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Meta-analysis of the global gene expression profile of
triple-negative breast cancer identifies genes for the
prognostication and treatment of aggressive breast cancer
F Al-Ejeh1, PT Simpson2, JM Sanus2, K Klein3, M Kalimutho1, W Shi1, M Miranda1,4, J Kutasovic2, A Raghavendra2, J Madore2, L Reid2,
L Krause5, G Chenevix-Trench6, SR Lakhani2,7,8 and KK Khanna1,4

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype lacking expression of estrogen and progesterone
receptors (ER/PR) and HER2, thus limiting therapy options. We hypothesized that meta-analysis of TNBC gene expression profiles
would illuminate mechanisms underlying the aggressive nature of this disease and identify therapeutic targets. Meta-analysis in the
Oncomine database identified 206 genes that were recurrently deregulated in TNBC compared with non-TNBC and in tumors that
metastasized or led to death within 5 years. This ‘aggressiveness gene list’ was enriched for two core functions/metagenes:
chromosomal instability (CIN) and ER signaling metagenes. We calculated an ‘aggressiveness score’ as the ratio of the CIN
metagene to the ER metagene, which identified aggressive tumors in breast cancer data sets regardless of subtype or other
clinico-pathological indicators. A score calculated from six genes from the CIN metagene and two genes from the ER metagene
recapitulated the aggressiveness score. By multivariate survival analysis, we show that our aggressiveness scores (from 206 genes or
the 8 representative genes) outperformed several published prognostic signatures. Small interfering RNA screen revealed that the
CIN metagene holds therapeutic targets against TNBC. Particularly, the inhibition of TTK significantly reduced the survival of TNBC
cells and synergized with docetaxel in vitro. Importantly, mitosis-independent expression of TTK protein was associated with
aggressive subgroups, poor survival and further stratified outcome within grade 3, lymph node-positive, HER2-positive and TNBC
patients. In conclusion, we identified the core components of CIN and ER metagenes that identify aggressive breast tumors and
have therapeutic potential in TNBC and aggressive breast tumors. Prognostication from these metagenes at the mRNA level was
limited to ER-positive tumors. However, we provide evidence that mitosis-independent expression of TTK protein was prognostic in
TNBC and other aggressive breast cancer subgroups, suggesting that protection of CIN/aneuploidy drives aggressiveness and
treatment resistance.
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INTRODUCTION
Estrogen and progesterone receptors (ER and PR) and HER2 are
standard biomarkers used in clinical practice to aid the
histopathological classification of breast cancer and management
decisions. Hormone receptor- and HER2-positive tumors benefit
from tamoxifen and anti-HER2 therapies, respectively. On the
other hand, there are currently no targeted drug therapies for
management of triple-negative breast cancer (TNBC), which lacks
the expression of hormone receptors and HER2. TNBCs are
more sensitive to chemotherapy than hormone receptor-positive
tumors, because they are generally more proliferative, and
pathological complete responses after chemotherapy are more
likely in TNBC than in non-TNBC.1,2 Paradoxically, TNBC is
associated with poorer survival than non-TNBC, owing to more

frequent relapse in TNBC patients with residual disease.1,2 Only
31% of TNBC patients experience pathological complete
responses after chemotherapy,3 emphasizing the need for
targeted therapies.

Transcriptome profiling has been used to dissect the hetero-
geneity of breast cancer into five intrinsic ‘PAM50’ subtypes:
Luminal A, Luminal B, Basal-like, HER2 and normal-like subtypes
that relate to clinical outcomes.4–8 Several gene signatures have
been developed to predict outcome or response to treatment,
including MammaPrint,9 OncotypeDx10,11 and Theros.12–15 These
commercial signatures rely on models that select geneson the
basis of clinical phenotypes such as tumor response or survival
time. Notwithstanding their clinical utilities, these models fail to
identify core biological mechanisms for the phenotypes of
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interest. Recently, an approach based on biological function-
driven gene coexpression signatures, ‘attractor metagenes’, has
been applied to the prediction of survival in multiple cancers
including breast cancer.16,17 Three attractor metagenes,
chromosomal instability (CIN), mesenchymal transition and
lymphocyte-specific immune recruitment, were highly predictive
of breast cancer survival.17 To some extent, this approach may
helpclarify some previously published signatures. For example,
proliferation and cell cycle signatures have been previously
reported to associate with tumor grade and prognosis.15,18 The
attractor metagene approach suggests that these signatures are
essentially CIN attractors enriched with genes that function at the
kinetochore–microtubule interface.16

