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Pediatric traumatic brain injury (TBI) and autism spectrum disorder (ASD) are two serious conditions that affect youth. Recent data,
both preclinical and clinical, show that pediatric TBI and ASD share not only similar symptoms but also some of the same biologic
mechanisms that cause these symptoms. Prominent symptoms for both disorders include gastrointestinal problems, learning
difficulties, seizures, and sensory processing disruption. In this review, we highlight some of these shared mechanisms in order to
discuss potential treatment options that might be applied for each condition. We discuss potential therapeutic and pharmacologic
options as well as potential novel drug targets. Furthermore, we highlight advances in understanding of brain circuitry that is
being propelled by improved imaging modalities. Going forward, advanced imaging will help in diagnosis and treatment planning
strategies for pediatric patients. Lessons from each field can be applied to design better and more rigorous trials that can be used

to improve guidelines for pediatric patients suffering from TBI or ASD.

1. Introduction

Awareness about autism spectrum disorder (ASD) has con-
tinued to increase over the past few years. One in 110 eight
year olds were on the spectrum in the United States in
2006, which increased to one in 68 children on the spec-
trum in 2010 based on data collected from the Autism and
Developmental Disabilities Monitoring (ADDM) Network
[1]. The percentage of males affected is much higher than
females with some variability between studies [2]. Although
the number of patients diagnosed with autism has increased,
itis unclear if this is actually due to an increased prevalence or
reflective of changes in diagnostic criteria, as the physiologic
changes underlying this disease are not well characterized [1].
Recent evidence suggests that cerebellar injury can contribute
to autism development [3]. Other causes of ASD such as
obstetric complications and neonatal jaundice have also been
reported in the literature but are not the focus of this
paper. Interestingly, the number of reported cases for several
different types of pediatric traumatic brain injury (TBI) has

been increasing during this time period as well [4]. Is it
possible that moderate-to-severe TBI leads to damage that is
rewiring circuits? What is currently known about the shared
mechanisms between moderate-to-severe TBI and autism?
Can lessons from management of each be used to develop
better treatment options? In this review, we discuss what
is currently known about the shared mechanisms between
moderate-to-severe pediatric TBI and ASD and highlight the
importance of advanced imaging to answer these important
questions.

2. Disorders

The Office of Special Education started collecting data for
TBI as a disability category in the same year that it began
collecting data for ASD. The prevalence of both ASD and
TBI among successive births of US school-aged children
showed a marked increase in the period between 1992 and
2001 [5]. Cohort curves suggest that these two disorders
exhibit similar increases in prevalence over that period.
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TBI from nonaccidental head injury may lead to substantial
neurological and developmental deficits. A small study of
children who suffered nonaccidental head injury (due to
intentional abrupt impact or violent shaking) showed speech
and language difficulties consistent with a diagnosis of ASD
[6].

The sequelae of TBI in children include deficits in intelli-
gence, memory, attention, learning, and social judgment [7].
Family and twin studies investigating ASD show that risk
is determined by genetic factors. However, environmental
insults including TBI may also contribute to risk of devel-
oping ASD [8]. Changes to areas in the brain associated
with communication that are observed in TBI patients have
also been noted in children diagnosed with ASD [9]. Ozgen
and colleagues examined external morphological features
in a large population sample of children with ASD versus
normal controls. The results showed a high prevalence
of morphological abnormalities in the patients with ASD
without mental retardation but did not address the cause of
these abnormalities [8]. Minor anomalies and major abnor-
malities are common variants significantly more prevalent in
children diagnosed with ASD or TBI compared to normal
controls [10]. Males showed a trend for more abnormalities
than females. Males have increased risk of TBI, which can
potentially predispose to these morphological anomalies [11].

2.1. Natural Progression of Pediatric TBI. Children with TBI
must be identified and treated in a timely manner in order
to limit secondary brain injury and improve outcomes.
Initial assessment of any traumatic injury patient begins
with completion of the primary survey and stabilization of
potentially fatal conditions related to airway, breathing, and
circulation [12]. This is followed by a secondary survey that
includes a neurological assessment [12].

The Glasgow Coma Scale (GCS) is a grading system used
to assess consciousness and thus grade the severity of TBI
by stratifying the sum of three tests: verbal, eye, and motor
responses [51]. The GCS describes the severity of TBI as
follows: mild (GCS 13-15), moderate (GCS score of 9-12), and
severe (GCS score of 8 or less) [51]. Since its inception, the
original GCS has been modified for use in children [52].

