characteristic curve.

	n RadImageNet pretrained models were also able to interpret results 
more consistently compared with ImageNet pretrained models in 
thyroid and breast applications, demonstrating Dice score gains of 
64.6% and 16.4% in segmenting the lesions, respectively.

Keywords
CT, MR Imaging, US, Head/Neck, Thorax, Brain/Brain Stem, 
Evidence-based Medicine, Computer Applications–General (Infor-
matics)
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COVID-19–positive and 4860 COVID-19–negative images 
(15); and hemorrhage detection at head CT with 107 933 
hemorrhage images and 465 671 nonhemorrhage images (28). 
Detailed class distributions of the downstream datasets are re-
ported in Tables E3 and E4 (supplement). The RadImageNet 
and ImageNet models were evaluated using receiver operat-
ing curve analysis. A total of 24 scenarios were simulated to 
fine-tune the models for each application. The four CNNs 
were trained with varied learning rates and different numbers 
of freezing layers. Unfreezing of all layers was conducted with 
learning rates of 0.001 and 0.0001, while the freezing of all 
layers and unfreezing of the top 10 layers were conducted with 
learning rates of 0.01 and 0.001. The average AUC and SD of 
these 24 settings were compared between RadImageNet and 
ImageNet pretrained models.

Each downstream application dataset was split into 75% 
training set, 10% validation set, and 15% test set. Images in one 
patient were always in the same set. Binary cross-entropy was 
selected as the loss function. The input images were downscaled 
to 256 3 256 pixels for the trade-off between accuracy and ef-
ficiency. A global average pooling layer, a dropout layer, and an 
output layer activated by the softmax function were introduced 
after the last layer of the pretrained models. Models were trained 
for 30 epochs. The models with the lowest validation loss in such 
epochs were saved for further evaluation and comparison on the 

inputs of the neural networks. A global average pooling layer, a 
dropout layer at a rate of 0.5, and the output layer activated by 
the softmax function were added after the CNNs. The models 
returned a list of probabilities that the image corresponded to one 
of the 165 labels. The RadImageNet pretrained models and codes 
can be accessed at https://github.com/BMEII-AI/RadImageNet.

Comparison of RadImageNet and ImageNet Pretrained 
Models
We applied RadImageNet and ImageNet pretrained models for 
transfer learning on eight external downstream applications. 
The eight tasks included the following: classification between 
malignant and benign thyroid nodules at US with 288 malig-
nant images and 61 benign images (23); classification between 
malignant and benign breast lesions at US with 210 malignant 
images and 570 benign images (24); anterior cruciate ligament 
(ACL) and meniscus tear detection at MRI with 570 ACL tear 
images, 452 non-ACL tear images, 506 meniscal tear images, 
and 3695 nonmeniscal tear images (25); pneumonia detection 
on chest radiographs including 6012 pneumonia chest radio-
graphs and 20 672 nonpneumonia images (26); differentiation 
of patients with COVID-19 from community-acquired pneu-
monia with 21 872 COVID-19 images and 36 894 commu-
nity-acquired pneumonia images (27); classification between 
patients with and without COVID-19 at chest CT with 4190 

Figure 1:  Curation of medical imaging database RadImageNet, development of pretrained convolutional neural networks over RadImageNet, and comparison of 
RadImageNet pretrained models and ImageNet pretrained models on multiple medical imaging applications.
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models. Each image in the thyroid and breast datasets is indepen-
dent. The normality of the distribution of Dice scores generated 
by RadImageNet and ImageNet models was confirmed by the 
Shapiro test (31,32). The DeLong method (33) was used to evalu-
ate the 95% CI of the AUC and to calculate the two-sided P value 
for the comparison of RadImageNet and ImageNet models. Sta-
tistical significance was defined as a P value less than .05. The sta-
tistics of AUC comparisons were computed in the pROC package 
(1.18.0) in R (version 4.1.3; R Foundation for Statistical Comput-
ing) (34). The Shapiro test and paired t test were performed in the 
statsmodels package (0.13.2) in Python 3.8.5.