In this study, we initially performed multiple class comparisons
using the Oncomine database,19 aiming to identify genes
that were commonly deregulated in subgroups exemplifying
aggressive clinical behavior: TNBC compared to non-TNBC and
normal breast and tumors associated with distant metastasis and/
or death compared to their respective counterparts. This analysis
revealed a list of 206 recurrently deregulated genes that were
enriched for CIN and ER metagenes. We derived an aggressiveness
score based on the ratio of the CIN metagene to the ER metagene,
and found that this score identified aggressive tumors in several
other data sets regardless of the molecular subtype and clinico-

pathological indicators. The aggressiveness score outperformed
MammaPrint,9 OncotypeDx,10,11 proliferation per cell cycle16,20

and CIN20 signatures in multivariate Cox proportional hazards
comparisons. Next, we found that depletion of proteins involved
in kinetochore binding or chromosome segregation (TTK, TPX2,
NDC80 and PBK) could be therapeutic and significantly reduced
the survival of TNBC cell lines in vitro, particularly TTK. TTK
inhibition with small-molecule inhibitor affected the survival of
TNBC cell lines. We found that both TTK mRNA and protein
levels associated with aggressive tumor phenotypes. Mitosis-
independent expression of TTK protein was prognostic in TNBC
and other aggressive breast cancer subgroups, suggesting that
protection of CIN/aneuploidy drives aggressiveness and treatment
resistance. Finally, we show that the combination of TTK inhibition
with chemotherapy was effective in vitro in the treatment of cells
that overexpress TTK, thus providing a therapeutic option for the
protected CIN phenotype.

RESULTS
Meta-analysis of gene expression profiles in TNBC
We performed a meta-analysis of published gene expression data,
irrespective of platform, using the Oncomine database19 (version
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Figure 1. Correlation of breast cancer subtypes and the aggressiveness gene list. The METABRIC data set was visualized according to the
expression of the 206 genes (Supplementary Table 1) in the aggressiveness gene list. The aggressiveness score for each tumor was calculated
as the ratio of the CIN metagene (average value for CIN genes expression) to the ER metagene (average value for ER genes expression). (a) The
expression of the aggressiveness gene list according to the GENIUS histological classification. The box plot shows the aggressiveness score of
the histological subtypes. (b) The overall survival of patients in the METABRIC data set was analyzed according to the aggressiveness score
(upper row: by quartiles; lower row: by median) in all patients, non-TNBC patients and in patients with ERþ Grade 2 tumors. The hazard ratio
(HR), CI and P-value for comparisons of upper quartile vs lower quartiles (upper row) and at the dichotomy across the median (high vs low) are
shown (log-rank test, GraphPad Prism). The number of patients (n) in each group is shown in brackets. The expression of the aggressiveness
score according to PAM50 and intClust subtypes and survival curves for ERþ grade 3 and PAM50 subtypes according to the aggressiveness
score are in Supplementary Figures 4 and 5.
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4.5). We compared the expression profiles of 492 TNBC cases vs
1382 non-TNBC cases in eight data sets and found 1600
overexpressed and 1580 underexpressed genes in the TNBC
cases (cutoff median P-value across the 8 data sets o1� 10� 5

from a Student’s t-test, Supplementary Figure 1). We also
compared the expression profiles of primary breast cancers from
512 patients who developed metastases vs 732 patients who did
not develop metastases at 5 years (7 data sets in total) to identify
500 overexpressed and 480 underexpressed genes in the
metastasis cases (cutoff median P-value across the seven data
sets o0.05 from a Student’s t-test, Supplementary Figure 1).
Finally, we compared the expression profiles of 232 primary breast
tumors from patients who died within 5 years with 879 patients
who survived in seven data sets and found 500 overexpressed and
500 underexpressed genes in the poor survivors (cutoff median
P-value across the seven data sets o0.05 from a Student’s t-test,
Supplementary Figure 1). The union of these analyses—genes
deregulated in TNBC and in tumors that metastasized or resulted
in death within 5 years—generated a gene list of 305 over-
expressed and 341 underexpressed genes (Supplementary Figures

2A and B). The deregulated genes from our analyses did not
consider deregulation in comparison with normal breast tissue.
To identify cancer-related genes, we used the METABRIC
(Molecular Taxonomy of Breast Cancer International Consortium)
data set21 as a validation data set. Of the 305 overexpressed
and 341 underexpressed genes identified in the meta-analysis,
117 overexpressed and 89 underexpressed genes (206 genes)
were deregulated in TNBC (250 cases) vs 144 adjacent normal
tissue (1.5-fold-change cutoff; Supplementary Figures 2C and D).