Neurologically intact patients with a GCS of 14 or greater
may be discharged home under the supervision of a respon-
sible adult with instructions on discharge to seek immediate
medical care in the event of worsening headaches or signs of
neurological injury. Pediatric patients with a GCS of less than
13 should undergo a computed tomography scan to evaluate
traumatic intracranial injury and be admitted [53].

Patients with an intracranial hemorrhage without sig-
nificant mass effect should be admitted to the pediatric
intensive care unit for close monitoring. An intracranial
pressure monitor should be placed in patients with severe TBI
and a poor GCS score to evaluate intracranial hypertension
[54]. Intracranial hypertension reflects a sustained increase
in intracranial pressure and warrants intervention. Initial
management should focus on conservative measures such as
optimizing head position to ensure adequate venous outflow,
ensuring adequate pain control and sedation [12]. Further
escalation of care would involve administering hyperosmolar
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therapy, mild hyperventilation, and CSF diversion with a
ventriculostomy drain [12].

Patients with intracranial hypertension refractory to the
aforementioned therapies may benefit from a craniotomy
to evacuate a hematoma or a decompressive craniectomy
[55]. Surgical treatment should also be considered in patients
with subdural, epidural, or intraparenchymal hematomas or
posterior fossa mass lesions with associated mass effect [56,
57].

2.2. Important Considerations for Autism. Children with
autism display unusual responses to environmental stim-
uli (e.g., loud sounds), problems making friends, difficulty
understanding nonverbal social cues, blunted response to
pain, and a focus on geometric patterns. The diagnosis of
autism is often delayed despite the fact that parents often
note concerning behavior by 18 months of age and less
than 10% of children are diagnosed at initial presentation
[58, 59]. A qualitative impairment in social interaction and
communication as well as the presence of repetitive and
stereotypic actions must be present for a diagnosis of autism
[59]. Patients with autism often exhibit profound anxiety and
this is exacerbated in the setting of traumatic injury [13].
Strategies to reduce anxiety include social stories and the
use of games for distraction, as well as using favorite drinks
to disguise medications. It is helpful to have a discussion
with parents to help identify what may exacerbate or mollify
anxiety in patients with autism [17].

2.3. Shared Symptoms. TBI and ASD share similar deficits
in neurodevelopmental abilities and social dysfunction
(Table 1). Because of this link in symptoms between TBI
and ASD, novel treatment approaches used to regain social
judgment and communication skills in ASD patients may
be applicable to TBI patients. In 2007, Radice-Neumann and
colleagues reviewed the long-term effects of TBI focusing on
emotional and interpersonal relationship deficits. Following
TBI, many areas of functioning are impaired: emotional
decision-making, self-regulatory behavior, emotional per-
ception difficulties, and facial affect recognition [13]. Neu-
roanatomical changes that occur with TBI can result in
deficits of facial recognition [13]. These are the same deficits
that define ASD. This suggests that interventions, which are
currently standard of practice for ASD, can be incorporated
into the treatment paradigm for TBI patients to increase their
social function and improve quality of life. We discuss a few
of these interventions in a later section.

An impairment of language is a cardinal feature in the
diagnosis of ASD. Not surprisingly, neural activation during
language tasks is altered following moderate-to-severe TBI
in young children as well. Interestingly, genetic studies show
susceptibility of certain individuals to brain injury and the
subsequent impairment of language [60]. A small feasibility
study of 8 children with TBI and 12 matched controls used
fMRI imaging to define the network of brain region deficits
following TBI [15]. They examined differences in neural
activation during a language task in children with TBI relative
to a matched group of children with orthopedic injuries.
Performance status on standardized language tasks as well as
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TABLE I: Shared behavioral symptoms between ASD and pediatric
TBI.

