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A meta-analysis of epigenome-wide association
studies in Alzheimer’s disease highlights novel
differentially methylated loci across cortex
Rebecca G. Smith1,19, Ehsan Pishva 1,2,19, Gemma Shireby1, Adam R. Smith 1, Janou A. Y. Roubroeks1,2,

Eilis Hannon 1, Gregory Wheildon1, Diego Mastroeni 3, Gilles Gasparoni 4, Matthias Riemenschneider5,

Armin Giese6, Andrew J. Sharp 7, Leonard Schalkwyk 8, Vahram Haroutunian 9,10,11,

Wolfgang Viechtbauer 2, Daniel L. A. van den Hove2,12, Michael Weedon1, Danielle Brokaw3, Paul T. Francis1,

Alan J. Thomas13, Seth Love14, Kevin Morgan 15, Jörn Walter 4, Paul D. Coleman3, David A. Bennett16,

Philip L. De Jager 17,18, Jonathan Mill 1 & Katie Lunnon 1✉

Epigenome-wide association studies of Alzheimer’s disease have highlighted neuropathology-

associated DNA methylation differences, although existing studies have been limited in

sample size and utilized different brain regions. Here, we combine data from six DNA

methylomic studies of Alzheimer’s disease (N= 1453 unique individuals) to identify differ-

ential methylation associated with Braak stage in different brain regions and across cortex.

We identify 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and ten CpGs

in the entorhinal cortex at Bonferroni significance, with none in the cerebellum. Our cross-

cortex meta-analysis (N= 1408 donors) identifies 220 CpGs associated with neuropathol-

ogy, annotated to 121 genes, of which 84 genes have not been previously reported at this

significance threshold. We have replicated our findings using two further DNA methylomic

datasets consisting of a further >600 unique donors. The meta-analysis summary statistics

are available in our online data resource (www.epigenomicslab.com/ad-meta-analysis/).
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A lzheimer’s disease (AD) is a chronic neurodegenerative
disease that is accompanied by memory problems, con-
fusion and changes in mood, behavior and personality.

AD accounts for ~60% of dementia cases, which affected 43.8
million people worldwide in 20161. The disease is defined by two
key pathological hallmarks in the brain: extracellular plaques
comprised of amyloid-beta protein and intracellular neurofi-
brillary tangles of hyperphosphorylated tau protein2–4. These
neuropathological changes are thought to occur perhaps decades
before clinical symptoms manifest and the disease is diagnosed4.
AD is a multi-factorial and complex disease, with the risk of
developing disease still largely unknown despite numerous
genetic and epidemiological studies over recent years.

Several studies have suggested that epigenetic mechanisms may
play a role in disease etiology. In recent years a number of
epigenome-wide association studies (EWAS) have been per-
formed in AD brain samples, which have predominantly utilized
the Illumina Infinium HumanMethylation450K BeadChip (450K
array) in conjunction with bisulfite-treated DNA to assess levels
of DNA methylation in cortical brain tissue from donors with
varying degrees of AD pathology5–12. Independently these studies
have identified a number of loci that show robust differential
DNA methylation in disease, and many of these overlap between
studies, for example, loci annotated to ANK1, RHBDF2, HOXA3,
CDH23 and RPL13 have been consistently reported.

Here we have performed a meta-analysis of six independent
existing EWAS of AD brain5–8,10,12, totalling 1453 independent
donors, to identify robust and consistent differentially methylated
loci associated with Braak stage, used as a measure of

neurofibrillary tangle spread through the brain, in different brain
regions and across the cortex. In our intra-tissue meta-analysis we
identify 236 CpGs in the prefrontal cortex (N= 961 samples), 95
in the temporal gyrus (N= 608 samples) and ten in the entorh-
inal cortex (N= 189 samples) at Bonferroni significance, with
none in the cerebellum (N= 533 samples). Our cross-cortex
meta-analysis (N= 1408 individuals) identified 220 Bonferroni
significant CpGs, which were replicated in two further indepen-
dent DNA methylation datasets. Our meta-analysis approach
provides additional power to detect DNA methylomic variation
associated with AD pathology at novel loci, in addition to pro-
viding further replication of loci that have been previously
identified in the smaller independent EWAS.

Results
Pathology-associated DNA methylation signatures in discrete
cortical brain regions. We identified six EWAS of DNA
methylation in AD that had been generated using the 450K array
and had a cohort size of > 50 unique donors. All had data on
Braak stage available, which we used as a standardized measure of
tau pathology spread through the brain (Table 1). We were
interested in identifying epigenomic profiles associated with
Braak stage in specific brain regions, leveraging additional power
by meta-analysing multiple studies to identify novel loci. To this
end, we performed an EWAS in each available tissue and cohort
separately, looking for an association between DNA methylation
and Braak stage, whilst controlling for age and sex (all tissues)
and neuron/glia proportion (cortical bulk tissues only), with

Table 1 Demographic information for cohorts included in the meta-analyses.

Stage Cohort Unique
individuals

Ancestry (Eu/
Af/Am/As)

Braak Number Sex (M/F) Age at death
in (± SD)

Tissues analysed

Discovery London 1 113 112/0/1/0 0–II 29 13/16 77.6 (12.8) Prefrontal cortex, entorhinal cortex,
superior temporal gyrus,
cerebellum (Bulk)

III–IV 18 7/11 88.5 (5.2)
V–VI 66 26/40 85.4 (8.1)

London 2 95 92/1/2/0 0–II 23 12/11 76.1 (10.0) Entorhinal cortex, cerebellum (Bulk)
III–IV 16 3/13 87.6 (6.4)
V–VI 56 26/30 81.5 (8.6)

Mount Sinai 146 113/20/11/2 0–II 60 32/28 82 (7.6) Prefrontal cortex, superior temporal
gyrus (Bulk)III–IV 42 12/30 88.8 (6.6)

V–VI 44 12/32 88.0 (7.5)
Arizona 1 302 302/0/0/0 0–II 61 40/21 80.3 (8.2) Middle temporal gyrus,

cerebellum (Bulk)III–IV 97 50/47 86.9 (6.9)
V–VI 144 63/81 82.3 (8.5)

Arizona 2 88 88/0/0/0 0–II 16 10/6 82.5 (5.0) Middle temporal gyrus,
cerebellum (Bulk)III–IV 45 21/24 86.7 (5.1)

V–VI 27 12/15 84.6 (7.1)
ROS/MAP 711 711/0/0/0 0–II 143 70/73 83.2 (6.0) Prefrontal cortex (Bulk)

III–IV 410 144/266 86.9 (4.1)
V–VI 158 45/113 87.8 (3.5)

Replication Munich 45 – 0–II 9 5/4 76.7 (10.9) Prefrontal cortex (Bulk)
III–IV 7 1/6 82.1 (5.2)
V–VI 29 12/17 79.2 (8.5)

26 – 0–II 11 7/4 75.9 (8.5) Occipital cortex (Sorted cells)
III–IV 5 1/4 85.0 (6.5)
V–VI 10 4/6 77.9 (6.6)

BDR 590 – 0–II 196 100/96 83.6 (10.6) Prefrontal cortex (Bulk)
III–IV 136 80/56 85.1 (7.45)
V–VI 258 128/130 82.5 (8.5)