Clinico-pathological features of the aggressiveness gene list
We compared the 206 genes from the above analysis, which we
called the ‘aggressiveness gene list’ (Supplementary Table 1), with
the recently described metagene attractors16,17 and found that 45
of the overexpressed genes were in the CIN metagene, whereas
19 of the underexpressed genes were in the ER metagene
(Supplementary Figure 3). The expression of the aggressiveness
gene list was visualized in the METABRIC data set, stratified
according to the histological subtypes by the GENUIS
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Figure 2. Network analysis of the aggressiveness gene list. (a) Ingenuity Pathway Analysis was performed using direct interactions on the 206
genes in the aggressiveness gene list (red is overexpressed and green is underexpressed). One network of high direct interactions was
identified. (b) The genes in the network in A were investigated for their correlation with the aggressiveness score and overall survival
(Supplementary Table 2), and eight genes (MAPT, MYB, MELK, MCM10, CENPA, EXO1, TTK and KIF2C) with the highest correlation were still
connected in a direct interaction network. (c) The overall survival of patients in the METABRIC data set was analyzed according to the score
from the 8 genes in C (upper row: by quartiles; lower row: by median) in all patients, non-TNBC patients and in patients with ERþ Grade 2
tumors.
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classification.22 As shown in Figure 1a, ER� /HER2� (TNBC), in
comparison with adjacent normal breast tissue, showed the
highest upregulation of CIN genes (red in the heat map) and
downregulation of ER signaling genes (green in the heat map).
Tumors of other subtypes showed a range of deregulation of
these genes. To quantify these trends, we calculated the
‘aggressiveness score’ as the ratio of the CIN metagene (average
of expression of CIN genes) to the ER metagene (average of
expression of ER genes). The aggressiveness score was highest for
ER� /HER2� (TNBC), followed by HER2þ then ERþ tumors (box
plot in Figure 1). We also analyzed the aggressiveness score in the
five intrinsic breast cancer subtypes predefined by the PAM50
classification8 and the ten integrative clustering subtypes
defined by combined clustering of gene expression and copy
number data subtypes21 (Supplementary Figure 4). The aggres-
siveness score was highest in the basal-like and the integrative
clustering 10 subtypes, which are enriched for TNBC and have
poor prognosis.

Interestingly, tumors of various subtypes scored higher than the
median aggressiveness score (line in box plots in Figure 1 and
Supplementary Figure 4). To this end, we examined the overall
survival of patients in the METABRIC data set stratified by quartiles
and also dichotomized by the median of the aggressiveness score.
Tumors with a high aggressiveness score had worse survival than
those with a low aggressiveness score. The survival of patients
with non-TNBC tumors with high aggressiveness score had poor
survival that was similar to TNBC patients (Figure 1b). Among ERþ

tumors, we found that a high aggressiveness score predicted poor
survival in both Grade 2 (Figure 1b) and Grade 3 (Supplementary

Figure 4) tumors. Tumors with a high aggressiveness score
showed poor survival regardless of the PAM50 intrinsic breast
cancer subtypes (Supplementary Figure 4). The PAM50 classifier
was prognostic only in tumors with a low aggressiveness score
(Supplementary Figure 5).

One network of direct interactions in the aggressiveness gene list
associates with patient survival
We performed network analysis on the aggressiveness gene list by
using the Ingenuity Pathway Analysis and found a network with
direct interactions between 97 of the 206 deregulated genes
(Figure 2a). To find the minimal genes that represent the
aggressiveness genes and this network, the 97 genes in this
network were analyzed for their correlation with the CIN or ER
metagenes and overall survival in the METABRIC data-set
(Supplementary Table 2). We selected genes according to the
following criteria: (1) highest correlation with the metagenes
(Pearson’s correlation coefficient 40.7); (2) association with
overall survival (Cox proportional hazards model, Po0.001); and
(3) more than two-fold deregulation with least standard deviation
of expression between high and low aggressiveness score tumors.
These analyses identified two genes from the ER metagene (MAPT
and MYB) and six genes from the CIN metagene (MELK, MCM10,
CENPA, EXO1, TTK and KIF2C). These eight genes were maintained
in a directly connected network (Figure 2b). The classification of
tumors (high vs low across the median) from these eight genes,
again representing the ratio of CIN and ER metagenes, predicted
the classification from the 206 genes with 95% sensitivity and
97% specificity by prediction of microarray (PAM) analysis (data
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Figure 3. Survival of patients stratified by the 8-gene score in the METABRIC data set. The overall survival of patients in the METABRIC data set
was analyzed according to the 8-gene score in selected settings in all patients (a) or in ER-positive patients only (b). (a) TP53 mutation was
compared in high vs low 8-gene score (split by the median). The expression of the proliferation marker Ki67 was divided by dichotomy across
the median, and patients in each of these groups were then stratified according to their 8-gene score (split by quartiles). Disease stages (Stage
I—Stage III) were stratified by the median 8-gene score. (b) ERþ Grade 3, ERþ lymph node-negative (LN� ) and ERþ LNþ tumors were
stratified by the quartiles.
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not shown). Importantly, a high score from these eight genes
identified poor survival in all patients, non-TNBC patients and ERþ

Grade 2 (Figure 2c).