Results

The RadImageNet Database
The RadImageNet dataset includes 1.35 million annotated 
CT, MRI, and US images of musculoskeletal, neurologic, on-
cologic, gastrointestinal, endocrine, and pulmonary pathologic 
findings. For direct comparison with ImageNet (the initial size 
for the ImageNet challenge was 1.3 million images), we col-
lected the most frequent modalities and anatomic regions on 
the same scale. The RadImageNet database used for compari-
son to ImageNet consists of three radiologic modalities, eleven 
anatomic regions, and 165 pathologic labels (Fig 2 and Table 
E1 [supplement]). The performance of the models on the test 
set is reported in Figure E1 and Table E2 (supplement).

test set. Experiments on thyroid, breast, ACL, and meniscus ap-
plications were conducted using fivefold cross-validation because 
of the small size of the dataset. The distribution and data split for 
each application are shown in Tables E3 and E4 (supplement).

Gradient-weighted Class Activation Mapping
To understand the model interpretability, we used gradient-
weighted class activation mapping (Grad-CAM) to visualize 
where the models make predictions in an image. Grad-CAM 
highlights the important regions in an image by using the gradi-
ents of the target layer that flows into the final convolutional layer 
to generate a localization map (29). For both RadImageNet and 
ImageNet models, the output layer was the target layer, whereas 
conv_7b_ac, conv5_block3_out, relu, and mixed10 were each 
selected as the final convolutional layer to generate the Grad-
CAM for the Inception-ResNet-v2, ResNet50, DenseNet121, 
and InceptionV3 networks, respectively. Due to the varied rec-
ognition rates of CNN models for thyroid and breast classifica-
tions, a threshold of 180 was used to calculate Dice scores. This 
means that pixel values of a Grad-CAM that were greater than 
180 for thyroid and breast US images were considered as pre-
dicted positives for further calculation.

Statistical Analysis
The paired t test (30) was used to calculate the two-sided P value 
comparing Dice scores between the RadImageNet and ImageNet 

Figure 2:  Representative images and data structure of the RadImageNet database. (A) Overview of RadImageNet modalities and anatomic regions. RadImageNet 
was constructed with CT, MRI, and US images, including CT of the chest, abdomen, and pelvis, MRI of the ankle, foot, knee, hip, shoulder, brain, spine, abdomen, and 
pelvis, and US of the abdomen, pelvis, and thyroid. These images represent the diversity and fundamental structure of the RadImageNet database. (B–D) The components 
of the RadImageNet database subdivided by modalities, anatomic regions, classes, and number of associated images within each anatomic region for (B) CT studies, (C) 
US studies, and (D) MRI studies.

http://radiology-ai.rsna.org
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Figure 3:  Performance of the RadImageNet pretrained models and ImageNet pretrained models on small datasets. The first 
column demonstrates swamp plots of 24 simulated experiments for RadImageNet and ImageNet models. The error bars represent 
the means and SDs on behalf of all area under the receiver operating characteristic curve (AUC) values. The second and third col-
umns are receiver operating characteristic curves for the average of 24 simulations of RadImageNet models and ImageNet models, 
respectively. The shades indicate SDs obtained by averaging false-positive rates and true-positive rates from each experiment. The 
gains were calculated on the basis of the changes between RadImageNet and ImageNet models from ImageNet models. Two-
sided P values were calculated by comparing the paired models between RadImageNet and ImageNet. AUC comparisons were 
evaluated by the DeLong test. (A) Thyroid US showed a 9.4% gain. (B) Breast US showed a 4.0% gain. (C) Anterior cruciate liga-
ment (ACL) MRI showed a 4.8% gain. (D) Meniscus MRI showed a 4.5% gain.

http://radiology-ai.rsna.org
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Performance on Small Datasets
The thyroid dataset contains 349 US images with radiologist-
generated annotations collected from an open access thyroid 
image dataset (23). The breast dataset includes 780 breast US 
images (24) acquired for the detection of breast cancer. The 
knee MRI dataset consists of 1021 ACL tear and 4201 menis-
cal tear images (25). RadImageNet models demonstrated aver-
age AUCs of 0.85 6 0.09 (SD) (P , .001), 0.94 6 0.05 (P , 
.001), 0.97 6 0.03 (P , .001), and 0.96 6 0.02 (P , .001), 
compared with ImageNet models that showed values of 0.76 
6 0.14, 0.90 6 0.10, 0.91 6 0.08, and 0.92 6 0.06 on the 
thyroid, breast, ACL tear, and meniscal tear datasets, respec-
tively (Fig 3). The difference in AUCs between RadImageNet 
and ImageNet and the associated 95% CIs for the thyroid, 
breast, ACL tear, and meniscal tear datasets were 9.4% (2.6%, 
16.2%), 4.0% (−0.6%, 8.7%), 4.8% (1.7%, 8.8%), and 4.5% 
(1.8%, 7.1%), respectively.