Symptom ASD  Pediatric TBI  Refs
ADHD X [13]
Anxiety/stress X X [13]
Balance/coordination X X [14]
Communication deficits dx X [15]
Depression X" [13]
Emotional-empathy lacking X [13]
Emotional dysregulation X [13]
Emotional recognition X X" [13]
Executive function impaired X X [16]
Family relationships X [13]
Headaches X [12]
Language deficits/delays dx X [17]
Mental retardation X [11]
Repetitive behaviors dx (3]
Restricted Interests dx [18]
Seizures X X [19]
Self-regulation behavior

impaired (131
Sensory dysfunction dx [20]
Social-loneliness and isolation X [21]
Social interaction/skills dx X [13]

X: highly prevalent; dx: part of diagnostic criteria; *: greatest area of deficit
in TBL

activation patterns in language circuitry centers allowed the
researchers to make conclusions about the concise areas of
brain damage. Activation was noted to differ in the patients
with TBI for the right superior temporal gyrus (BA22) and
the right middle temporal gyrus (BA21). The data analyzed
supports that a child’s brain function differs significantly
following TBI and that language task dysfunction may be
reflective of differences in neuropsychological task perfor-
mance [15]. This suggests that cortical reorganization in
children after TBI may be similar to the clinical presentation
seen with ASD. The deficits in each may have similar neural
underpinnings.

Executive function relating to social skills, language,
and attention is decreased in children diagnosed with ASD.
Studies examining deficits in executive function as it relates
to location and severity of cerebral damage in children
after TBI have produced mixed results [16]. Power and
colleagues investigated the effects of location and severity of a
lesion on executive function in early childhood TBI patients
evaluating neuroimaging and clinical report measures for
36 patients. They were able to identify functional deficits
regarding inhibitory control, including self-monitoring and
self-regulation. These functional deficits were observed in all
subjects with TBI, regardless of location or the site of damage
[16]. Self-regulation deficits were also observed within groups
for those diagnosed with ASD. Additional research is nec-
essary to further evaluate the developmental progression of
children who have suffered TBI in early childhood years.

3. Shared Biochemical Mechanisms

There are several mechanisms of nervous system dysregu-
lation present in both autism and pediatric TBI which may
contribute to similar symptoms present in both diseases.
These common manifestations encompass gastrointestinal
disorders, learning difficulties, seizures, and difficulties in
sensory processing [14]. Further work is needed to delineate
symptom manifestations between children diagnosed with
ASD and those experiencing TBI. A likely reason for the
difficulty in diagnosis is that both ASD and TBI share
similar comorbidities [61]. Because of these comorbidities, it
becomes increasingly important to investigate shared mech-
anisms that lead to symptom manifestations.

3.1 Gastrointestinal Disorders. A prominent area of ongoing
research is disruption of the enteric nervous system. ASD is
frequently associated with decreased viability of traditional
gut microflora [62]. The connections defining the gut-brain
axis fail to form correctly in some autistic individuals [63].
Without sufficient diversity of microflora in the intestines, the
brain does not receive appropriate feedback and development
is hindered [64]. In pediatric TBI, global metabolism is
slowed leading to decreased survivability of microflora [65].
The underlying cause of microflora demise is partly mediated
by the release of high mobility group box 1 protein from
necrotic tissue in the intestines [66]. The release triggers a
cytokine storm, which causes an inflammatory cascade [67].
The inflammatory cascade leads to increased permeability
in the intestine, which further exacerbates the microbiome
disruption [68]. To offset this sudden loss of microflora diver-
sity, probiotic therapy has been administered with success in
some individuals [69]. Future work is needed to elucidate
if the microbiome is similar or different between chil-
dren diagnosed with ASD compared to those experiencing
TBI.

3.2. Learning Difficulties. It is well known that a subset of
children diagnosed with ASD have severe learning difficulties
[70]. The underlying cause has been postulated as a deficit
in cortical plasticity mechanisms [18]. Additionally, poor
communication skills limit the child from receiving adequate
social feedback necessary for learning [71]. The learning
deficits in children with ASD are therefore multifactorial
and depend on both deficits in attention processing as
well as the inability to attend to salient stimuli [72]. At a
molecular level, neuroligin deficits contribute to decreased
long-term potentiation in children with ASD ([73]. TBI
similarly disrupts the learning cascade by increasing attention
deficits [74]. Not surprisingly, working-memory processing
speed in children is also slowed following TBI [75]. The
molecular process for pediatric TBI is based heavily upon
the activation of secondary injury cascades following acute
blood brain barrier disruption [76]. These cascades damage
neuronal tissue forcing the brain to rewire in order to
compensate [77]. How this rewiring contributes to per-
manent learning disability has yet to be elucidated but
warrants further investigation especially in the context of
ASD.