Next, we explored the 8-gene score for prognosis in several
molecular and histological settings in the METABRIC data set. The
survival of patients with tumors with wild-type TP53 was stratified

Table 1. Univariate and multivariate survival analysis of the aggressiveness score in the METABRIC data set

Univariate Cox proportional hazards model Multivariate Cox proportional hazards model (stepwise)

HR (95% CI) P-value HR (95% CI) P-value

206-gene score (high, low) 1.6173 (1.4174–1.8454) o0.0001 1.5188 (1.3227–1.7440) o0.0001
8-gene score (high, low) 1.5853 (1.2883–1.8103) o0.0001 1.4760 (1.2198–1.6344) o0.0001
Lymph node (þ , � ) 1.8594 (1.6289–2.1224) o0.0001 1.6807 (1.4610–1.9334) o0.0001
Tumor size (T1, T2, T3) 1.4354 (1.2813–1.6080) o0.0001 1.3666 (1.1642–1.6041) 0.0001
HER2 status (þ , � ) 1.4565 (1.2537–1.6920) o0.0001 1.1983 (1.0183–1.4101) 0.0302
Tumor grade (1, 2, 3) 1.3500 (1.2095–1.5067) o0.0001 NS NS
Ki67 (þ , � ) 1.4184 (1.2399–1.6226) o0.0001 NS NS
MammaPrint (high, low) 1.3320 (1.1669–1.5204) o0.0001 NS NS
CIN4 (high, low) 1.5310 (1.3413–1.7476) o0.0001 NS NS
CIN75 (high, low) 1.5004 (1.3132–1.7143) o0.0001 NS NS
Cell cycle (high, low) 1.5018 (1.3145–1.7158) o0.0001 NS NS
ER status (þ , � ) 1.3016 (1.1167–1.5170) 0.0008 NS NS
OncotypeDx (L, I, H) 1.2672 (1.0909–1.4720) 0.0021 NS NS
Treatment (yes, no) 1.1646 (0.9753–1.2639) 0.0939
Age (o40, 440) 1.1235 (0.8480–1.4886) 0.4196

Abbreviations: CI, confidence interval; ER, estrogen receptor; HR, hazard ratio; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium;
NS, not significant. OncoTypeDx scores are low (L,o18), intermediate (I, 18–31), high (H431). All variables were included in the multivariate Cox proportional
hazards model analysis, and by stepwise model only significant covariants were included in the final analysis shown in Table.
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Lymph node (+, -) 0.9409 (0.4327 - 2.0459) 0.8785

Grade (1, 2, 3) 1.0276 (0.7176 - 1.4713) 0.8826

0.9833 (0.5223 - 1.8512) 0.9587

Covariate HR (95% CI) P-value

8 genes Score (high, low) 2.2123 (1.4438 - 3.3910) 0.0003

0.0721.5586 (0.9634 - 2.5214)

8 genes Score (high, low) 2.1445 (1.0906 - 4.2176) 0.015

Lymph node (+, -) 2.8619 (1.6138 - 5.0751) 0.0003

0.5962 (0.2470 - 1.4394) 0.2526

p53 (mut, WT) 1.2607 (0.6670 - 2.3825) 0.478

Grade (1, 2, 3) 1.2947 (0.8032 - 2.0869) 0.2914

8 genes Score (high, low) 3.4442 (1.5914 - 7.4540) 0.0018

Lymph node (+, -) 5.4825 (1.7112 - 16.753) 0.0044

Tumor size (1, 2, 3) 1.6679 (1.0037 - 2.7718) 0.0495

1.6261 (0.7056 - 3.7473) 0.2561

Grade (1, 2, 3) 0.8233 (0.4696 - 1.4435) 0.4996

1.2716 (0.5866 - 2.7561) 0.5448

Figure 4. The 8-gene score associates with the survival of breast cancer patients. Four published data sets were used to validate the 8-gene
score as a predictor of survival. The 8-gene score was calculated for tumors in each of the data sets, and the survival of patients was stratified
according to the median 8-gene score; (a) GSE2990,15 (b) GSE3494,64 (c) GSE203465 and (d) GSE25066.51 The hazard ratio (HR), CI and P-value
for comparisons of high vs low 8-gene score are shown in the Kaplan–Meier survival curves (log-rank test, GraphPad Prism). The number of
patients (n) is shown in brackets. The table in each panel shows multivariate survival analysis using the Cox proportional hazard model
including all available conventional indicators.
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by the 8-gene score (Figure 3a). Patients with mutant TP53, which
were mainly of high score, showed worse survival than those with
wild-type TP53, suggesting that TP53 mutation is an independent
prognostic factor. Patients with tumors with low or high
expression of the proliferation marker Ki67 were stratified by the
8-gene score, suggesting that the 8-gene score is independent of
proliferation (Figure 3a). We also found that the 8-gene score
stratified the survival of patients from all stages of disease (Stage
I—Stage III, Figure 3a). We focused on ERþ and found that, as in
the case of ERþ Grade 2 tumors (Figure 2c), the 8-gene score
stratified the survival of patients with ERþ Grade 3 tumors
(Figure 3b). Importantly, the 8-gene score identified ERþLN� and
ERþLNþ patients who had poor survival similar to ER�LN� and
ER�LNþ patients, respectively (Figure 3b). High 8-gene score
identified poor survival of patients with tumors of all PAM50
subtypes, and the prognostication by PAM50 classification was
only evident in low 8-gene score tumors (Supplementary Figure 5).

