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Abstract

According to reinforcement learning theory of decision making, reward expectation is computed 

by integrating past rewards with a fixed timescale. By contrast, we found that a wide range of time 

constants is available across cortical neurons recorded from monkeys performing a competitive 

game task. By recognizing that reward modulates neural activity multiplicatively, we found that 

one or two time constants of reward memory can be extracted for each neuron in prefrontal, 

cingulate, and parietal cortex. These timescales ranged from hundreds of milliseconds to tens of 

seconds, according to a power-law distribution, which is consistent across areas and reproduced by 

a “reservoir” neural network model. These neuronal memory timescales were weakly but 

significantly correlated with those of monkey's decisions. Our findings suggest a flexible memory 

system, where neural subpopulations with distinct sets of long or short memory timescales may be 

selectively deployed according to the task demands.

In economic behavior, choices that have a higher reward expectation are favoured, and 

adaptive decision-making depends on our ability to learn reward expectation through past 

rewards associated with our actions. The neural mechanisms underlying this process have 

been the subject of growing interest, since they could provide important insights on how 

learning occurs in the brain, and how humans and other animals make economic decisions. 

Neural correlates of reward valuation have been observed in different studies1-3, and 

interpreted in the framework of reinforcement learning (RL) theory4-5. In the RL model, 

reward expectation is computed by weighting the previous rewards through a temporal filter, 

which quantifies the memory trace of rewards. The optimal duration of the filter (memory) 

depends on the predictability of the environment. If the payoffs for the same option change 

often and unpredictably, then rewards should be filtered on short timescales in order to track 

the fast changes in a volatile environment; by contrast, if past rewards reliably predict future 

ones, then they should be filtered on long timescales to exploit a stable environment6-7. The 
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neural mechanism underlying switching between long and short time constants for 

computing reward expectation remains poorly understood.

On which timescale does the brain filter rewards? So far a few studies have estimated the 

time constant of this filter from behavior, and assessed how past rewards affect choice 

selection8-12, but the neural mechanisms responsible for such timescales are still unknown. 

To address this issue, we analyzed the activity of cortical neurons in monkeys performing a 

competitive game task. Using a method based on the idea that reward memory modulates 

neural activity multiplicatively, we show that memory time constants can be extracted from 

the activity of single neurons. We found that a different timescale for reward memory can be 

associated with each recorded neuron, and there is a wide range of timescales across 

neurons, obeying a power law distribution. The same distribution is found across three 

different cortical areas, anterior cingulate cortex (ACCd), dorsolateral prefrontal cortex 

(DLPFC), and lateral intraparietal cortex (LIP). Hence, each area is endowed with a 

reservoir of time constants for reward memory, which are distributed heterogeneously across 

neurons.

We found that the time constants estimated from pairs of simultaneously recorded neurons 

are uncorrelated, implying that our results cannot be explained by a single time constant for 

all neurons that changes slowly over time. On the other hand, our analysis of animal's 

behavior suggests that the timescale over which reward events affect decisions changes 

across experimental sessions, possibly reflecting the animal's attempt to increase its payoff 

by exploring different strategies. The time constants for reward memory at the behavioural 

and neuronal levels were weakly but significantly correlated across experimental sessions. 

Finally, we show that a randomly connected circuit model, akin to a “reservoir” 

network13-15, can reproduce the observed distribution of timescales, provided that the 

network operates at the critical point (or “edge of chaos”)16-18. Taken together, these 

findings suggest a distributed, flexible neural system for reward valuation and memory.

Results

Multiplicative memory traces in cortical neurons

We analyzed single-neuron activity recorded from three cortical areas, dorsal anterior 

cingulate cortex19 (ACCd, 154 neurons), dorsolateral prefrontal cortex20 (DLPFC, 322 

neurons) and lateral intraparietal cortex21 (LIP, 205 neurons) of six monkeys performing a 

matching pennies task11,22 (Fig.1a). In each trial, the animal chose one of two targets by 

shifting its gaze, while the computer made its choice by simulating a rational opponent; the 

animal received reward if its choice matched that of the computer. We computed firing rates 

of each neuron by counting the spikes in twelve time intervals of 250ms (coloured bars in 

Fig. 1a), which are referred to as epochs. This includes six epochs (1.5s) before saccade 

initiation (pre-fixation, fore-period, delay) and six epochs (1.5s) after saccade completion 

(choice fixation, feedback and post-feedback). Consistent with previous studies23-25, we 

found that the activity of neurons varied substantially in different trial epochs (99% of 

neurons, 675/681, ANOVA p<0.05). The time course of the activity in successive epochs 

differs substantially in different neurons. Fig.2a shows the firing rate in the different epochs 

of a trial (squares), averaged across all trials, of an example neuron recorded in ACCd. The 
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activity of this neuron decreased after the saccade to a chosen target and increased after the 

feedback period.