3.3. Seizures. Abnormal gray and white matter volume distri-
bution is common in autism [19]. It is likely that this disrupted
development contributes to epileptic activity. In a mouse
autism model, astroglial glutamate transporter deficiency led
to increased seizure activity [78]. Similarly, a downregulation
of Pten phosphatase triggered hyperexcitability within the
temporal cortex [79]. Seizure is also common following
TBI in children. Approximately 12% of children experience
seizure following moderate TBI [80]. The use of animal
models has shown that dysfunction in lipid peroxidation
contributes to the generation of epileptic foci [81]. Ultimately,
structural damage leads to abnormal neurological findings
[82]. In both autism and posttraumatic epilepsy, overac-
tivation of the phosphatidylinositol-3-kinase/AKT pathway
contributes to cellular mutations in epileptic regions [83].
Early life seizures can cause learning disabilities throughout
life [84]. Understanding the mechanics of morphologic devel-
opment may aid in improving treatment options for seizure
in children with autism or who experience TBI [85].

3.4. Sensory Processing Disruption. For children with ASD,
over 90% experience some type of sensory processing dis-
ruption [20]. The most common are visual and auditory
[86]. The majority of these sensory disruptions are due
to prolonged event-related potentials [87]. These prolonged
potentials lead to delayed stimulus response latency [88].
Mouse studies have shown that these prolonged potentials
may be due to loss of MeCP2 function [89]. Similarly,
loss of Gabrb3 gene signaling is associated with deficits in
sensory processing [90]. Post-TBI changes in plasticity can
also lead to sensory processing deficits [91]. The sensory
processing deficits observed following TBI are statistically
different compared to the normal range seen in noninjured
children [92]. Ongoing preclinical and clinical studies must
be performed to determine the underlying causes of these
deficits following TBI. It is likely that the deficits are closely
related to location of injury, but it has yet to be determined
whether they are due to prolonged event-related potentials as
seen with ASD or due to another independent mechanism.

4. Advanced Imaging Correlations

4.1. Imaging for Autism. Functional magnetic resonance
imaging (fMRI) has been used to determine functional con-
nectivity for patients with ASD. Glerean and colleagues found
both hypo- and hyperconnectivity in the ventrotemporal-
limbic subnetwork. This system rewiring accounts for distinct
connectivity differences compared to normotypical controls
[93].

Additionally, diffusion-weighted MRI in ASD patients
revealed increased anisotropy in the caudate and decreased
signaling in the superior temporal pole, further support-
ing the idea of disconnectivity in patients with ASD [94].
Similarly, anisotropy is decreased in the internal capsule,
corpus callosum, and cerebellum, indicating white matter
damage [95]. Not surprisingly, children with ASD also have a
decreased myelin water fraction [96]. This decreased axonal
water fraction may indicate axonal injury and has been linked
to decreased extra-axonal diffusivity [97].

Behavioural Neurology

Recently, it has been shown that disruption between the
subcortical region and sensory cortical centers can lead to
behavior disruptions such as poor social communication,
behavioral inflexibility, and atypical sensory processing [98].
Going forward, it is essential that further research be con-
ducted to link structural differences to functional changes in
behavior.

4.2. Imaging for Pediatric TBI. Diffusion tensor imaging
(DTI) has shown that children with acute injury have
decreased fractional anisotropy indicating white matter dis-
ruption similar to that seen in ASD [99]. These deficits
have been linked to decreased sensory processing speeds
and rewiring of circuitry [100]. Metabolomic studies have
provided even further evidence of white matter disruption.
The NAA/creatine and NAA/choline ratios were significantly
reduced in white matter tracts following injury and were
associated with significant cognitive dysfunction [101]. MRI
has been used to show significant atrophy of the corpus
callosum after injury, but whether this atrophy is due to
axonal shearing or loss of myelin integrity is unknown [102].
Magnetization transfer imaging can be used to determine
changes in the myelin integrity, but its use is still experimental
and warrants further investigation [103].

Similar to ASD, sensory processing is a primary concern
for pediatric TBI patients. Susceptibility weighted imaging
(SWI) has been used to determine the expected behavioral
dysfunction, decreased social interaction, and intellectual
performance that is to be expected after injury [104]. When
SWI is used concurrently with DTI, adequate detection of
acute hemorrhage and diffuse axonal injury can be obtained
[105]. Axonal injury can contribute to impaired sensory
integration, which can be detected through visual and audi-
tory exams [106]. Not surprisingly, Galvin and colleagues
reported that the majority of children score outside the range
of typical sensory processing when administered a sensory
profile following TBI [92]. Future investigation will examine
how biomarkers correlate with functional changes observed
on imaging and behavioral changes detected on exam. Korley
and colleagues found significant serum changes of brain-
derived neurotrophic factor in children with functional
imaging changes following TBI indicating increased suscep-
tibility for depression [107]. Further studies are necessary to
determine if sensory processing deficits are linked to changes
in mood.