Sample numbers, split of males (M)/females (F) and mean age at death in years (± standard deviation [SD]) are shown for individuals with low pathology (Braak 0–II), mid-stage pathology (Braak III–IV)
and severe pathology (Braak V–VI) in each cohort. Shown are the bulk tissues available from each cohort, which included the cerebellum, entorhinal cortex, middle temporal gyrus, prefrontal cortex and
superior temporal gyrus. In the discovery meta-analyses, we used data from six EWAS using the 450K array, which all had >50 unique donors. For replication we used two cohorts. The Munich cohort
had 450K data from bulk prefrontal cortex tissue, as well as data available from sorted neuronal and non-neuronal cell populations from the occipital cortex. The BDR cohort had EPIC array data available
from bulk prefrontal cortex samples. For the meta-analyses, superior temporal gyrus and middle temporal gyrus samples were both classed as temporal gyrus samples. Shown are final numbers for all
cohorts after data quality control. Ancestry is reported for the discovery cohorts and is the number of unique individuals that had the following inferred ethnicities from the 1000 genomes reference
panel: European (Eu), African (Af), American (Am), East Asian (As).
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surrogate variables added as appropriate to reduce inflation. For
discovery, we then used the estimated effect size (ES) and stan-
dard errors (SEs) from these six studies (N= 1453 unique
donors) for a fixed-effect inverse variance weighted meta-analysis
separately for each tissue (prefrontal cortex: three cohorts, N=
961; temporal gyrus: four cohorts, N= 608, entorhinal cortex: two
cohorts, N= 189 cerebellum: four cohorts, N= 533) (Supple-
mentary Fig. 1).

The prefrontal cortex represented our largest dataset (N=
961 samples) and we identified 236 Bonferroni significant
differentially methylated positions (DMPs) (P < 1.238 × 10−7 to
account for 403,763 probes), of which 193 were annotated to 137
genes, with 43 unannotated loci based on Illumina UCSC
annotation (Fig. 1a, Supplementary Fig. 2, Supplementary Data 1).
Previous EWAS of the prefrontal cortex have consistently
reported the HOXA gene cluster as a region that is hypermethy-
lated in AD6,7, with a cell-type specific EWAS demonstrating this
is neuronal-derived11. Indeed, the most significant DMP in the
prefrontal cortex in our meta-analysis resided in HOXA3
(cg22962123: ES [defined as the methylation difference between
Braak 0 and Braak VI]= 0.042, P= 5.97 × 10−15), with a further
16 of the Bonferroni significant DMPs also annotated to this gene.
This locus appeared to be particularly hypermethylated with
higher Braak stage in the prefrontal cortex, and to a slightly lesser
extent in the temporal gyrus (Supplementary Fig. 3). There was
no significant difference in methylation at this locus in the
entorhinal cortex (P= 0.864), which is interesting given that the
entorhinal cortex may succumb to pathology early in the disease
process (Braak stage III). Of the 236 prefrontal cortex DMPs, 92%
(217 probes) were nominally significant (P < 0.05) in the temporal
gyrus, of which 12% (28 probes) were Bonferroni significant,
whilst 9% (22 probes) were nominally significant in the
entorhinal cortex, with 1% (3 probes) reaching Bonferroni
significance (Fig. 1b). The effect sizes for the 236 Bonferroni
significant prefrontal cortex DMPs were correlated with the effect
sizes for the same probes in both the temporal gyrus (Pearson’s
correlation coefficient (r)= 0.94, P= 6.17 × 10−112) and entorh-
inal cortex (r= 0.58, P= 1.80 × 10−22) and were enriched for
probes with the same direction of effect (sign test: temporal gyrus
P= 5.07 × 10−67, entorhinal cortex P= 6.88 × 10−26) (Supple-
mentary Fig. 4). For the 236 Bonferroni significant prefrontal
cortex DMPs these had the largest effect sizes in the prefrontal
cortex, with a smaller effect size in the temporal gyrus and
entorhinal cortex (Fig. 1c). Of these 236 DMPs, 29 of these had
being previously reported at Bonferroni significance in previous
publications on the individual cohorts5–7,12, including one probe
annotated to ANK1, one probe annotated to HOXA3, one probe
annotated to PPT2/PRRT1 and two probes annotated to RHBDF2,
amongst others. However, our approach has identified 207 novel
Bonferroni significant DMPs (although several had been reported
in previous studies at a more relaxed significance threshold, or in
regional analyses). This included several additional probes
residing in genes already identified (from another probe) in
earlier studies, for example, a further 16 probes in HOXA3 and
two probes in PPT2/PRRT1. Interestingly, we also identified a
number of novel genes, including some which featured multiple
Bonferroni significant DMPs including for example, seven probes
in AGAP2 and five probes in SLC44A2, amongst others. One
other noteworthy novel Bonferroni significant DMP in the
prefrontal cortex was cg08898775 (ES= 0.019, P= 4.03 × 10−9),
annotated to ADAM10, which encodes for α-secretase which
cleaves APP in the non-amyloidogenic pathway. A differentially
methylated region (DMR) analysis, which allowed us to identify
areas of the genome consisting of ≥2 DMPs, revealed 262 sig-
nificant DMRs in the prefrontal cortex (Supplementary Data 2),
the most significant containing 20 probes and located in HOXA3

(chr7:27,153,212–27,155,234: Sidak-corrected P= 8.21 × 10−50,
Supplementary Fig. 5), as well as several other DMRs in the
HOXA gene cluster.

A meta-analysis of temporal gyrus EWAS datasets (N=
608 samples) identified 95 Bonferroni significant probes, of which
75 were annotated to 53 genes, with 20 unannotated probes using
Illumina UCSC annotation (Fig. 1a, Supplementary Fig. 6,
Supplementary Data 3). The most significant probe was
cg11823178 (ES= 0.029, P= 3.97 × 10−16, Supplementary Fig. 7),
which is annotated to the ANK1 gene, with the fifth (cg05066959:
ES= 0.042, P= 4.58 × 10−13) and 82nd (cg16140558: ES= 0.013, P
= 8.44 × 10−8) most significant probes in the temporal gyrus also
being annotated to nearby CpGs in that gene. This locus has been
widely reported to be hypermethylated in AD from prior
EWAS5,6,8,12, as well as in other neurodegenerative diseases such
as Huntington’s disease and Parkinson’s disease13. Another
noteworthy gene is RHBDF2, where five Bonferroni significant
DMPs in the temporal gyrus were annotated to (cg05810363: ES=
0.029, P= 2.25 × 10−11; cg13076843: ES= 0.031, P= 2.97 × 10−11;
cg09123026: ES= 0.012, P= 3.46 × 10−9; cg12163800: ES= 0.025,
P= 5.85 × 10−9; cg12309456: ES= 0.016, P= 1.33 ×10−8); and
which has been highlighted in previous EWAS in AD in the
individual cohorts5,6,12. Of the 95 Bonferroni significant DMPs in
the temporal gyrus, 88% (84 probes) were nominally significant in
the prefrontal cortex, of which 29% (28 probes) were Bonferroni
significant, whilst 54% (51 probes) were nominally significant in the
entorhinal cortex, of which 6% (6 probes) were Bonferroni
significant (Fig. 1b). Given the high degree of overlapping
significant loci between the temporal gyrus and other cortical
regions, it was not surprising that the ES of the 95 Bonferroni
significant temporal gyrus probes were highly correlated with the ES
of the same loci in both the prefrontal cortex (r= 0.91, P= 5.09 ×
10−38) and entorhinal cortex (r= 0.77, P= 4.02 × 10−20) and were
enriched for the same direction of effect (sign test: prefrontal cortex
P= 5.05 × 10−29, entorhinal cortex= 2.30 × 10−25) (Supplemen-
tary Fig. 8). The majority of the 95 Bonferroni significant DMPs in
the temporal gyrus were hypermethylated, and the mean ES was
greater in the temporal gyrus than the prefrontal cortex or
entorhinal cortex (Fig. 1c). Thirty-two of the 95 Bonferroni
significant DMPs in the temporal gyrus have been previously
reported to be significantly differentially methylated in published
EWAS, including for example, three probes in ANK1 and the five
probes in RHBDF2. Our meta-analysis approach in the temporal
gyrus has identified 63 novel DMPs (at Bonferroni significance),
including some novel genes with multiple DMPs, for example, four
probes in RGMA and two probes in CCND1, amongst others.
Finally, our regional analysis highlighted 104 DMRs (Supplemen-
tary Data 4); the top DMR resided in the ANK1 gene
(chr8:41,519,308–41,519,399) and contained two probes (Sidak-
corrected P= 1.72 × 10−21) (Supplementary Fig. 9). The five DMPs
in RHBDF2 that we already highlighted also represented a
significant DMR (Sidak-corrected P= 8.47 × 10−21), with three
other genomic regions containing large, significant DMRs consist-
ing of ≥10 probes, such as MCF2L (chr13:113698408–113699016
[10 probes], Sidak-corrected P= 1.16 × 10−19), PRRT1/PPT2
(chr6:32120773–32121261 [17 probes], Sidak-corrected P= 4.90
×10−15) and HOXA5 (chr7:27184264–27184521 [10 probes], Sidak-
corrected P= 1.60 ×10−7).