We then examined the effect of reward on the activity of neurons. Neural activity in all three 

cortical areas carries the information of past reward events19-22. In order to characterize the 

memory trace of each neuron, we introduce a novel approach that is schematically illustrated 

in Fig.1 for two hypothetical neurons (panels (b) and (c)). The black line shows the average 

time course of neural activity in three consecutive trials, which is constant for the neuron in 

panel (b), while it depends on the trial epoch for the neuron in panel (c). The red lines 

illustrate the change in activity, with respect to the average time course, due to the outcome 

in the first trial (reward or no reward). The difference with respect to the black line is 

defined as the memory trace of the reward, and is shown in the inset. Note that the average 

time course, in black, is obtained by averaging the two red traces, corresponding to the two 

possible outcomes. Panel (b) shows a simple decay of the memory trace of reward, which is 

slowly fading in time, and where both the memory trace and the average time course are 

independent of the trial epoch. By contrast, in panel (c) the time course of neural activity 

depends on the trial epoch, and is nearly zero during the delay period. This implies that this 

hypothetical neuron cannot signal any reward memory during the delay period, since it 

never produces any spikes during that epoch. Starting with this intuition, we hypothesized 

that the memory trace in a given epoch is proportional to the average firing rate in that 

epoch. In that case, in addition to the decay, the memory trace (inset) is modulated 

(multiplied) by the average firing rate. In the next section, we show that, although individual 

neurons differ in their firing rates and the types of memory decay, this general principle 

holds.

We define the “epoch code” as the firing rate averaged across all trials, as a function of the 

different epochs (e.g. Fig.2a), denoted by g(k) (k=1,…,12 epochs, in temporal order). In 

order to separate the contributions of epoch and reward memory to neural activity, we 

modeled the firing rate measured in trial n and epoch k, denoted by FR(n,k), as the sum of 

the epoch code g(k) and a filter f(n',k) convolved with the animal's reward history in 

previous trials (last 5 trials; in each trial Rew = +1 indicates reward; Rew = −1, no-reward), 

namely,

(1)

The filter f describes how the reward in a given trial affects neural activity in the subsequent 

trials, assuming that the effects of rewards in successive trials are additive. For example, 

f(3,4) describes the effect of a reward after 3 trials during epoch 4. The filter f corresponds 

to our definition of memory trace as illustrated in Fig.1b,c; it reflects the deviation from the 

epoch-dependent time course g(k) due to a reward event. Since in this study Rew(n) is 

nearly a random sequence11 of +1 and −1, averaging the firing rates over all trials recovers 

the epoch code g(k) (sum over n of FR(n,k)). We estimated the memory trace f(n',k) by 

applying multiple linear regression to the data according to Eq.(1). One example memory 

trace is given in Fig. 2b (same neuron as in Fig.2a, colour denotes epoch), which is negative, 

i.e. reward decreases the activity of this neuron in subsequent trials. The memory trace does 

not decay monotonically, but its strength is modulated throughout the trial consistent with 
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the epoch code. According to the multiplicative model illustrated in Fig.1b,c, we assumed 

that the memory trace f is factorized into the epoch code g(k) and an exponential function 

ex(t), as described by the following equation,

(2)

The filter f considered in Eq.(1) is now replaced by the product of two factors g(k)·ex(t), 

where ex(t) = A·e−t/τ is an exponential decay function, and t is the time elapsed since the 

outcome (see Methods). By applying this model to the neuron shown in Figure 2, for 

example, we obtained a timescale of memory decay τ = 6.9 trials and an amplitude A = 

−0.24. The exponential function (ex) and its modulated envelope (g·ex) are shown in Fig. 2b 

by the continuous and broken line, respectively. According to the factorization (f = g·ex), the 

constant of proportionality between the memory trace f and the exponential function ex, 

estimated in different epochs (Fig.2c), should reproduce the epoch code g(k). The epoch 

codes for the neuron closely followed these predictions, indicating that the factorization is 

nearly exact (Fig. 2a). The factorization index (FI) of a neuron, defined as the correlation 

coefficient between the epoch code and the proportionality constants (slopes), was 0.97 for 

this neuron.

The modulated decay of the memory trace was observed in the majority of the recorded 

neurons in all three cortical areas. In some cases, the sum of two exponential functions, ex(t) 

= A1·e−t/τ1+A2·e−t/τ2, fitted the data better than a single exponential, in which case the 

memory trace often exhibits a biphasic characteristic (with A1 and A2 of the opposite sign, 

see fourth column of Fig 3). Using the Bayesian Information Criterion (BIC), we found that 

the best fit was a single exponential for 269 neurons and double exponentials for 268 

neurons, while the remaining 144 neurons were fitted best by a model with ex(t)=0. The 

latter is interpreted as no memory, and the corresponding neurons were excluded from 

further analysis. We tested the validity of the fitting procedure by randomly reshuffling the 

order of trials in each session, and we consistently found that 96% of neurons (656/681) 

show no memory after reshuffling.