5. Behavioral Treatment Approaches

5.1. Autism. Applied behavioral analysis (ABA) is one of
the most effective ways to help children with ASD [108].
B. E Skinner originally targeted the application of ABA
to help with the verbal aspect of behavior, but over time
the approach has evolved to deal with the multiple deficits
seen in ASD [109]. The purpose of ABA is to redirect a
behavior that would be seen as unacceptable or harmful to
a behavior that is something both useful and beneficial for
the child with autism [110]. It is most successful when started
at a young age because it can be used to redirect negative
behaviors before they become lifetime habits [108]. ABA has
many adaptive arms that address specialty situations such
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as social awkwardness, sensory overloads, and aphasia [111].
ABA benefits from echoic learning requiring the participant
to verbalize what is heard. Through this process, the child
builds upon repetitive intraverbalizations and over time puts
emphasis on a given response to a nonverbal stimulus.
Eventually, the child learns to ask for wants and needs
contingent upon an extrinsic reinforcer [112]. This progressive
learning process is very important in the treatment of verbal
dysfunction associated with ASD but can also be applied to
other behaviors such as attention and learning.

While ABA is the most widely used treatment for ASD,
other therapy techniques are emerging [108]. The pivotal
response therapy is an early-stage intervention tactic empha-
sizing a response to multiple cues. Similar to ABA, the older
the child is at start of treatment, the harder it becomes to
break habits that have already been conditioned for long
periods of time [113]. Pivotal response therapy is an ongoing
therapy and must be used at continuous intervals. The main
focus of pivotal therapy is to adjust how parents and children
respond to the multiple environmental cues that are part of
their everyday lives. Pivotal therapy is practiced when the
child is in his or her natural environment rather than a clinical
setting offering an advantage over traditional approaches
by enhancing motivation [114]. Another frequently used
treatment is verbal behavior therapy. Verbal behavior therapy
focuses on improving aspects related to the quality and
expression of language. The primary goal is to help rewire
connections in the brain to improve language understanding.
By understanding language, the child is able to use it for
effective communication [109]. These therapies are often used
in conjunction with ABA to enhance child responsiveness
[113].

5.2. Pediatric TBI. Because pediatric TBI produces similar
deficits to those seen in ASD, ABA has recently been utilized
to readapt children to their home environment after injury
[115]. As was the case with ASD, the earlier the therapy is
initiated, the more likely it will be effective [109]. For children
suffering severe TBI, the benefit of therapy is progressive and
behavior can continue to improve at extended time points
[115]. ABA is multidimensional and can be used to target
social interactions, communication, and activities of daily
living [21]. Additionally, pivotal response therapy can be
used in conjunction with ABA to allow the child to respond
in the environmental setting that best suits him or her. It
places less stress on the child and allows for him or her to
receive the proper attention that might be needed following
a severe TBI [116]. Similar to ABA, pivotal response therapies
provide incremental stepwise improvements over time for
TBI patients. These improvements are best maintained with
multitherapy treatment approaches [117].

6. Pharmacologic Treatment Approaches

6.1. Autism. Though many theories on the origins of autism
have been put forth and specific brain regions have been
consistently implicated in the past decades, the etiology of
autism remains largely elusive because many cases arise from
a mixture of multiple environmental and genetic factors [118,

119]. Hence, many current interventions target the secondary
behavioral symptoms of autism [120]. These targeted symp-
toms include insomnia, anxiety, depression, mood swings,
agitation, repetitive motor behaviors, obsessive-compulsive
symptoms, impulsivity, hyperactivity, aggression, and self-
injurious behavior. No medications are currently available
that directly impact the core social and cognitive impair-
ments.

6.2. Neuroleptic Agents. Risperidone and aripiprazole are the
only two US FDA-approved medications for autism and
specifically for only the treatment of irritability, such as
aggression, self-injurious behavior, temper tantrums, and
mood swings [118, 121]. Risperidone is approved for patients
that are at least five years old. It is an atypical antipsychotic
that acts as an antagonist of both dopamine (D,) and
serotonin (5HT,, and others) receptors [122, 123]. Adverse
events associated with risperidone use include including
weight gain, increased appetite, fatigue, drowsiness, drooling,
tremor, and constipation [118, 124-127].