The 8-gene aggressiveness score in multivariate survival analysis
To exclude the possibility that the aggressiveness score—
calculated using the 206 genes or the 8 genes—was redundant,
we performed multivariate Cox proportional hazards model
analysis in the METABRIC data-set (with Illumina platform) in
comparison with conventional clinical variables and current gene
signatures. As detailed in Table 1, the aggressiveness scores
significantly associated with patient survival when compared
with conventional variables and outperformed MammaPrint,9

OncotypeDx,10,11 proliferation per cell cycle16,20 and CIN20

signatures. Moreover, our aggressiveness scores outperformed
the CIN4 classifier,23 which was recently developed from the CIN
signature.

We performed validation of the six CIN and two ER genes in
univariate survival association using the online tool Kaplan–Meier
plotter24 (Supplementary Results and Supplementary Tables 3
and 4). More importantly, we performed multivariate survival
analysis of the 8-gene score in four data sets (with Affymetrix

platform from the Gene Expression Omnibus (GEO); GSE2990,
GSE3494, GSE2034 and GSE25066). Again, the score was
significantly associated with survival in a multivariate Cox
proportional hazards model in every data set tested (Figure 4).
Altogether, we found that in multiple data sets that used different
platforms the 8-gene score identified patients with poor survival
independently of other clinico-pathological indicators and
outperformed current signatures.

Therapeutic targets in the aggressiveness gene list
The overexpressed genes in the CIN metagene are involved in, or
regulate, mitosis, spindle assembly and checkpoint, kinetochore
attachment, chromosome segregation and mitotic exit. Thus, it is
not surprising that several of the overexpressed genes are targets
for molecular inhibitors, such as CDK125,26 and AURKA/AURKB,27

and have been trialed preclinically and clinically.28 To this end, we
performed small interfering RNA (siRNA) depletion against 25
genes of the CIN metagene in three TNBC cell lines: MDA-MB-231,
SUM159PT and Hs578T. We found that knockdown of four genes
(TTK, TPX2, NDC80 and PBK) consistently affected the survival of
these cells (Figure 5a and Supplementary Table 2). The knock-
down of TTK showed the worst survival, and as it was in the
8-gene score we selected TTK for further studies. We found that
TTK protein was higher in TNBC cell lines compared with the near-
normal MCF10A cell line and luminal/HER2 cell lines (Figure 5b).
Next, we used the specific TTK inhibitor (TTKi) AZ3146 against a
panel of breast cancer cell lines and found that TNBC cell lines
were more sensitive to the TTKi (Figure 5c).

TTK expression in aggressive tumors and potential for
combination therapy
To further study the potential of TTK as therapeutic target, we
investigated TTK expression at the mRNA and protein levels in
breast cancer patients. We analyzed the correlation of TTK mRNA
expression, dichotomized at the median, with clinico-pathological
indicators in the METABRIC data set of 2000 patients (Table 2).

0.01
0

20

40

60

80

100 MCF7 (Lu)
T47D (Lu)
ZR751 (Lu)
HCC1143 (Ba)
MDA468 (Ba)
MDA435 (Ba)
MDA436 (Ba)
BT20 (Ba)
MDA231 (Ba)

S
u

rv
iv

al
 (

%
)

Luminal HER2TNBC

Tubulin

TTK

M
C

F
10

A

M
D

A
M

23
1

M
D

A
M

B
43

5

M
D

A
M

B
43

6

H
B

L
10

0

H
S

57
8T

M
D

A
M

B
45

3

B
T

47
4

S
K

B
R

3

M
D

A
M

B
33

0

M
D

A
M

B
46

8

S
V

C
T

B
T

20

H
C

C
11

43

P
M

C
42

E
T

M
C

F
7

T
47

D

Z
R

75
1

K
P

L
-1

M
D

A
M

B
17

5

0

25

50

75

100

***

*
* *

S
u

rv
iv

al
 (

%
)