Fig.3 shows six example neurons, two for each of the three cortical areas, and for each 

neuron, the average firing rate (epoch code) and memory trace are plotted. Different neurons 

have different magnitudes and time courses of the firing rate, and they all show a decaying 

memory trace modulated by the epoch code. We stress that the broken lines in the plots of 

memory traces (Fig 3, second and fourth columns) are not the result of fitting the coloured 

dots; they rather result from an independent application of the factorial model in Eq.2 to 

each neuron's firing rate. Although the activity of most neurons is consistent with an 

exponential decay of the memory trace (79%, 537/681, single and double exponentials), a 

fraction of them did not show a modulation of the memory by the epoch code. This is 

quantified by the factorization index, which is significantly positive for approximately half 

of the neurons showing a memory effect (46%, 249/537, p<0.05 t-test). We found a small 

but significant difference in the fraction of neurons with memory across different areas (87% 

in ACCd, 75% in DLPFC and 78% in LIP, χ2-test p=0.01).
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We next investigated how the timescales of memory traces were distributed across neurons 

in different cortical areas. Fig.4 shows the distribution of timescales in all cortical areas 

(black circles), whereas coloured lines show the distribution for the three different areas, 

which are remarkably consistent. The red line shows a power law fit with an exponent of −2. 

The power law implies that timescales are distributed in a wide range of values. In fact, for a 

power law distribution ~ τ−2, the variance increases with the sample size and, in principle, 

arbitrarily large timescales would be observed with a proportionally large increment in the 

number of recorded neurons. Note that the power law tail applies for timescales equal to or 

larger than one trial, which are those timescales that might be involved in memory (see 

below). About 20% of all recorded neurons (133/681) had timescale larger than one trial 

(29% in ACCd, 19% in DLPFC and 13% in LIP, χ2-test p=0.0005, see Fig.S1c-e in the 

Supplementary Material). Since the timescales from one (τ) and two-exponential functions 

(τ1, τ2) were distributed similarly (see Fig.S1a,b in the Supplementary Material), we pooled 

all timescales (a total of 805 timescales from 269 single exponential and 268 double 

exponential, i.e. 269 τ, 268 τ1 and 268 τ2). ACCd contributed 197 timescales from 71 single 

exponential and 63 double exponential functions (71 τ, 63 τ1 and 63 τ2), whereas 20 neurons 

had no memory. A total of 362 timescales were obtained from DLPFC with 124 single and 

119 double exponential functions (124 τ, 119 τ1 and 119 τ2), and 79 DLPFC neurons had no 

memory. LIP neurons contributed 246 timescales from 74 single and 86 double exponential 

functions (74 τ, 86 τ1 and 86 τ2), and 45 LIP neurons showed no memory.

Comparison with behavior

Are the neural memory timescales relevant for learning and decision-making? The matching 

pennies task used in this study does not necessarily require the memory of past rewards, and 

the optimal strategy for the monkey is to choose randomly and unpredictably. Although the 

overall performance of monkeys was nearly optimal, their trial-by-trial decisions, locally in 

time, were influenced by previous rewards and actions11,19-22. We analyzed the behavior 

of monkeys in different experimental sessions by fitting their decisions with a standard 

reinforcement learning model5 (RL, see Methods). The learning rate parameter (α) of the 

RL model quantifies the behavioral timescale of the memory trace (α ~ 1/τ). The resulting 

likelihood was significantly larger than the likelihood for reshuffled trials, and the model fit 

with behavioural data is significant in 78% of the sessions (196/250, p<0.05). We found that 

the timescales of behavioural memory vary across sessions, possibly suggesting that 

monkeys adopt different strategies in successive sessions. For the 196 sessions fitted by the 

RL model, the distribution of behavioral timescales followed a power law distribution (Fig.

5a), and the exponent was consistent with that measured in the neural distribution. Hence, 

the distributions of behavioural and neuronal timescales qualitatively match with each other. 

This result suggests that there might be a relationship between the memory trace observed at 

the neural level and that observed at the behavioural level. We tested this hypothesis by 

comparing the neural timescale for reward memory observed during a given recording 

session with the behavioural timescale fit in that session (when both are available), and we 

found a small but significant correlation across sessions (Fig.5b, R=0.12, p=0.003), 

suggesting that the activity of single neurons is related, albeit weakly, to the behavioural 

strategy of the animals.
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Do the reward memory timescales also change within a single session? We determined 

whether the timescales are stable within a single recording session by dividing each session 

in two separate blocks (halves) of trials, and we re-estimated both the neural and behavioral 

timescales separately in the two blocks. Results are shown in Fig.6, suggesting that both the 

behavioral (panel (a)) and neural memory timescales (panel (b)) were fairly stable within a 

single session.

The neural and behavioural timescales might fluctuate together across sessions, but their 

small correlation indicates that there is only a weak coupling. Indeed, we found that at any 

moment, the time scales of reward memory varied across cortical neurons. In each recording 

session of our study, only few neurons were simultaneously recorded (about two on 

average). When we estimated memory timescales for pairs of simultaneously recorded 

neurons, the correlation between their time constants was not significantly different from 

zero (312 pairs of timescales, R=0.07, p=0.2). This result suggests that the broad distribution 

of memory time constants observed in the data reflects a variability of timescales across 

different neurons, rather than resulting from a memory timescale fixed for all neurons that 

collectively changes across sessions.