The final cortical region we had available was the entorhinal
cortex (N= 189), where we identified ten Bonferroni significant
probes in our meta-analysis, all of which were hypermethylated
with higher Braak stage (Fig. 1a, Supplementary Fig. 10,
Supplementary Data 5). These ten probes were annotated to
eight genes (Illumina UCSC annotation), with two Bonferroni
significant probes residing in each of the ANK1 and SLC15A4
genes. As with the temporal gyrus, the most significant DMP was
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Fig. 1 Intra-tissue meta-analyses of AD methylomic studies highlights Bonferroni significant differentially methylated positions (DMPs) in all cortical
tissues. a AManhattan plot for the prefrontal cortex (red, N= 961), temporal gyrus (green, N= 608) and entorhinal cortex (blue, N= 189) meta-analyses,
with the ten most significant DMPs circled on the plot and Illumina UCSC gene name shown if annotated, or CpG ID if unannotated. The X-axis shows
chromosomes 1–22 and the Y-axis shows −log10(p), with the horizontal red line denoting Bonferroni significance (P < 1.238 × 10−7). b A Venn diagram
highlighting overlapping DMPs at Bonferroni significance across the cortical tissues. c In each cortical brain region the Bonferroni significant DMPs
identified in that region usually had a greater effect size (ES) there, than in any of the other cortical regions. The X-axis represents the methylation (beta)
ES between individuals that are Braak stage 0 and VI. Data are separated on the Y-axis by tissue analysis (large text) with the corresponding data at these
probes in other tissues (small text). The white dot in the centre represents the median, the dark box represents the interquartile range (IQR), whilst the
whisker lines represent the “minimum” (quartile 1–1.5 × IQR) and the ‘maximum’ (quartile 3+ 1.5 × IQR). The coloured violin represents all samples
including outliers, meaning that the ‘minimum’ and ‘maximum’ may not extend to the end of the violin.
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cg11823178 (ES= 0.045, P= 5.22 × 10−10, Supplementary Fig. 7),
located within the ANK1 gene, with the fourth most significant
DMP being located within 100 bp of that CpG (cg05066959:
ES= 0.062, P= 2.93 × 10−9). In total, eight of the ten DMPs in
the entorhinal cortex had been reported previously at Bonferroni
significance, including the two probes in ANK1. Two of the
Bonferroni significant DMPs we identified in the entorhinal
cortex were novel CpGs (cg11563844: STARD13, cg04523589:
CAMP), having not been reported as Bonferroni significant in
previous EWAS. Of the ten entorhinal cortex probes, 90%
(9 probes) were nominally significant in the temporal gyrus, of
which 60% (6 probes) were Bonferroni significant, whilst 70% (7
probes) were nominally significant in the prefrontal cortex, of
which 30% (3 probes) were Bonferroni significant (Fig. 1b). Of
the four DMPs that were Bonferroni significant in only the
entorhinal cortex, three of these were nominally significant in at
least one other tissue, with just one probe unique to the
entorhinal cortex, annotated to STARD13 (cg11563844, ES=
0.027, P= 1.07 × 10−8). The effect sizes of the ten Bonferroni
significant DMPs in the entorhinal cortex were significantly
correlated with the effect size of the same probes in the prefrontal
cortex (r= 0.74, P= 0.01) and temporal gyrus (r= 0.85, P=
1.52 × 10−3) and were enriched for the same direction of
effect (sign test: prefrontal cortex P= 0.021, temporal gyrus
P= 1.95 × 10−3) (Supplementary Fig. 11). The ten DMPs were
hypermethylated in all three cortical regions, with the greatest
Braak-associated ES in the entorhinal cortex (Fig. 1c). A regional
analysis identified seven DMRs (Supplementary Data 6); the top
three DMRs (RHBDF2: chr17:74,475,240–74,475,402 [five
probes], P= 7.68 × 10−14, Supplementary Fig. 12; ANK1: chr8:41
519308–41519399 [two probes], P= 4.89 × 10−13; SLC15A4:
chr12:129281444–129281546 [three probes], P= 5.24 × 10−12)
were significant in at least one of the other cortical regions we
meta-analysed.

To date, a few independent EWAS in AD have been
undertaken in the cerebellum and none of these have reported
any Bonferroni significant DMPs. In our meta-analysis we
identified no Bonferroni significant DMPs, nor any DMRs in
the cerebellum (Supplementary Fig. 13), despite this analysis
including 533 independent samples. There was no correlation of
the ES for the Bonferroni significant DMPs we had identified in
the meta-analyses of the three cortical regions with the ES of the
same probes in the cerebellum (prefrontal cortex: r= 0.11, P=
0.08; temporal gyrus: r= 0.14, P= 0.17; entorhinal cortex: r=
0.48, P= 0.16; Supplementary Fig. 14).

220 CpGs are differentially methylated across the cortex in AD.
We were interested in combining data from across the different
cortical tissues to identify common differentially methylated loci
across the cortex and also to provide more power by utilizing data
from 1408 unique individuals with cortical EWAS data available.
As multiple cortical tissues were available for some cohorts, a
mixed-effects model was utilized. In this analysis we controlled
for age, sex and neuron/glia proportion, with surrogate variables
added as appropriate to reduce inflation. Using this approach, we
identified 220 Bonferroni significant probes, of which 168 were
annotated to 121 genes, with 52 DMPs unannotated using Illu-
mina UCSC annotation (Fig. 2a, b, Table 2, Supplementary
Data 7, Supplementary Fig. 15). All of the 220 probes were
nominally significant (P < 0.05) in ≥ two cohorts, with ten of
these probes being nominally significant in all six cohorts (Sup-
plementary Fig. 16), which included single probes annotated to
ANK1, ABR, SPG7 and WDR81, two probes in DUSP27, three
probes in RHBDF2 and one unannotated probe. We observed
similar DNA methylation patterns across all cortical cohorts and