0

1

2

4
6
8

M
C

F
7

T
47

D

Z
R

75
1

H
C

C
11

43

M
D

A
46

8

M
D

A
43

5

M
D

A
43

6

B
T

20

M
D

A
23

1

luminalS
c 

C
T

R
L

C
D

C
20

C
E

N
P

A
C

K
S

B
1

B
IR

C
5

A
N

P
32

E
T

O
P

2A
B

U
B

1
M

C
M

10
R

F
C

4
C

E
N

P
F

R
A

D
51

A
P

M
E

L
K

G
P

S
M

2
D

L
G

A
P

5
T

Y
M

S
T

R
O

A
P

M
Y

B
L

1
F

O
X

M
1

A
S

P
M

S
K

P
2

C
E

P
55

P
B

K
N

D
C

80
T

P
X

2
T

T
K TTKi (�M)

0.1 1 10

T
T

K
i I

C
50

 (
�M

)

TNBC

Figure 5. Therapeutic targets in the aggressiveness gene list. (a) The TNBC cell lines, MDA-MB-231, SUM159PT and Hs578T were treated with
control siRNA (Scrambled, Sc CTRL) or siRNA targeting the specified genes, and the survival of these cells was compared on day 6. Data show
the average from the three cell lines where each cell line was treated in triplicate. *Po0.05 and ***Po0.001 from one-way ANOVA analysis
performed using GraphPad Prism. Data for individual cell lines are shown in Supplementary Table 2. (b) A panel of breast cancer cell lines was
used to prepare lysates for immunoblotting of TTK. Tubulin was used as the loading control. (c) Dose response curves for the treatment of
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High TTK mRNA expression was associated with younger age
of tumor diagnosis, larger tumor size, higher tumor grade,
higher Ki67 expression, TP53 mutations, an ER/PR-negative tumor
phenotype, HER2 positivity and TNBC. On the basis of PAM50
subtyping, high TTK mRNA was associated with luminal B, HER2-
enriched and basal-like tumors.

We also analyzed TTK expression in a cohort of breast cancer
patients (406 patients) by IHC. TTK and its activity are detected at
all stages of the cell cycle; however, TTK is upregulated during
mitosis.29 Thus, we observed TTK staining in non-mitotic cells to
define high TTK levels (score of 3) in order to exclude the bias of
elevated TTK level during mitosis. Similar to TTK mRNA, high TTK
protein level (Table 3) was associated with high tumor grade,
high Ki67 expression and TNBC status (particularly basal TNBC).
Moreover, in agreement with the associations of TTK mRNA with
the PAM50 intrinsic subtypes, high TTK protein was observed in
HER2-positive and proliferative ERþ /HER2� tumors (most related
to luminal B) but low TTK protein was observed in nonproliferative
ERþ /HER2� tumors (most related to luminal A). In addition to

these associations with aggressive phenotypes, we also found that
high TTK protein significantly associated with aggressive histolo-
gical features including ductal histology, pushing tumor border,
lymph node involvement, nuclear pleomorphism, lymphocytic
infiltration and higher mitotic scores (Table 3). Altogether, similar
to the high aggressiveness score from the 206 genes or 8 genes,
high levels of TTK mRNA and protein span across breast cancer
subtypes marking aggressive behavior.

We examined the association of TTK protein level with patient
survival and found that breast tumors with high TTK staining
(category 3) had worse survival than other staining groups at
5 years (Figures 6a and b) and 10 and 20 years (Supplementary
Figure 6). Importantly, high TTK staining (category 3) was not
restricted to a particular histological subgroup or to tumors with
high mitotic index (Figure 6c). Next, we focused on prognostica-
tion of aggressive subgroups (Grade 3, lymph node-positive,
TNBC, HER2 or high Ki67) and found that high TTK protein level
identified exceptionally aggressive tumors that lead to poor
survival of less than 2 years (Figure 7a). Finally, to exploit our
finding that TTK, as a part of the aggressiveness score, was
associated with aggressive breast tumors and that TTK inhibition
was effective in TNBC cell lines that overexpress this protein
(Figure 5), we investigated the therapeutic potential of combining
TTK inhibition with chemotherapy. We found that TTKi synergized
with docetaxel at very low doses (sublethal doses) in the
treatment of TNBC cell lines that overexpress TTK in comparison
with cell lines that do not (Figure 7b), and that this combination
induced apoptotic cell death (Figure 7c).