Taken together, our results support the conclusion that a diverse collection of neural 

memory timescales, a “reservoir”, is available across cortical neurons at any given time. The 

animal's behavior may be determined by a readout system that is able to sample, at different 

times, from a variety of timescales present in the reservoir. The reservoir might not be static, 

and it may change its distribution of timescales from day to day. During competitive games, 

the subjects might also take into account their recent choices to determine their future 

behavior. Therefore, we tested whether any memory trace of choice exists in the recorded 

neurons, by applying the same analysis of Eqs.(1) and (2), substituting reward with choice. 

Our results indicate that multiplicative modulation and a power law distribution of memory 

timescales also hold for memory trace of past choices (see Fig.S2 in the Supplementary 

Material). A detailed analysis of the neural memory of choice, and of how the two types of 

memory for reward and choice may be combined, will be the subject of a separate study.

Neural network model for memory traces

What neural mechanism(s) accounts for the statistical properties of reward memory 

described above? To address this question, we constructed a simple neural network model 

that reproduces the observed neural memory traces (Fig.7a, Fig.S3). Model neurons 

integrate the reward signals by receiving a current impulse whenever a reward is obtained. 

Since neurons are recurrently connected and form loops, their activities reverberate and are 

able to maintain the memory of reward events. However, those memories decay and are 

slowly forgotten according to a time course which depend on the pattern of synaptic 

connections among neuron pairs. Specifically, the activity of neurons evolve according to 

dv/dt = J·v(t) + h·Rew(t), where v is a vector of M components, each component is the 

activity of a different neuron in the reservoir (M=1000 neurons in simulations); J is the 

synaptic connectivity matrix of their interactions; h is a vector representing the relative 

strength of the reward input Rew(t) to each neuron. For our purposes, the specific form of 

the input signals is not important; the results will depend only on the synaptic matrix J. We 
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assumed the connection weights (the entries of the matrix J) to be randomly distributed, and 

we looked for candidate probability distributions such that the network model reproduces 

the distributions of timescales and amplitudes observed in the neural data from behaving 

monkeys (see Supplementary Text). Amplitudes determine the extent of the immediate 

response of neurons to reward, with respect to the average activity. While time constants 

have a power-law distribution (Fig.4), the distribution of amplitudes is exponential (Fig.8a, 

where we used A for one exponential and A1+A2 for two exponentials).

First, we found that the connection weights must be broadly distributed among neuron pairs, 

and this endows the network with a wide variety of timescales. Intuitively, the stronger the 

connection, the longer is the reverberation of the input and hence the timescale of the 

memory trace. However, if connections are also heterogeneous, then weaker connections, 

and smaller timescales, will also contribute to the memory traces. If the width of the 

distribution of connection weights reaches a certain threshold, a power-law distribution of 

timescales is observed (Fig.7b), which is characterized by a high probability for both small 

and large timescales. This is a distinct type of network state “at a critical point” (or “edge of 

chaos” in nonlinear systems), which have been proposed to be desirable for many kinds of 

computations16-18. In our model, the criticality corresponds to the situation where the 

system is on the verge of losing stability. When the width of the connection distribution 

exceeds the critical level, the linear system is unstable and the model would need to be 

extended to include nonlinearities such as saturation of neural activity. For the sake of 

simplicity, here we limit ourselves to the linear model, which is sufficient for the purpose of 

reproducing the observed power-law distribution of timescales under specific conditions.

A second desirable property of the network is that its dynamics is robust with respect to 

small changes of the connection strengths. If the coding of the memory changes dramatically 

as a result of small changes in the connection strengths (e.g. synaptic noise), it would be 

difficult for a downstream system to interpret that code. A known property of the connection 

matrix J ensuring that kind of robustness is normality, which guarantees that there is an 

orthogonal set of eigenvectors26 (but see Refs 27-29 for non-normal neural network 

models). If J is normal, we showed that the amplitudes of the memory traces follow an 

exponential distribution (Fig.8b), consistent with the experimental observations (Fig.8a). To 

our knowledge, our results provide the first complete statistical description of a network 

connection matrix based on in vivo neuronal recordings of behaving animals (see also Refs 

30-32).

Discussion

The power law of timescales suggests that the duration of reward memory trace is highly 

diverse across cortical neurons. The same diversity is observed across three cortical areas, 

suggesting that the computation of reward memory is a distributed process. This finding is in 

line with an increasing appreciation that neural encoding of cognitive variables is highly 

heterogeneous and distributed33,34. Prefrontal cortex plays a major role in dynamic 

decision processes encoding and updating values1-4. While anterior cingulate cortex was 

implicated in monitoring conflict between incompatible response processes35 or detecting 

performance errors36, recent studies have placed more emphasis on its role in representing 
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both positive and negative values19,37. Parietal cortex has also been implicated in decision 

making based on the value representation as well as on the accumulation of sensory 

evidence38,39.