tissues for the 220 probes with 219 of the 220 DMPs showing the
same direction of effect in at least five cohorts. In total, 154 of the
DMPs were hypermethylated, with 66 hypomethylated, repre-
senting an enrichment for hypermethylation (P= 4.85 × 10−10).
This pattern of methylation was evident across all cortical tissues
but was not seen in the cerebellum (Supplementary Fig. 17). Of
the 220 DMPs we identified, 46 of these have been previously
reported at Bonferroni significance in published EWAS, including
multiple previously identified probes in ANK1 (cg05066959, cg11
823178), MCF2L (cg07883124, cg09448088), PCNT (cg00621289,
cg04147621, cg23449541) and RHBDF2 (cg05810363, cg1216
3800, cg12309456, cg13076843). The most significant probe we
identified in our cross-cortex analysis was cg12307200 (Table 2,
ES=−0.015, P= 4.48 × 10−16), which is intergenic and found at
chr3:188664632, located between the TPRG1 and LPP genes and
had been previously reported at Bonferroni significance by De
Jager and colleagues with respect to neuritic plaque burden6 and
by Brokaw and colleagues with respect to post-mortem
diagnosis12. Our cross-cortex meta-analysis approach has iden-
tified 174 novel DMPs (at Bonferroni significance), annotated to
102 genes. Although 11 of these genes had previously been
reported at Bonferroni significance (another probe within that
gene), the remaining 96 genes represent robust novel loci in AD.
Many of these novel differentially methylated genes had multiple
Bonferroni significant probes, for example, five probes in AGAP2,
three probes in HOXB3 and SLC44A2, and two probes in CDH9,
CPEB4, DUSP27, GCNT2, MAMSTR, PTK6, RGMA, RHOB,
SMURF1, THBS1, ZNF238 and ZNF385A (Supplementary
Data 7). Although some of these loci may have been reported in
earlier AD EWAS, none of these were at Bonferroni significance
and so here represent robust novel loci.

We were interested to investigate whether specific functional
pathways were differentially methylated in AD cortex and so
performed a gene ontology pathway analysis of the 121 genes
annotated to the 220 Bonferroni significant cross-cortex DMPs.
We highlighted epigenetic dysfunction in numerous pathways (at
nominal significance), interestingly including a number of
developmental pathways, mainly featuring the HOXA and HOXB
gene clusters (Supplementary Data 8). Given that we identified
multiple DMPs in some genes, we were interested to investigate
the correlation structure between probes in close proximity to
each other to establish how many independent signals we had
identified. Using a method developed to identify single nucleotide
polymorphisms (SNPs) in linkage disequilibrium (LD)14, we
collapsed the 220 Bonferroni significant loci into 165 independent
(non-highly correlated [r < 0.6 over 1 mb]) signals (Supplemen-
tary Data 9). We found that the largest reduction in signals
occurred in the HOXA and HOXB gene clusters, with the 18
DMPs in the HOXA region representing only two independent
signals, whilst the seven DMPs in the HOXB region represented
one independent signal. Next we undertook a formal regional
analysis to identify genomic regions of multiple adjacent DMPs
and identified 221 DMRs, with the top DMR containing 11
probes and covering the HOXA region (chr7:27,153,212–27,
154,305: P= 3.84 × 10−35) (Fig. 2c, Supplementary Data 10). The
HOXA gene cluster further featured a number of times in our
DMR analysis; four of the ten most significant DMRs fell in this
genomic region, including DMRs spanning four probes (chr7:27
146237–27146445: P= 4.11 × 10−27), 33 probes (chr7:271831
33–27184667: P= 2.22 × 10−20) and ten probes (chr7:271432
35–27143806: P= 1.75 × 10−18).

Replication of pathology associated DMPs in the cortex. To
replicate our findings and to determine the cellular origin of DNA
methylomic differences we used the estimated coefficients and SEs
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for these 220 probes generated in a seventh independent (Munich)
cohort, which consisted of 450K data generated in the prefrontal
cortex (N= 45) and sorted neuronal and non-neuronal nuclei
from the occipital cortex (N= 26) (Table 1). This cohort had not
been used in our discovery analyses as <50 samples were available.
Notably, we identified a similar pattern of Braak-associated DNA
methylation changes for the 220 Bonferroni significant cross-
cortex probes in this replication cohort, with a significantly cor-
related effect size between the discovery dataset and the replication
prefrontal cortex (r= 0.64, P= 5.24 × 10−27), neuronal (r= 0.45,
P= 1.56 × 10−12) and non-neuronal datasets (r= 0.79, P= 1.43 ×
10−47) with a similar enrichment for the same direction of effect
(sign test: prefrontal cortex P= 4.59 × 10−28, neuronal P= 6.13 ×
10−15, non-neuronal P= 1.06 × 10−42) (Fig. 3a). The most sig-
nificant probe from the cross-cortex meta-analysis (cg12307200)
showed consistent hypomethylation in disease in all cohorts in all

cortical brain regions, with this direction of effect replicated in the
prefrontal cortex and non-neuronal nuclei samples, but not the
neuronal nuclei samples, suggesting that this is primarily driven
by non-neuronal cell types, which are likely to be glia (Fig. 3b). We
have developed an online database (www.epigenomicslab.com/ad-
meta-analysis/), which can generate a forest plot showing the ES
and SE across any of the discovery cohorts and the Munich sample
types for any of the 403,763 probes that passed our quality control.
This allows researchers to determine the consistency of effects
across cohorts for a given CpG site as well as the likely cellular
origin of the signature. In addition, our tool can generate mini-
Manhattan plots to show DMRs utilizing the summary statistics
from the cross-cortex meta-analysis.

Finally, we had access to DNA methylation data generated in an
eighth independent (Brains for Dementia Research [BDR]) cohort.
This consisted of Illumina Infinium HumanMethylation EPIC

Fig. 2 A cross-cortex meta-analysis identifies 220 Bonferroni significant differentially methylated positions (DMPs) associated with Braak stage. a A
Miami plot of the cross-cortex meta-analyses (N= 1408). Probes shown above the X-axis indicate hypermethylation with higher Braak stage, whilst probes
shown below the X-axis indicate hypomethylation with higher Braak stage. The chromosome and genomic position are shown on the X-axis. The Y-axis
shows –log10(p). The red horizontal lines indicate the Bonferroni significance level of P < 1.238 × 10−7. Probes with a methylation (beta) effect size (ES:
difference between Braak 0- Braak VI)≥ 0.01 and P < 1.238 × 10−7 are shown in blue. The 20 most significant DMPs are circled on the plot and Illumina
UCSC gene name is shown if annotated, or CpG ID if unannotated. Exact P values can be found in Table 2 and Supplementary Data 7. b A volcano plot
showing the ES (X-axis) and –log10(p) (Y-axis) for the cross-cortical meta-analysis results. Grey probes indicate an ES between ≥0.01, whilst blue probes
indicate an ES≥ 0.01 and P < 1.238 × 10−7. c The most significant cross-cortex differentially methylated region (DMR) (chr7:27153212–27154305)
contained 11 probes and resided in the HOXA region. The horizontal red line denotes the Bonferroni significance level of P < 1.238 × 10−7. Red probes
represent a positive ES≥ 0.01, blue probes represent a negative ES≥ 0.01. Underneath the gene tracks are shown in black with CpG islands in green.
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BeadChip (EPIC array) data in the prefrontal cortex in 590
individuals15. As this is the successor to the 450K array (which
had been used for the other seven cohorts), there are some
differences in genome coverage, and for the 220 Bonferroni
significant cross-cortex DMPs we had identified in the discovery
cohorts, only 208 probes are also present on the EPIC array. For
these overlapping 208 probes, we observed a significantly
correlated effect size between the discovery dataset and the BDR
dataset (r= 0.53, P= 4.13 × 10−16) (Fig. 3c), with all 208 probes
showing the same direction of effect (sign test P= 4.86 × 10−63).