Aripiprazole is approved for ages six and up. It is also
an atypical antipsychotic drug, impacting the dopamine and
serotonin systems. Distinct from risperidone, which is a
potent D, antagonist, aripiprazole may act as D, agonist,
partial agonist, or antagonist depending on cellular location
of D, receptor [128]. This theory of functional selectivity con-
fers aripiprazole the unique ability to be a dopamine agonist
where levels are too low and a dopamine antagonist where
levels are too high [129]. Because of its unique mechanism
of action, aripiprazole may have a more favorable side-effect
profile compared to risperidone [130]. Mild and transient
effects such as sedation, drooling, tremors, and weight gain
were noted in patients taking aripiprazole [131].

6.3. Selective Reuptake Inhibitors (SRI). In autistic individu-
als, anxiety and repetitive and ritualistic behavior can hinder
social interaction and learning [132, 133]. SRIs in general
are effective in treating anxiety and obsessive-compulsive
symptoms [134, 135]. In addition, accumulating evidence
shows that serotonin system abnormalities may contribute
to the etiology of autism [136-139]. Consequently, these
agents have been increasingly used in treating the disruptive
behaviors in autistic individuals [140, 141]. A recent meta-
analysis of the published literature provides support for a
small but significant effect of SRI in the treatment of repetitive
behaviors in ASD [140]. There is also some evidence to
suggest that SRIs may be helpful for the proper management
of comorbid anxiety in ASD [141]. However, to date, the
clinical trials examining the use of SRIs in autism have
been mostly limited by small sample sizes and mixed results,
warranting the need for additional randomized controlled
trials.

6.4. Other Therapies. At the neurochemical level, apart from
dopamine and serotonin, abnormalities in a number of other
key neurotransmitters and/or receptors have been implicated.
This includes glutamate [142], GABA [143], the neuropeptide
oxytocin [144-146], and nicotinic acetylcholine receptors
(147, 148] (Table 2).
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6.5. Pediatric TBI. TBI can result in a variety of neurological
and behavioral disturbances, including seizures, impulsivity,
and cognitive decline. In recent years, there has been a
rapid increase in the number of pharmacological targets
evaluated in various animal models of TBI, many with
significant positive outcomes. Unfortunately, their proven
efficacy in the clinical setting are still lacking for both the
adult and pediatric population [149, 150]. Table 3 summarizes
selected clinical studies examining the therapeutic potential
of pharmaceutical agents following pediatric TBI. With
an increased understanding of the cellular and molecular
mechanisms underlying the pathophysiological events after
TBI, however, hope remains regarding the development of
novel pharmaceutical therapies to better address the long-
term patient outcomes [151].

6.6. Future Directions. No single agent likely will become the
“magic bullet” in treating pediatric TBI and autism. As for
pharmacologic research for the neurological sequela follow-
ing TBI and the core symptoms of autism advances, a greater
emphasis on a holistic approach, combining behavioral and
pharmacologic therapy, may emerge. Currently, the only
empirically supported behavioral treatments for autism are
based on ABA [108], which has been combined with pharma-
cologic treatment in at least one trial [152]. In this study, the
combination of an atypical antipsychotic and parent training
resulted in greater reduction of serious maladaptive behavior
than medication alone in children with ASD [152]. No studies,
to our knowledge, have been conducted in adults or children
following TBI using this combined therapy approach. In
addition to combined pharmacology and behavioral therapy,
it may be advantageous to use a polypharmacy approach
and/or a drug with multiple and pleiotropic mechanism due
to the complexity and heterogeneity present in TBI and
autism [120, 153].

7. Conclusions

Children diagnosed with ASD or suffering pediatric TBI
share similar symptoms based on pathophysiologic changes
within the brain. In this review, we discussed several shared
symptoms including dysfunction in communication, loss of
executive function, and deficits in memory and intellectual
processing. Not surprisingly, pediatric TBI patients and ASD
patients share several underlying pathophysiologic changes
that contribute to these symptoms and cause increased
susceptibility for sensory processing dysfunction, seizures,
and gastrointestinal disorders. Advanced imaging modalities
are being used to track changes within the brain related
to symptom manifestations. The similarities between TBI
and ASD warrant continued investigation and improved
classification criteria. Treatment approaches including ABA
and pharmacologic agents may benefit patients with pediatric
TBI or ASD. Future work will delineate the subtle differences
between these spectrum disorders.
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