Our work provides a comprehensive description of memory traces in terms of a specific 

distribution of timescales across a population of neurons, and introduces a framework that 

could potentially be applicable to different brain areas and different types of memory. The 

concept of multiplicative modulation of memory traces can be used to deduce the neural 

memory timescales in various tasks, and to test the idea that a different set of time constants 

is selected to adapt to a specific environment6,7. Although the global optimal strategy for 

the matching pennies task is to choose randomly and therefore does not require memory, the 

animals made their decisions largely on the basis of their reward history11,19-22. Perhaps in 

the persistent search for an appropriate strategy, they sampled different timescales across 

experimental sessions. We found that those behavioural timescales followed a similar 

distribution as, and were weakly yet significantly correlated with, the timescales observed at 

the neural level. This suggests the possibility that the behavior might be driven by a 

mechanism that appropriately samples from a range of timescales in a neural network, which 

has yet to be elucidated. Alternatively, this weak correlation might be caused by factors that 

are currently not understood. Note that the observed range is different for the neuronal 

versus behavioural time constants. Also, we have not attempted to fit the behavioural data 

by an RL model endowed with multiple time constants. Future work is needed to further 

assess the correlation between neural memory traces and behavior. Regardless, our results 

suggest that reward memory with multiple time constants might be used to compute the 

value functions in reinforcement learning theory in more than one timescale. Similarly, the 

double exponential decay of memory may correspond to a reward prediction error signal: if 

the short timescale (τ1) is small enough (about one trial or smaller) then the corresponding 

exponential filter will respond primarily to the reward in the present trial, while the long 

timescale (τ2) may provide a value signal by weighting the rewards in the past few trials. 

When the two exponentials have opposite sign, they roughly subtract the value from the 

actual reward signal, therefore providing a reward prediction error. It was already noted 

previously that a biphasic filtering in dopamine neurons might provide a reward prediction 

error40.

Besides the memory for reward, the activity of primate cortical neurons reflects other types 

of short-term memory. The time course of memory-related activity varies across different 

neurons and different task protocols, including persistent, ramping, and multi-phasic 

activity41-43. Memory traces in the neural signals are mixed with other task-dependent 

factors44,45, and it has been debated whether other processes involved in goal-directed 

behavior could be mistakenly identified as memory, such as spatial attention46, motor 

planning47, anticipation of future events48, or timing49. The epoch code in the present task 

might include many of those processes, and we have shown that memory signals could be 

dissociated from those factors by assuming a multiplicative computation. The hypothesis of 

a multiplicative effect of memory on neural activity could be tested by looking more closely 

at the multi-phasic time course of memory-related activity observed in other experiments. 

The computational advantage of the multiplicative effect of memory needs to be further 
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investigated. For example, it may serve the appropriate recall of memories at different 

epochs (see Supplementary Text), as observed in a recent study50.

Reservoir-type networks have been the subject of active research in computational 

neuroscience and machine learning13-15, but so far experimental support that such networks 

are adopted by the brain has been lacking. Those models predict that the memory of input 

signals is stored in a large, recurrent and heterogeneous network (reservoir), in a distributed 

manner, and that a desired output is obtained by a trainable combination of the response 

signals in the reservoir. The heterogeneous encoding of the input allows the flexible learning 

of different output functions. In our context, that may correspond to a flexible change in 

strategy resulting from the variety of timescales for reward memory present in the reservoir. 

We present direct experimental evidence, at the level of single neurons, for a high-

dimensional reservoir network of reward memory traces in prefrontal, cingulate and parietal 

areas of the primate cortex. This empirical finding is reproduced by a simple computational 

model, which suggests that reward filtering in the cortex involves a dynamic reservoir 

network operating at the critical point, leading to a power-law distribution of time constants. 

The output of the network, supposedly driving the animal's behavior, is not explicitly 

modeled in our equations. Further studies are necessary to elucidate how the motor areas 

read out the memory of reward and choices, and how the two are combined to subserve 

adaptive choice behavior.

Power-law distributions are unusual, as they imply a high probability for both large and 

small time constants. A diversity of time constants also means a broad range of learning 

rates, since the two are inversely related to each other. This is noteworthy, since a shift from 

an exploitive to an exploratory strategy as the environment becomes uncertain is often 

assessed by an increase in the learning rate10. It remains to be seen whether the same or 

different distribution of learning rates holds across species when faced to a similar 

environment, and whether it can be flexibly modified to adapt to different circumstances. 

Ultimately, this framework could lead to a new model for predicting how reward 

expectation is computed and how reward memory affects decision-making.

Methods

Animal preparation and electrophysiological recording

All the data were collected using the same behavioural task and electrophysiological 

techniques. Here we give a brief summary of the methods, described previously in Refs. 