Cross-cortex AD-associated DMPs are enriched in specific
genomic features. To identify if the cross-cortex DMPs reside in
specific genomic features, we used a Fisher’s exact test to look for
an enrichment of the 220 DMPs using Slieker annotations16

(Supplementary Data 11, Supplementary Fig. 18). We observed a
significant over-representation of Bonferroni significant DMPs in
CpG islands of gene bodies (odds ratio [OR]= 3.199, P= 4.76 ×
10−10), and in CpG island shelves and non-CpG island areas of
proximal promoters (OR= 3.571, P= 9.09 × 10−3 and OR=
1.641, P= 0.03, respectively). However, DMPs located in CpG
islands in the proximal promoter were under-represented (OR=
0.353, P= 2.08 × 10−6). There was a significant over-
representation of the 220 cross-cortex DMPs in the first exon
(OR= 1.80, P= 0.02), with an under enrichment within 1500 bp
of the transcription start site (OR= 0.49, P= 3.82 × 10−3)
(Supplementary Data 12, Supplementary Fig. 19).

DNA methylomic signatures in the cortex can explain variance
in the degree of pathology. We were interested to investigate
whether the Braak-associated DNA methylation patterns we had
identified across the cortex could accurately predict the patho-
logical load of a brain sample and how much variance this
explained. To this end, we took samples within the discovery
cohorts with either low pathology (Braak 0–II [controls]: N=

407), or high pathology (Braak V–VI [AD]: N= 589) and used
these as a training dataset. We then used elastic net regression to
identify 110 probes in the 220 cross-cortex Bonferroni significant
loci (Supplementary Data 13) that were able to explain the most
variance between post-mortem low pathology [control] from high
pathology [AD] status in our training dataset (N= 996) (Sup-
plementary Data 14, Fig. 4). In our training data, we achieved an
area under the curve (AUC) of the receiver operating character-
istic (ROC) of 94.33% (CI= 92.88–95.64%, variance explained=
71.11%). We then tested its performance in the Munich replica-
tion samples (N= 38) and the BDR replication samples (N=
454), where it achieved an AUC of 73.95% (CI= 55.17–88.89%,
variance explained= 20.18%) and 70.36% (CI= 65.52–75.12%,
variance explained= 15.87%), respectively (Supplementary
Data 14, Fig. 4).

DNA methylation signatures in AD cortex are largely inde-
pendent of genetic effects. DNA methylomic variation can be
driven by genetic variation via methylation quantitative trait loci
(mQTLs). To explore whether SNPs may be driving the methy-
lation differences we observed (in cis) we used the xQTL resource
to identify cis-mQTLs associated with the 220 Bonferroni sig-
nificant cross-cortex DMPs17. We identified 200 Bonferroni
corrected mQTLs, which were associated with DNA methylation
at 18 of the 220 cross-cortex DMPs (Supplementary Data 15).
This suggests that the majority of Braak-associated DMPs are not
the result of genetic variation in cis. None of these mQTLs
overlapped with lead SNPs (or SNPs in LD) identified in the most
recent genome-wide association study (GWAS) of diagnosed late-
onset AD from Kunkle et al.18. Next, we were interested in
exploring whether DNA methylation is enriched in genes known
to harbor AD-associated genomic risk variants. Using the AD
variants from Kunkle et al.18 we examined the enrichment of
Braak-associated DNA methylation in 24 LD blocks harbouring
risk variants. Twenty of these LD blocks contained >1 CpG site
on the 450K array and using Brown’s method we combined P

Fig. 3 Independent replication of the Bonferroni significant cross-cortex differentially methylated loci. a The methylation (beta) effect size (ES) of the
220 cross-cortex differentially methylated positions (DMPs) identified in the discovery (N = 1408) cohorts (X-axis) were significantly correlated with the
ES in the Munich replication cohort in the prefrontal cortex (red; N= 45, r= 0.64, P= 5.24 × 10−27), sorted neuronal cells (light blue; N= 26, r= 0.45, P
= 1.56 × 10−12) and non-neuronal cells (purple; r= 0.79, N= 26, P= 1.43 × 10−47) (Y-axis). b A forest plot of the most significant cross-cortex DMP
(cg12307200, chr3:188664632, P= 4.48 × 10−16). The effect size is shown in the prefrontal cortex (red; N= 961), temporal gyrus (green; N= 608) and
entorhinal cortex (blue; N= 189) for the different discovery cohorts. The X-axis shows the beta ES, with dots representing ES and arms indicating standard
error (SE). ES from the intra-tissue meta-analysis using all available individual cohorts are represented by polygons in the corresponding tissue colour. The
black polygon represents the cross-cortex data. Shown in purple on the plot is the ES in the Munich replication cohort in the prefrontal cortex and sorted
neuronal cells and non-neuronal cells, with the direction of effect suggesting the hypomethylation seen in the discovery cohorts is driven by changes in
non-neuronal cells. c In the BDR replication cohort (N= 590) DNA methylation data were available in the prefrontal cortex for 208 of the 220 Bonferroni
significant cross-cortex DMPs. The ES of these 208 cross-cortex DMPs in the discovery cohorts (X-axis) were significantly correlated with the ES in the
BDR replication cohort (r= 0.53, P= 4.13 × 10−16) (Y-axis).
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values within each of these 20 genomic regions. We observed
Bonferroni-adjusted significant enrichment in the cross-cortex
data in the HLADRB1 (Chr6: 32395036–32636434: adjusted P=
1.20 × 10−3), SPI1 (Chr11: 47372377–47466790, adjusted P=
5.76 × 10−3), SORL1 (Chr11: 121433926–121461593, adjusted
P= 0.019), ABCA7 (Chr19: 1050130–1075979, adjusted P=
0.022) and ADAM10 (Chr15: 58873555–59120077, adjusted P=
0.022) LD regions (Supplementary Data 16).

Discussion
This meta-analysis of AD EWAS utilizes six published indepen-
dent sample cohorts with a range of cortical brain regions and
cerebellum available as a discovery dataset. Two further inde-
pendent cortical datasets were then used for replication, including
data from sorted nuclei populations. Our data can be explored as
part of an online searchable database, which can be found on our
website (https://www.epigenomicslab.com/ad-meta-analysis). By
performing a meta-analysis within each tissue, we have been able
to identify 236, 95 and ten Bonferroni significant DMPs in the
prefrontal cortex, temporal gyrus and entorhinal cortex, respec-
tively. Although far fewer loci were identified in the entorhinal
cortex compared to the other cortical regions, this is likely due to

the reduced sample size in this tissue. In the cerebellum despite
meta-analyzing >500 unique samples, we identified no Braak-
associated DNA methylation changes. Furthermore, there was no
correlation of the effect size of Bonferroni significant DMPs
identified in any of the cortical regions with the effect size of the
same probes in the cerebellum. Taken together, this suggests that
DNA methylomic changes in AD are cortex cell type specific.
This observation is interesting as the cerebellum is said to be
spared from AD pathology, with an absence of neurofibrillary
tangles, although some diffuse amyloid-beta plaques are
reported19. Interestingly, a recent spatial proteomics study of AD
reported a large number of protein changes in the cerebellum in
AD; however, the proteins identified were distinct from other
regions examined and thus the authors suggested a potential
protective role20.