Performance on Larger Datasets
The COVID-19 dataset consists of 9050 chest CT images in 
patients with and without COVID-19 pneumonia (15). The 
pneumonia dataset consists of 26 685 chest radiographs (26). 
The SARS-CoV-2 dataset consists of 58 766 chest CT images 
with and without SARS-CoV-2 pneumonia (27). The hemor-
rhage dataset consists of 573 614 head CT images with and 
without intracranial hemorrhage (28). On these four applica-
tions, the RadImageNet models demonstrated average AUCs 
of 0.82 6 0.03 (P , .001), 0.85 6 0.02 (P , .001), 0.97 6 
0.03 (P , .001), and 0.91 6 0.04 (P , .001), outperform-
ing ImageNet models, which showed mean AUCs of 0.76 6 
0.09, 0.83 6 0.05, 0.95 6 0.07, and 0.91 6 0.05, respectively 
(Fig 4). The differences in AUCs between RadImageNet and 
ImageNet and the 95% CIs were indicated as 6.1% (2.2%, 
10.0%), 1.9% (−0.2%, 4.0%), 1.7% (−1.4%, 4.7%), and 
0.9% (−1.7%, 3.4%) for detection of COVID-19, pneumo-
nia, SARS-CoV-2, and hemorrhage, respectively.

Grad-CAM and Dice Scores
The thyroid and breast lesion US datasets contained graphical 
masks identifying the lesions. Dice score was used to evaluate 
the performance of the predicted CAM to the ground truth. 
Figure 5 shows CAM examples of RadImageNet models and 
ImageNet models. RadImageNet models achieved a Dice score 
of 0.29 for thyroid nodule detection, demonstrating a signifi-
cant improvement of 64.6% from ImageNet models, which 
had a Dice score of 0.18 (P , .001). RadImageNet models il-
lustrated a 0.16 Dice score for breast lesion detection, showing 
a significant gain of 16.4% from ImageNet models with a Dice 
score of 0.14 (P , .001).

Discussion
In our study, the RadImageNet database contained only gray-
scale medical images, while natural world images use three red-
green-blue channels. Pretraining on grayscale images can allow 
the training of more generalizable low-level filters in the initial 
layers of the network. The RadImageNet models demonstrated 

higher performance in imaging recognition and consistency 
over 24 simulated tuning scenarios regardless of the sample 
size of the applications. Within the 24 scenarios, unfreezing 
all layers consistently achieved the best performance as com-
pared with unfreezing partial layers and training only fully 
connected layers. A smaller learning rate at 0.0001 would be 
suggested when training all trainable parameters to potentially 
better capture global optimal performance. If computational 
power and turnaround time allowed, Inception-ResNet-v2, 
ResNet50, and DenseNet121 achieved higher performance 
than Inception V3. However, the superiority of RadImageNet 
models is more evident on small datasets. For the four small 
datasets—thyroid US, breast US, and ACL and meniscus 
MRI—the RadImageNet models demonstrated a significant 
advantage over ImageNet models as demonstrated by a 9.4% 
(P , .001), 4.0% (P , .001), 4.8% (P , .001), and 4.5% 
(P , .001) AUC improvement, respectively. In addition, Rad-
ImageNet models are more stable. RadImageNet contained 
both the modality (US and MRI) and similar classes (normal 
thyroid and thyroid nodules, ACL injury and meniscus injury) 
to the target data, indicating that source data similarity can 
contribute to extraordinary performance with a small dataset. 
For the four relatively larger datasets—pneumonia detection 
at chest radiography (26 684 images), COVID-19 CT (9050 
images), SARS-CoV-2 CT (58 766 images), and intracranial 
hemorrhage detection CT (573 614 images)—the RadIma-
geNet models also illustrated improvements of AUC by 1.9% 
(P , .001), 6.1% (P , .001), 1.7% (P , .001), and 0.9% (P 
, .001), respectively. RadImageNet contained both the mo-
dality (CT and MRI) and similar classes (infections on chest 
CT images and brain injuries on brain MRI studies) but with 
no radiography data involved. This indicated that even though 
the similarity to the target data was not high, the diversity of 
sourcing data and the larger sample size of the target data could 
compensate for model performance.