DISCUSSION
Our meta-analysis of gene expression in the Oncomine database
identified a list of 206 genes enriched with two core biological
functions/metagenes: CIN and ER signaling. We calculated the
aggressiveness score, the ratio of CIN to ER metagenes, which was
associated with the overall survival of breast cancer. A core of
eight genes (six CIN genes and two ER signaling genes) was
representative and recapitulated the correlations with outcome
from the 206 genes. The score from the six CIN genes to the 2 ER
signaling genes, 8-gene score, associated with survival in several
breast cancer data sets. Our aggressiveness scores outperformed
conventional variable and published signatures in multivariate
survival analysis. Particularly in ERþ tumors, some cases have
survival as poor as that of the aggressive HER2þ and TNBC
subtypes. Our data suggest that the interplay of cancer-related
biological functions, namely CIN and ER signaling, are better
predictors of phenotypes than single genes or single functions.
This notion is in line with recent studies showing that the
interaction of biologically driven predictors provides better
prognosis.16,17,30 Recently, all ER� tumors were described to
have a high level of CIN metagene; however, it was not clear that
ERþ tumors could be described as low CIN tumors.16 In our study,
we clarify that ERþ disease contains a considerable fraction of
tumors that have a high level of CIN genes and that the
relationship between CIN and ER genes is a powerful predictor of
survival in these patients.

The fidelity of chromosome segregation is ensured by the
proper attachment of the microtubules from the mitotic spindle to
the kinetochores of chromosomes in a tightly regulated process,
and CIN refers to the missegregation of whole chromosomes, thus
producing aneuploidy.31 Using aneuploidy as a surrogate marker
for CIN, Carter et al.20 developed a gene signature and found that
this ‘CIN signature’ predicts clinical outcome in multiple cancers.
More recently, a minimal gene set that captures the CIN signature
CIN4 (AURKA, FOXM1, TOP2A and TPX2) was described as the first
clinically applicable quantitative PCR-derived measure of tumor
aneuploidy from formalin-fixed, paraffin-embedded tissue. As
Grade 2 tumors have heterogeneous characteristics in terms of

Table 2. Correlation of TTK mRNA level and clinico-pathological
indicators in the METABRIC data set

Comparison TTK low TTK high w2

Tumor size
o2 cm 346 (18%) 280 (14%) Po1.0E� 6
42 cm o5 cm 509 (26%) 685 (35%) P¼ 3.2E� 5
45 cm 60 (3%) 92 (5%) P¼ 1.25E� 2

Tumor Grade
Grade 1 137 (7%) 33 (2%) Po1.0E� 6
Grade 2 479 (25%) 296 (16%) Po1.0E� 6
Grade 3 251 (13%) 706 (37%) Po1.0E� 6

Ki67 expression
Low 826 (39%) 242 (11%)
High 237 (11%) 831 (39%) Po1.0E� 6

Immunohistochemical subtypes
ER-negative 71 (4%) 369 (19%) Po1.0E� 6
ER-positive 827 (42%) 681 (35%)
PR-negative 306 (15%) 637 (32%) Po1.0E� 6
PR-positive 617 (31%) 432 (22%)
HER2-negative 802 (40%) 744 (37%)
HER2-positive 118 (6%) 323 (16%) Po1.0E� 6
non-TNBC 885 (45%) 840 (43%)
Triple negative
(TNBC)

29 (1%) 221 (11%) Po1.0E� 6

Intrinsic subtypes
Luminal A 552 (28%) 169 (9%) Po1.0E� 6
Luminal B 142 (7%) 350 (18%) Po1.0E� 6
HER2-enriched 40 (2%) 200 (10%) Po1.0E� 6
Normal-like 161 (8%) 41 (2%) Po1.0E� 6
Basal-like 26 (1%) 305 (15%) Po1.0E� 6

Age (years)
o50 167 (8%) 259 (13%) P¼ 8.68E� 4
50–74 485 (24%) 549 (27%) NS
75–100 282 (14%) 253 (13%) NS

TP53 mutation
Wild-type 390 (48%) 331 (40%)
Mutant 14 (2%) 85 (10%) Po1.0E� 6

Abbreviations: ER, estrogen receptor; METABRIC, Molecular Taxonomy
of Breast Cancer International Consortium; NS, not significant;
PR, progesterone receptor; TNBC, triple-negative breast cancer;
w2, chi-square test performed using GraphPad Prism.
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Table 3. Associations between TTK protein expression and clinico-pathological indicators

Parameter TTK (0–1) TTK (2) TTK (3) P valuea

Histological type
Ductal NOS 147 (60.7%) 67 (27.7%) 28 (11.6%) 0.0265
Lobular 43 (76.8%) 10 (17.9%) 3 (5.4%)
Mixed ducto-lobular 31 (88.6%) 4 (11.4%) 0 (0.0%)
Metaplastic 9 (56.3%) 7 (43.8%) 0 (0.0%)
Tubular/cribiform 8 (80.0%) 2 (20.0%) 0 (0.0%)
Other special types (incl mixed) 37 (66.1%) 14 (25.0%) 5 (8.9%)

Overall grade
1 43 (76.8%) 13 (23.2%) 0 (0.0%) o0.0001
2 162 (77.5%) 41 (19.6%) 6 (2.9%)
3 73 (47.7%) 50 (32.7%) 30 (19.6%)