19-21. Five male and one female rhesus monkeys were used. The animal's head was fixed 

during the experiment, and eye movements were monitored at a sampling rate of 225 Hz 

with a high-speed eye tracker (Thomas Recording). Animals performed an oculomotor free-

choice task22 (matching pennies, Fig. 1a). Trials began with the animal fixating a small 

yellow square (0.9° × 0.9°) displayed at the center of the computer screen for a 0.5-s fore-

period. Two identical green disks were presented at 5° eccentricity in diametrically opposed 

locations along the horizontal meridian for a 0.5-s delay period. The extinction of the central 

target signalled the animal to shift its gaze toward one of the targets within 1 s. After the 

animal maintained its fixation on the chosen peripheral target for 0.5 s, a red ring appeared 

around the target selected by the computer. The animal was rewarded only if it chose the 
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same target as the computer, which simulated a rational decision maker in the matching 

pennies game trying to minimize the animal's expected payoff. Before each trial, the 

computer made a prediction for the animal's choice by computing the conditional 

probabilities for the animal to choose each target given its choices and rewards in the 

preceding four trials. The computer made a random choice if the probabilities were 

consistent with unbiased behaviors, otherwise it would bias its selection against the 

prediction. Single-unit activity was recorded using a 5-channel multi-electrode recording 

system (Thomas Recording) from three cortical regions; the dorsal bank of anterior 

cingulate sulcus19 (ACCd, area 24c, 2 male monkeys, 8-12kg), dorsolateral prefrontal 

cortex20,22 (DLPFC anterior to the frontal eye field; 4 male and 1 female monkeys, 

5-12kg), lateral bank of the intraparietal sulcus21 (LIP, 2 male and 1 female monkeys, 

5-11kg). All the neurons were recorded without pre-screening. The placement of the 

recording chamber was guided by magnetic resonance (MR) images, and confirmed by 

metal pins inserted in known anatomical locations at the end of the experiment in some 

animals. In three animals, two recording chambers were used for simultaneous recording of 

DLPFC and LIP. All the experimental procedures were approved by the Institutional Animal 

Care and Use Committee at Yale University and conformed to the Public Health Services 

Policy on Humane Care and Use of Laboratory Animals and the Guide for the Care and Use 

of Laboratory Animals.

Multiple regression analysis of memory traces

This section explains the method used to estimate the memory traces f(n,k) from the 

observed neuronal firing rates and sequence of rewards. In each trial, firing rates were 

computed in twelve time intervals of 250ms each (see Fig.1a). The following model was 

used to fit the firing rates: the firing rate of a neuron depends on the trial epoch k, following 

the epoch code g(k); after the outcome is revealed (feedback period) in each trial, the firing 

rate is changed, by an amount of +f(n',k) for reward and −f(n',k) for no reward, where n' is 

the number of trials elapsed since that outcome. Effects of outcomes in successive trials are 

additive. The firing rate FR(n,k) is thus described by the following equation

(M.1)

where the index k labels the epoch (k = 1,…,12) and the indices n and n' label trials. The 

effect of reward extends up to 5 trials (n'=0,…,5), while the index n runs over all N trials 

available in each neuron recording (starting after the first 5 trials, n = 6,…,N). In order to 

determine f(n,k) and g(k), we applied a multiple regression model by using the known 

FR(n,k) and Rew(n) (= +1/−1 for reward/no reward). Note that the epoch code g(k) depends 

on the twelve different epochs within a trial, while the reward Rew(n) depends only on trial 

number. As a consequence, the regression can be applied separately for each epoch. For a 

fixed epoch k, the seven unknown variables g(k), f(0,k), f(1,k), f(2,k), f(3,k), f(4,k), f(5,k) 

can be determined by using the known values of FR(n,k) and Rew(n) in N–5 trials (n=6,

…,N). Using a parsimonious matrix notation and omitting the epoch label k, Eq.(M.1) can 

be rewritten as

(M.2)
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Where the vector of the known firing rates FR is equal to

(M.3)

The seven unknown variables have been rewritten by a single vector f

(M.4)

The matrix Rew is known, given by

(M.5)

Because the sequence of rewards is nearly random and N is large, different columns of the 

matrix Rew are nearly orthogonal. This implies that the matrix product (RewT·Rew) is well 

conditioned, and the solution fsol minimizing the variance of the noise (or squared error) is 

robust and given by

(M.6)

This expression is used to obtain the results. The confidence intervals for fsol are derived 

from the residual errors according to the MATLAB function regress.

The matrix product (RewT·Rew) is approximately proportional to the identity matrix. When 

RewT·Rew=I, the filter is equal to the firing rate averaged over all trials, where the average 

is conditioned on the past rewards. This is equivalent to the cross-correlation between the 

input (rewards) and output (firing rates), and its application would correspond to a reverse 

correlation method, commonly used in the analysis of sensory neural coding. However, in 

the main text we showed only results from the multiple regression analysis. For simplicity, 

we used an average over all trials as the definition of epoch code g(k) in the main text, 

making use of the above approximation.

Exponential memory traces and model selection

The model considered here is similar to that of Eq.(M.1), but we assumed that memory 

traces are exponential function ex(t) rescaled by the epoch code g(k), namely,

(M.7)

The filter f considered in Eq.(M.1) is replaced by g(k)·ex(t). We considered two different 

exponential functions, a single exponential and the sum of two exponentials, namely,

(M.8)
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(M.9)

where τ1 < τ2. The physical time t depends on all indices k, n and n', because the time 

elapsed between different epochs and between successive trials is variable, due to the 

variability in the time taken by the animal to start a trial and to make a saccade to one of the 

two targets. Based on the time stamps generated during the experiment, we computed the 

physical time t = t(n,k,n') as the difference between the time corresponding to a given trial 

and epoch (n,k) and the time corresponding to the feedback epoch of n' trials in the past (up 

to 5 trials). Note that the memory trace f obtained by the multi-linear regression is not 

computed in physical time. In that case, we assumed that the saccade reaction time of the 

animal in all trials is equal to 120ms (average), and that the time elapsed between the 

initiation of two successive trials is 3.4s (median).