Moreover, RadImageNet models showed better generalizabil-
ity. For the three applications (breast US, pneumonia chest ra-
diography, and hemorrhage CT) in which the classes, anatomic 
regions, or modalities were not all included in the RadImageNet 
database, RadImageNet models demonstrated comparable per-
formance by showing improvements of 4.0%, 1.9%, and 0.9%, 
respectively. These improvements confirmed that RadImageNet 
models are applicable to medical datasets regardless of modali-
ties, anatomic regions, and classes.

In addition to the superiority of RadImageNet models in 
classification tasks, the interpretation of the RadImageNet mod-
els results more closely matched ground truth as compared with 
the ImageNet models. The quantification of the class activation 
maps for thyroid and breast images showed that RadImageNet 
models are more explainable and more consistent than ImageNet 
models, demonstrating improvements in Dice scores relative to 
ImageNet models of 64.6% and 16.4%, respectively. These re-
sults further confirmed that the similarity of the features learned 
from the RadImageNet database contributed to a higher recog-
nition rate with better interpretability of the models (Fig 5).

Our proposed RadImageNet models did have limitations. 
First, the evaluation of pathologic features on a single image by 

http://radiology-ai.rsna.org
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radiologists at a single radiology facility and RadImageNet mod-
els did not mimic clinical diagnostic workflow, likely resulting in 
the similar, but poor, diagnostic performance by both. Second, 
the images presented may have contained multiple pathologic 
features, but we only used one label. Moreover, the region of 

interest placed on the primary pathologic finding by the read-
ing radiologist was not used in this study. Therefore, it is pos-
sible the radiologists or RadImageNet models correctly matched 
a pathologic finding shown on the image but not the one that 
corresponded to the primary label. Third, the RadImageNet 

Figure 4:  Performance of the RadImageNet pretrained models and ImageNet pretrained models on bigger datasets. The im-
provements from ImageNet are narrowed as compared with small datasets, but RadImageNet models are more consistent, showing 
smaller SDs among all simulations. (A) COVID-19 showed a 6.1% gain. (B) Pneumonia chest radiographs (CXR) showed a 1.9% 
gain. (C) SARS-CoV-2 CT showed a 1.7% gain. (D) Hemorrhage CT showed a 0.9% gain. AUC = area under the receiver operat-
ing characteristic curve.

http://radiology-ai.rsna.org
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models used reduced-resolution images in algorithm develop-
ment because of processing limitations. These lower-resolution 
images may obscure small areas of pathologic findings. Fourth, 
the current 165 categories were grouped on the basis of the In-
ternational Classification of Diseases, Tenth Revision, and imaging 
characteristics, thus the RadImageNet models could not be di-
agnostic models to assist human experts. Finally, the number of 
classes in the limited RadImageNet dataset used for comparison 
to ImageNet was less than the number in ImageNet.

In conclusion, RadImageNet pretrained models could serve 
as a better starting point for transfer learning approaches in med-
ical imaging analysis. In future studies, higher-spatial-resolution 
images could result in higher performance for recognition of 
smaller foci of pathologic features. Other imaging modalities 
such as radiography and PET should be included. The number 
of classes of pathologic findings in RadImageNet can be fur-
ther expanded. Moreover, performance could be improved by 
introducing the regions of interest, as defined by radiologists, 
to highlight pathologic appearance in the images, as well as by 
providing additional sequences and/or adjacent images for the 
development of diagnostic models. Finally, more fine-tuning the 
pretrained models and comparing them with the standard pre-
trained models will be further analyzed.
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Figure 5:  Visualizations of gradient-weighted class activation maps (Grad-CAMs) from accurately predicted images and Dice scores from the quantitative Grad-
CAMs. The first column demonstrates the original image and the ground truth. The second and third columns show the Grad-CAMs from a RadImageNet model and an 
ImageNet model, respectively. The fourth column represents the average Dice score of 24 simulated RadImageNet and ImageNet models, with the error bar showing 
SDs. (A) A benign thyroid nodule. Both RadImageNet and ImageNet models accurately predicted the characteristics of this benign nodule, with the confidence of 99.9% 
and 96.3%, respectively. RadImageNet models achieved a Dice score of 28.8%, while ImageNet models had a Dice score of 17.5% (P , .001). (B) A malignant breast 
lesion. Both RadImageNet and ImageNet models accurately captured this malignant lesion, with confidence of 99.9% and 99.9%, respectively. RadImageNet models il-
lustrated a 16.3% Dice score, outperforming ImageNet models, which showed a Dice score of 14.0% (P , .001). Two-sided P values for comparing the Dice scores were 
calculated by paired t test.
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