Although many loci showed similar patterns of Braak-
associated DNA methylation across the different cortical
regions, some loci did show some regional specificity. In order to
identify CpG sites that showed common DNA methylation
changes in disease we performed a cross-cortex meta-analysis.
Using this approach we identified 220 Bonferroni significant
probes associated with Braak stage of which 46 probes had been
previously reported at Bonferroni significance in the individual
cohort studies that we had used for our meta-analysis, for
example, two probes in ANK1, four probes in RHBDF2 and one
probe in HOXA3, amongst others. Interestingly, our approach did
identify 174 novel CpGs, corresponding to 102 unique genes, of
which 84 genes had not been previously reported at Bonferroni
significance in any of the previously published AD brain EWAS,
highlighting the power of our meta-analysis approach for nomi-
nating new loci. This included 15 novel genes with at least two
Bonferroni significant DMPs each, including five probes in
AGAP2, three probes in SLC44A2 and two probes each in CDH9,
CPEB4, DUSP27, GCNT2, MAMSTR, PTK6, RGMA, RHOB,
SMURF1, THBS1, ZNF238 and ZNF385A. These genes had not
been identified previously in an AD EWAS at this significance
threshold, although a number of these genes had been previously
identified from DMR analyses, which have a less stringent
threshold. However, we did identify one novel gene (HOXB3)
with three Bonferroni significant DMPs, which had not been
identified at this significance threshold in previous EWAS DMP
or DMR analyses in AD brain. The nomination of loci in the
HOXB gene cluster is interesting; a recent study of human
Huntington’s disease brain samples also highlighted significantly
increased HOXB3 gene expression in the prefrontal cortex21, an
interesting observation given that both AD and Huntington’s
disease are disorders that feature dementia. Furthermore, we have
recently reported AD-associated hypermethylation of the HOXB6
gene in AD blood samples22. Our pathway analysis highlighted
differential methylation in a number of developmental pathways,
mainly featuring the HOXA and HOXB gene clusters. Although it
is unclear why developmental genes may be changed in a disease
that primarily affects the elderly, it has been implied that genes
such as these may be involved in neuroprotection after
development23. A number of the other novel genes with multiple
DMPs are also biologically relevant in the context of AD, for
example, GCNT2 was recently shown to be differentially expres-
sed in the Putamen between males and females with AD24.
Interestingly, some of the protein products of genes we identified
have also been previously linked with AD; PTK6 is a protein
kinase whose activity has been shown to be altered in post-
mortem AD brain25. Similarly, RGMA has been shown to be
increased in AD brain, where it accumulated in amyloid-beta
plaques26.

Our genomic enrichment analyses identified an over-
representation of hypermethylated loci in AD and methylation

Fig. 4 Receiver operating characteristic (ROC) graphs highlighting the
area under the curve (AUC) for the 110 cross-cortex probes that can best
explain the variance in Braak pathology. An elastic net penalized
regression model was used to identify a subset of 110 of the Bonferroni
significant cross-cortex probes that could best predict whether a sample
has low pathology (Braak 0–II: control) compared to high pathology (Braak
V–VI: AD) in a training dataset comprised of 996 discovery samples (Braak
0–II: N= 407, Braak V–VI: N= 589). This model had an area under the
ROC curve (AUC) of 94.33% (confidence interval [CI]= 92.88–95.64%)
and explained 71.11% of the pathological variance (black line). The 110
probe signature was then tested in two independent replication cohorts. In
the Munich prefrontal cortex samples (Braak 0–II: N= 9, Braak V–VI: N=
29) the model had an AUC of 73.95% (CI= 55.17–88.89%), explaining
20.18% of the variance (blue line). In the BDR prefrontal cortex samples
(Braak 0–II: N= 196, Braak V–VI: N= 258) the model had an AUC=
70.36% (CI= 65.52–75.12%), explaining 15.87% of the variance (green
line). A list of the 110 probes and their performance characteristics can be
found in Supplementary Data 13 and 14, respectively.
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in specific genomic features, for example, CpG islands in gene
bodies, and shelves and non-CpG island regions in proximal
promoters. We demonstrated that the majority of DMPs we
identified (N= 202) were not driven by genetic variation as only
18 of the 220 CpG sites have reported mQTLs. However, we did
observe a significant enrichment of cross-cortex loci in the LD
regions surrounding the AD-associated genetic variants
HLADRB1, SPI1, SORL1, ABCA7 and ADAM10 after controlling
for multiple testing. Finally, we have developed a classifier that
could accurately predict control samples with low pathology,
from those with a post-mortem AD diagnosis due to high
pathology using methylation values for 110 of the 220 Bonferroni
significant probes, further highlighting that distinct genomic loci
reproducibly show epigenetic dysfunction in AD cortex. Although
the clinical utility of such a classifier is limited as it is developed in
post-mortem cortical brain tissue, it does illustrate that specific
robust patterns of DNA methylation differences occur as the
disease progresses. These signatures require further investigation
as they could represent novel therapeutic targets, particularly
given the classifier had an AUC > 70% in all the training and
replication datasets. However, it is worth noting that the variance
explained by the 110 CpG signature was lower in the replication
datasets than the discovery samples, which could be due to a low
sample number (Munich) or the different Illumina array
platform (BDR).

There are some limitations with our study. First, as we have
largely utilized methylation data generated in bulk tissue, this will
contain a mixture of different cell types. Furthermore, it is known
that the proportions of the major brain cell types are altered in
AD, with reduced numbers of neurons and increased glia. As
such, it is possible that the identified DNA methylation changes
represent a change in cell proportions. To address this, we have
included neuron/glia proportions as a co-variate in our models to
minimize bias and used data from sorted cell populations as part
of our replication. Although this is the optimal strategy for the
current study given the EWAS data had already been generated,
future EWAS should be undertaken on sorted cell populations
with larger sample numbers than the Munich replication cohort,
or ideally at the level of the single cell. It is important to note that
the data from the sorted nuclei populations in the Munich
replication cohort were generated in the occipital cortex, which
was not a bulk tissue used for any of the discovery cohorts. In the
future it would be interesting to explore whether different disease-
associated DNA methylation signatures were observed in neurons
and glia isolated from different cortical brain regions. Second, our
study has utilized previously generated EWAS data generated on
the 450K array or EPIC array. Although the Illumina array
platform has been the most widely used platform for EWAS to
date, it is limited to only analyzing a relatively small proportion of
the potential methylation sites in the genome (~400,000 on the
450K array) and given the falling cost of sequencing, future stu-
dies could exploit this by performing reduced representation
bisulfite sequencing to substantially increase the coverage. In our
study we have primarily used the UCSC annotation provided by
Illumina to identify the gene relating to each DMP. However, this
can lead to the annotation of overlapping genes, or no gene
annotation, which can make it difficult to establish the gene of
interest in the absence of functional studies. Our study has pri-
marily focused on the results of a fixed-effects meta-analysis, as
the majority of Bonferroni significant DMPs do not display a high
degree of heterogeneity. However, ~15% of the cross-cortex
DMPs did have a significant heterogeneity P value and in this
instance, it is worthwhile also considering the results of the
random-effects meta-analysis. Although this heterogeneity could
be driven by differences between cohorts, it is also plausible that it
may be driven by tissue-specific effects as we used different

cortical brain regions in the model. For example, cg22962123
annotated to the HOXA3 gene has a significant heterogeneity P
value in the cross-cortex meta-analysis, but we had already shown
this loci to be differentially methylated in the prefrontal cortex
and temporal gyrus, but not the entorhinal cortex in our intra-
tissue meta-analysis.