The epoch code g(k) was fixed by the firing rates averaged across trials, while the 

parameters of the exponential function (two parameters (A,τ) when using Eq.(M.8) and four 

parameters (A1,τ1,A2,τ2) when using Eq.(M.9)) were estimated using a non-linear curve-

fitting procedure, implemented by the MATLAB function fminsearch, minimizing the 

variance of the noise (sum of squared errors) in Eq.(M.7). Fitting was repeated ten times for 

each neuron and each model, in the search for a global minimum of the error. Any 

parameters resulting in unrealistic values were discarded, such as negative values of τ, τ1 or 

τ2, values of τ larger than 20 trials, and the absolute value of A or (A1+A2) larger than 4. 

We determined the parameters for all neurons in both exponential models, single and double 

exponential, and denoted the corresponding square errors by σ1
2 and σ2

2, respectively. We 

also computed the variance of firing rate, σ0
2, as the square error for a zero filter model, i.e. 

ex=0 or FR=g+noise. Among the three models, the selection of the appropriate one for each 

neuron was determined according to the Bayesian information criterion (BIC):

(M.10)

where pi denotes the number of parameters in the model, and p0=1, p1=3, p2=5, for 0, 1 and 

2 exponential fit, respectively (note that the variance σi
2 is also a parameter); m is the 

number of data points, m=12(N–5) (12 epochs and N–5 trials for each neuron). The model 

with the minimum BIC was chosen for each neuron. As a control of the fitting procedure, 

we reshuffled the label n in the firing rates FR(n,k), assigning to each firing rate the value of 

a random trial, and we repeated the entire procedure.

Reinforcement learning fit of behavior

We applied a standard reinforcement learning model5, separately for each recording session, 

to analyze how the animal's choice was influenced by the outcomes of its previous choices. 

For example, when right target R was chosen in trial t, the value function for R, denoted by 

QR(t), was updated according to:

(M.11)
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Where Rew(t) denotes the reward received by the animal in trial t, and the term inside 

square is commonly defined as the reward prediction error (RPE), i.e. the discrepancy 

between the actual reward and the expected reward. A similar equation holds for the left 

value function QL(t). The probability that the animal would choose the rightward target in 

trial t, PR(t), was determined by the SoftMax transformation as follows:

(M.12)

where β, referred to as the inverse temperature, determines the randomness of the animal's 

choices. Model parameters (α,β) were estimated separately for each recording session by 

using a maximum likelihood procedure, where the likelihood is the product of probabilities 

in all trials (Eq.(M.12)), in each trial using R or L according to the actual monkey's choice. 

The parameter values maximizing the likelihood were found by using the MATLAB 

function fminsearch. The significance of the estimation was assessed, for each session, by 

constructing 100 surrogate sessions, each one obtained by reshuffling of the order of trials. 

The distribution of 100 maximum likelihoods obtained by the estimation procedure was then 

compared with the maximum likelihood of the non-reshuffled case, which was considered 

significant if not smaller than the five largest reshuffled likelihoods.

Value functions and RPE signals can be related to the exponential filters estimated for 

individual neurons. If a single value function (for a given stimulus/action) and a single 

reward (delivered at time zero) are considered, the solution of Eq.(M.11), can be 

approximated by an exponential response, i.e. Q(t) = (1−1/τ)t ~ exp(−t/τ), provided that τ is 

larger than 1 trial. When a sequence of rewards is delivered instead of a single one, the value 

is a superposition of the exponential responses for each reward.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Behavioral task and schematic illustration of memory traces. (a) In the matching pennies 

task, the monkey was required to fixate a central spot during the fore-period (500 ms) and 

delay period (500 ms) while the two choice targets (green disks) were displayed. Then, the 

central spot disappeared and the monkey made a saccadic eye movement to one of the two 

choice targets, and maintained its gaze on the chosen target for 500ms (choice fixation). A 

red ring appearing around the correct target revealed the computer's choice, and if it matched 

the animal's choice (as illustrated), reward was delivered 500 ms later. Coloured bars at the 

bottom show the twelve 250ms intervals (epochs) used to compute the firing rates in the 

analysis. (b,c) Two hypothetical neurons. The neuron in panel b has a constant average 

firing rate (black line), while the firing rate of neuron in panel c depends on the trial epoch, 

repeating in each of the three consecutive trials. Red lines show the change in activity due to 

the outcome in the first trial (continuous line – reward, dashed line – no reward). The inset 

shows the memory trace of the reward, given by the difference between the red and black 

lines. The memory trace of neuron in panel b shows a simple decay, while that of neuron in 

panel c is multiplicatively modulated by the epoch-dependent activity.
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Figure 2. 
An example neuron in ACCd showing multiplicative modulation of memory traces by the 

epoch code. The colors in all panels denote trial epochs, following the format of Fig.1a. (a) 