Another limitation of our study is that we have focused our
analyses on Braak (neurofibrillary tangle)-associated methylation
changes, as this measure was available in all cohorts. Given that
amyloid-beta is another neuropathological hallmark of AD, it
would also be of interest to identify neuritic plaque-associated
DMPs. Unfortunately, this was not feasible in the current study as
this measure was not available in all samples. In a similar vein, we
did not exclude individuals with mixed pathology, or protein
hallmarks of other neurodegenerative diseases, such as the pre-
sence of lewy bodies, or TDP-43 pathology. In the future, larger
meta-analyses should stratify by the presence of these protein
aggregates, particularly given that very few EWAS have been
undertaken in other dementias. Indeed, only three DNA methy-
lomic studies have been undertaken in cortical samples of indi-
viduals with other dementias to date27–30, with none of these
studies utilizing >15 individuals for EWAS. Further studies
exploring common and unique DNA methylation signatures and
our classifier in other diseases characterized by dementia will be
vital for identifying disease-specific epigenetic signatures that
could represent novel therapeutic targets. Finally, one key issue
for epigenetic studies in post-mortem tissue is the issue of caus-
ality, where it is not possible to determine whether disease-
associated epigenetic loci are driving disease pathogenesis, or are
a consequence of the disease, or even the medication used for
treatment. One method that can be used to address this is
Mendelian Randomization31 however, this does require the CpG
site to have a strong association with a SNP. Given that we only
identified mQTLs at 18 of the 220 Bonferroni significant cross-
cortex DMPs, this approach is not suitable for most of the loci we
identified. At an experimental level establishing causality is dif-
ficult to address in post-mortem human studies, and therefore
longitudinal studies in animal models, or modelling methylomic
dysfunction through epigenetic editing in vitro will be useful
approaches to address these issues. In addition, examining DNA
methylation signatures in brain samples in pre-clinical indivi-
duals (i.e. during midlife) will be important for establishing the
temporal pattern of epigenetic changes relative to the pathology.

In summary, we present intra-tissue and cross-cortex meta-
analyses of AD EWAS, highlighting numerous Bonferroni sig-
nificant DMPs in the individual cortical regions and across the
cortex, but not in the cerebellum, which were replicated in two
independent cohorts. A number of these loci are novel and
warrant further study to explore their role in disease etiology. We
highlight that the nominated epigenetic changes are largely
independent of genetic effects, with only 18 of the 220 Bonferroni
significant DMPs showing a mQTL. We provide evidence that
robust epigenomic changes in the cortex can predict the level of
pathology in a sample. Looking to the future it will be important
to explore the relationship between DNA methylation and gene
expression in AD brain.

Methods
Cohorts. Six sample cohorts were used for discovery in this study as they all had
DNA methylation data generated on the 450K array for >50 donors, enabling us to
take a powerful meta-analysis approach to identify DNA methylation differences in
AD. As our analyses focused specifically on neuropathology (tau)-associated dif-
ferential methylation, inclusion criteria for all samples used in the discovery or
replication cohorts was having post-mortem neurofibrillary tangle Braak stage
available. For each discovery sample cohort DNA methylation was quantified using
the 450K array. The London 1 cohort comprised of prefrontal cortex, superior
temporal gyrus, entorhinal cortex, and cerebellum tissue obtained from 113
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individuals archived in the MRC London Neurodegenerative Disease Brain Bank
and published by Lunnon et al.5. The London 2 cohort comprised entorhinal cortex
and cerebellum samples obtained from an additional 95 individuals from the MRC
London Neurodegenerative Disease Brain Bank published by Smith and
colleagues8. The Mount Sinai cohort comprised of prefrontal cortex and superior
temporal gyrus tissue obtained from 146 individuals archived in the Mount Sinai
Alzheimer’s Disease and Schizophrenia Brain Bank published by Smith and
colleagues7. The Arizona 1 cohort consisted of 302 middle temporal gyrus and
cerebellum samples from The Sun Health Research Institute Brain Donation
Program32 published by Brokaw et al.12. The Arizona 2 cohort consisted of an
additional 88 temporal gyrus and cerebellum samples from Lardonije et al.10. The
ROSMAP cohort consisted of 711 samples from the Rush University Medical
Center: Religious Order Study (ROS) and the Memory and Aging Project (MAP),
which were previously published by De Jager and colleagues6. For replication
purposes we used two further replication datasets. The Munich cohort from
Neurobiobank Munich (NBM), which had bulk prefrontal cortex 450K array data
from 45 donors, and 450K array data from fluorescence-activated cell sorted
neuronal and non-neuronal (glial) populations from the occipital cortex from 26
donors as described by Gasparoni et al.11. The Brains for Dementia Research
(BDR) cohort consisted of bulk prefrontal cortex Illumina Infinium EPIC array
data from 590 donors, as described by Shireby et al.15. Demographic information
for all eight cohorts is available in Table 1. Ethical approval for the study was
granted from the University of Exeter Medical School Research Ethics Committee
(13/02/009).

Data quality control and harmonization. All computations and statistical ana-
lyses were performed using R 3.5.233 and Bioconductor 3.834. A MethylumiSet
object was created from iDATs using the readEPIC function in the wateRmelon
package35 and RGChannelSet object was created using the minfi package35. Sam-
ples were excluded from further steps if (a) the mean background intensity of
negative probes <1000, (b) the mean detection P values >0.005, (c) the mean
intensity of methylated or unmethylated signals were three standard deviations
above or below the mean, (d) the bisulfite conversion efficiency <80%, (e) there was
a mismatch between reported and predicted sex, or (f) the 65 SNP probes on the
array show a modest level of correlation (using a cut-off of 0.65) between two
samples (whereby the sample with the higher Braak score was retained). Sample
and probe exclusion was performed using the pfilter function within the wateR-
melon package36, with the following criteria used for exclusion: samples with a
detection P > 0.05 in more than 5% of probes, probes with <three beadcount in 5%
of samples and probes having 1% of samples with a detection P value >0.05. Finally,
probes with common (minor allele frequency >5%) SNPs in the single base
extension position or probes that are nonspecific or mis-mapped were
excluded37,38, leaving 403,763 probes for analysis. Samples numbers after quality
control are those shown in Table 1.

Quantile normalization was applied using the dasen function in the
wateRmelon package36. For the discovery cohorts, DNA methylation data were
corrected by regressing out the effects of age and sex in all samples in each cohort
and tissue separately, with neuron/glia proportions included as an additional
covariate in cortical regions. The neuron/glia proportions were calculated using the
CETS package39, and were not included as a co-variate for the cerebellum as the
neuronal nuclear protein (NeuN) that was used to generate the neuron/glia
algorithm is not expressed by some cerebellar neurons40. These three variables (age,
sex, neuron/glia proportions) were regressed out of the data as we found that they
strongly correlated with either of the first two principal components of the DNA
methylation data in most of the datasets. Other potential sources of technical and
biological variation (post-mortem interval, ancestry, plate, chip, study and bisulfite
treatment batch) did not correlate as strongly with methylation in most datasets.
We opted to use surrogate variables as a consistent method to control for variation
derived from these measured and other unknown variables across all datasets.
Surrogate variables were calculated using the sva function in the SVA package41.
Linear regression analyses were then performed with respect to Braak stage
(modelled as a continuous variable) using residuals and a variable number of
surrogate variables for each study until the inflation index (lambda) fell below 1.2
(see Supplementary Data 17). The surrogate variables included for each cohort
correlated with the technical and biological variables that we had not regressed out
earlier, demonstrating that this method appropriately controlled for variation not
driven by Braak stage. Quantile-quantile plots for the four intra-tissue and the
cross-cortex meta-analyses are shown in Supplementary Fig. 20. Although it
appears from these plots that there is P value inflation, it is worth noting that (a)
lambda for all meta-analyses <1.2 and (b) P value inflation is commonly observed
in many DNA methylation studies and standard methods to control for this in
GWAS are not suitable for EWAS data42.

Intra-tissue meta-analysis. We used the estimated coefficients and SEs from the
six discovery cohorts to undertake an inverse variance intra-tissue meta-analysis
independently in each available tissue using the metagen function within the Meta
package43, which applies inverse variance weighting. The estimates and SEs from
individual cohort Braak linear regression analyses were added to the model for each
tissue. The prefrontal cortex analyses included three cohorts (N= 961: London 1,
Mount Sinai, ROSMAP), the temporal gyrus analyses included four cohorts (N=

608: London 1, Mount Sinai, Arizona 1, Arizona 2) and the entorhinal cortex
analyses included two cohorts (N= 189: London 1, London 2). The cerebellum
analyses included data from four cohorts (N= 533: London 1, London 2, Arizona 1
and Arizona 2) although the cerebellum data for the Arizona 1 and 2 cohorts was
generated in the same experiment, and so these were combined together as a single
dataset. The ESs and corresponding SEs reported in this study correspond to the
corrected DNA methylation (beta) difference between Braak 0 and Braak VI
individuals. Bonferroni significance was defined as P < 1.238 × 10−7 to account for
403,763 tests. A fixed effects meta-analysis are the results primarily reported as it is
the most appropriate model for our study as it can more reliably estimate the
pooled effect and therefore the standard error and P value. However, in the Sup-
plementary Data we do also report the results of the random-effects meta-analysis
as ~10% of Bonferroni significant DMPs in the intra-tissue meta-analysis had high
heterogeneity and in which case the results from the random-effects model should
also be considered.

Cross-cortex meta-analysis. As multiple cortical brain regions were available for
the London 1 and Mount Sinai cohorts, a mixed model was performed using the
lme function within the nlme package44. Estimate coefficients and SEs from each
EWAS were extracted and were subjected to bacon42 to control for bias and
inflation, after which a fixed-effect inverse variance meta-analysis was performed
across all discovery cohorts using the metagen function. A fixed effects model was
selected in this instance for consistency with the intra-tissue meta-analysis,
although the random-effects meta-analysis results also shown in Supplementary
Data 7.

Replication analyses. For the Munich replication cohort, we extracted the beta
values for the 220 cross-cortex Bonferroni significant DMPs. This DNA methy-
lation data were then corrected for age, sex and neuron/glia proportions (bulk
tissue only) prior to performing a linear regression analysis with respect to Braak
stage. For the BDR replication cohort, we were provided with beta values for the
208 cross-cortex Bonferroni significant DMPs that were present on the EPIC array.
This data had been corrected for age, sex, neuron/glia proportions, batch and
principal component 1, before the linear regression analysis was performed with
respect to Braak stage, with Bacon used to control for inflation. Additional
information on the BDR dataset can be found in Shireby et al.15.

Annotations, pathway and regional analyses. Probes were annotated for tables
using both the Illumina (UCSC) gene annotation (which is derived from the
genomic overlap of probes with RefSeq genes or up to 1500 bp from the tran-
scription start site of a gene) and Genomic Regions Enrichment of Annotations
Tool (GREAT)45 annotation version 4.0.4 (which annotates a DMP to genes with a
transcription start site within 5 kb upstream, or 1 kb downstream). Pathway ana-
lyses were performed on the Illumina (UCSC) annotated genes corresponding to the
220 Bonferroni significant cross-cortex DMPs (N= 121 genes). We used the
‘gometh’ function within the missMethyl package (version 1.20.0)46, which per-
forms one-sided hypergeometric tests and adjusts the test for the uneven number of
probes per gene and pathway redundancy. The identified GO terms were subjected
to the online tool REViGO (available at http://revigo.irb.hr/)47, to reduce the
number of redundant functional terms based on semantic similarity between
ontology terms. Resnik’s measure was used to compute the similarity of terms and a
medium between terms similarity of 0.7 was allowed. As methylation at neighboring
CpG sites can be highly correlated we used a method developed to identify SNPs in
LD to identify independent signals14. For the 220 Bonferroni significant cross-cortex
DMPs we used a threshold of r < 0.6 over 1 mb to identify 165 independent (non-
highly correlated) methylation signals. To identify DMRs consisting of multiple
DMPs we used the Python package comb-p48 with a distance of 500 bp and a seeded
P value of 1.0 × 10−4. Comb-p was selected for DMR identification over alternative
methods as it uses P values as input and so was the most suitable method for calling
DMRs in the cross-cortex meta-analysis where multiple brain regions were available
for some of the individuals. We have used comb-p to call DMRs in a number of our
previous EWAS in AD, including studies where we have validated the top DMRs
using an alternative technology such as pyrosequencing5,8,22.

Genomic enrichment analyses. To test for an enrichment of DMPs in specific
genomic features (i.e. CpG islands, shelves, shores, non-CpG island regions) in
certain genomic regions (i.e. intergenic, distal promoter, proximal promoter, gene
body, downstream) we annotated all DMPs with Slieker annotation16 and per-
formed a two-sided Fisher’s exact test comparing to all probes analysed (N=
403,763). We also used a Fisher’s exact test to test for an enrichment of DMPs in
genomic regions related to transcription based on the Illumina annotation
(TSS1500, TSS200, 5′ UTR, 1st exon, gene body, 3′ UTR). To investigate whether
any of the 220 Bonferroni significant cross-cortex DMPs were driven by genetic
variation we used the xQTL resource to identify which of these DMPs are estab-
lished cis-mQTLs17. To explore whether Braak-associated methylation was enri-
ched in known AD GWAS variants we used Brown’s method to combine together
P values from our meta-analyses for probes residing in the LD blocks around the
genome-wide significant (P < 5.0 × 10−8) GWAS variants identified by the stage
one meta-analysis of Kunkle et al.18. Of the 24 LD blocks reported by Kunkle and
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colleagues, 20 contained >1 CpG site on the 450K array and the P values for each
CpG in a given block were combined using Brown’s method, which accounts for
the correlation structure between probes, with the regional P values adjusted to
correct for multiple testing.

Quantifying variance in Braak pathology explained by DNA methylation sig-
natures. For this analysis control samples (Braak low [0–II]: N= 407) and AD
cases (Braak high [V–VI]: N= 589) from the cross cortex discovery dataset were
used for training a classifier. A penalized regression model was used to select the
optimum (N= 110) CpG probes from the 220 cross-cortex Bonferroni significant
DMPs that determined case-control status in the training dataset using the R
package GLMnet49. Elastic net uses a combination of ridge and lasso regression, in
which alpha (α)= 0 corresponds to ridge, whilst α= 1 corresponds to lasso, the
elastic net α parameter used was 0.5. The lambda value was derived when using 10-
fold cross validation on the training dataset. The model was then tested for AUC
ROC value, confidence intervals (CI) and variance explained in the testing dataset
as well as the independent replication Munich (Braak 0–II: N= 9, Braak V–VI:
N= 29) and BDR (Braak 0–II: N= 196, Braak V–VI: N= 258) prefrontal cortex
datasets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within the article,
Supplementary Information or from the authors upon request. Some of the datasets are
also available on GEO including London 1 data (GSE59685), London 2 data
(GSE105109), Mount Sinai data (GSE80970), Arizona 1 data (GSE134379), Arizona 2
data (GSE109627) and Munich data (GSE66351). The BDR data is available from the
authors upon reasonable request. We have developed an online database, which can
present summary statistics, which is available from our website: www.epigenomicslab.
com/ad-meta-analysis/.

Code availability
All scripts for data analyses performed in this manuscript can be found at: https://github.
com/rgs212/Meta-analysis-Smith50.
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