The epoch code for an example neuron, i.e. the firing rate computed in twelve 250ms epochs 

within a trial and averaged over all trials (black squares, interpolated by the black line, 

broken during the saccade). Coloured disks correspond to the slopes fitted in panel c (error 

bars, ±SE); their correlation with the epoch coded quantifies the multiplicative modulation, 

and is referred to as the factorization index (FI=0.97 in this example). (b) The memory trace 

f of past rewards in the same neuron, up to five trials in the past. Coloured dots and error 

bars (±SE) show the results of the multiple linear regression model, Eq.(1), and the black 

line is the exponential fit (Eq.(2), continuous line, exponential ex(t); broken line, modulated 

envelope g·ex(t)). The parameters for the fit are shown (A, amplitude; τ, timescale). (c) The 

memory trace f (from panel b), plotted as a function of the exponential function ex. The 

lines are least squares fit, each line encompassing a particular epoch and all five trial lags. 

According to the factorization, the slopes should correspond to the epoch code, f = g·ex. The 

values of the slopes are plotted in panel a (coloured squares) and compared with the epoch 

code g(k).
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Figure 3. 
Firing rates and memory traces for six neurons, two for each of the three recorded areas. For 

each of the six neurons, epoch codes (first and third column) and memory traces (second and 

fourth column) are shown, in the same format as in Figure 2a and 2b. The second column 

shows monotonic decay of the memory trace, while the fourth column shows biphasic 

memory traces (double exponential). Different neurons have different firing rates, both in 

magnitude and time course, and different types of memory decay, but they are all consistent 

with an exponential (single or double) decay of the memory modulated by the epoch code. 

FI's for those neurons are: (a,b) 0.98, (c,d) 0.91, (e,f) 0.98, (g,h) 0.84, (i,j) 0.97, (k,l) 0.61.
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Figure 4. 
Distribution of the timescales characterizing the reward memory traces across neurons. 

Black disks show the density for the neurons in all three cortical areas in the corresponding 

bin, i.e. the count of timescales divided by the bin length (error bars: ±SE). The inset shows 

the count of the timescales in the same bins, in a linear scale (a total of 805 timescales). 

Grey markers show the density separately for each of the three different cortical areas 

(square - ACCd, 197 timescales; upward triangle - DLPFC, 362; downward triangle - LIP, 

246). The red line (red curve in the inset) shows a power law fit (exponent = −2).
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Figure 5. 
Distribution of behavioral timescales and their relationship with the neural memory 

timescales. (a) Time constant τ estimated from the learning rate α (τ ~ 1/α) of a 

reinforcement learning model fit to the monkey's behavioural data. Black disks show the 

density in the corresponding bin, i.e. the count of timescales divided by the bin length (error 

bars, ±SE). The inset shows the count of the timescales in the same bins, in linear scale (a 

total of 196 timescales). The red line (red curve in the inset) shows a power law fit 

(exponent = −1.9). (b) The scatterplot of behavioural vs neural memory timescales obtained 

from all sessions where both were available. Neural timescales from different types of fit (τ 

from single exponential and τ1, τ2 from double exponential) are shown in different colours. 

Behavioral and neural timescales show a small but significant correlation (R=0.12, 

p=0.003).
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Figure 6. 
Stability of behavioural (a) and neural memory timescales (b) within an experimental 

session. In both panels, the scatterplot of the timescales fitted in the second half of the trials 

is plotted against the timescales fitted in the first half of the trials in the same session. The 

correlation is significantly different from zero in both cases (R=0.4 for behavioural 

timescales, R=0.77 for neural timescales), suggesting that both types of timescales are fairly 

stable within a single session. Neural memory timescales from different types of fit (τ from 

single exponential and τ1, τ2 from double exponential) are shown in different colours.
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Figure 7. 
Neural responses (memory traces) in the model and distribution of timescales of the memory 

traces in model neurons. (a) The memory traces of four model neurons. (b) Black disks show 

the density of timescales in the corresponding bin, i.e. the count of timescales divided by the 

bin length (error bars, ±SE). The inset shows the count of the timescales in the same bins, in 

linear scales (a total of 1000 timescales). The red line (red curve in the inset) shows a power 

law fit (exponent = −2).
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Figure 8. 
Distribution of amplitudes of the memory traces in the neural data (a) and model (b). In both 

panels, black disks show the density in the corresponding bin, i.e. the count of timescales 

divided by the bin length (error bars, ±SE). The inset shows the count of the amplitudes in 

the same bins, in a linear scale (537 amplitudes in the data, 1000 in the model). Amplitudes 

are plotted as absolute values, since the distribution is approximately symmetric (symmetry 

is shown in the inset). Grey markers show the density separately for the three different 

recorded areas (squares: ACCd, 134 amplitudes, upward triangles: DLPFC, 243, downward 

triangles: LIP, 160). The red line (red curve in the inset) shows an exponential fit (e−|A|).
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