Mitotic score
1 193 (79.8%) 44 (18.2%) 5 (2.1%) o0.0001
2 33 (61.1%) 18 (33.3%) 3 (5.6%)
3 52 (43.0%) 42 (34.7%) 27 (22.3%)

Nuclear pleomorphism score
1–2 164 (75.2%) 49 (22.5%) 5 (2.3%) o0.0001
3 115 (57.2%) 55 (27.4%) 31 (15.4%)

Tubule score
1 10 (76.9%) 3 (23.1%) 0 (0.0%) NS
2 52 (69.3%) 20 (26.7%) 3 (4.0%)
3 216 (65.5%) 81 (24.5%) 33 (10.0%)

Lymph node status
Positive 77 (62.1%) 41 (33.1%) 6 (4.8%) 0.0056
Negative 81 (73.0%) 18 (16.2%) 12 (10.8%)

Tumor size
o2 cm 112 (68.3%) 40 (24.4%) 12 (7.3%) NS
2–5 cm 104 (66.2%) 38 (24.2%) 15 (9.6%)
45 cm 19 (61.3%) 6 (19.4%) 6 (19.4%)

Lymphovascular invasion
Absent 214 (67.3%) 77 (24.2%) 27 (8.5%) NS
Present 63 (63.6%) 27 (27.3%) 9 (9.1%)

Lymphocytic infiltrate
Absent 119 (78.3%) 28 (18.4%) 5 (3.3%) 0.0007
Mild 115 (63.9%) 47 (26.1%) 18 (10.0%)
Moderate 36 (53.7%) 23 (34.3%) 8 (11.9%)
Severe 7 (41.2%) 6 (35.3%) 4 (23.5%)

Central scarring/fibrosis
Absent 254 (67.7%) 90 (24.0%) 31 (8.3%) NS
Present 25 (56.8%) 14 (31.8%) 5 (11.4%)

Tumor border
Infiltrative 250 (69.1%) 88 (24.3%) 24 (6.6%) 0.0003
Pushing (o50%) 11 (36.7%) 11 (36.7%) 8 (26.7%)
Pushing (450%) 16 (64.0%) 5 (20.0%) 4 (16.0%)

Ki67 expression (20% threshold)
Low 240 (71.6%) 77 (23.0%) 18 (5.4%) o0.0001
High 14 (25.9%) 23 (42.6%) 17 (31.5%)

Prognostic subgroups
HER2þ 21 (51.2%) 14 (34.1%) 6 (14.6%) o0.0001
HRþ /HER2� (Ki67-high) 6 (24.0%) 13 (52.0%) 6 (24.0%)
HRþ /HER2� (Ki67-low) 196 (76.0%) 53 (20.5%) 9 (3.5%)
TN (basal-like) 23 (41.8%) 20 (36.4%) 12 (21.8%)
TN (non-basal) 10 (71.4%) 1 (7.1%) 3 (21.4%)

Abbreviations: NOS, not otherwise specified; NS, not significant; TN, triple negative. Tissue microarrays were scored by two independent assessors according
to the following categories: 0, negative; 1, weak and focal staining (pooled with negative cases for this analysis); 2, moderate–strong focal staining (collectively
o50% of tumor cells); 3, moderate–strong diffuse staining (450% of tumor cells). Regarding % of cells stained, we disregarded mitotic cells to assess
mitosis-independent TTK expression. aChi-square test (GraphPad Prism).
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clinical outcome, the significance of the CIN4 classifier is the
stratification of Grade 2 tumors into good and poor prognosis
groups.23 Our aggressiveness scores were prognostic in all tumor
grades and disease stages (stages I–III and lymph node-negative
and positive) and outperformed the CIN signature and the CIN4
classifier in multivariate survival analysis in the METABRIC data
set. Strikingly, but in agreement with previous studies,32,33 the
prognostication using the CIN metagene and our aggressiveness
scores from gene expression levels were restricted to ERþ disease
but not in the TNBC or HER2 subtypes. This may be explained by
the fact that ER� tumors have a high level of CIN metagene as per
our results and those published previously.16 However, our results
with TTK protein level clearly demonstrate that TNBC, HER2,
high-grade, lymph node-positive and proliferative tumors contain
subgroups with high TTK levels exclusive of mitotic cells and
have poorer survival than those with low TTK expression or TTK
expression in mitotic cells. We propose that there are two types
of high expression of CIN genes that may not be clearly
differentiated by mRNA expression studies. One form of
elevated CIN genes relates to high levels of mitosis and
proliferation, whereas the second form that we measured by
immunohistochemistry exclusive of mitotic cells is driven by
another aggressive phenotype: protection of aneuploidy and
genomic instability. The recent study of the CIN4 classifier lends
support to our proposition. In this study, using flow cytometry to
measure aneuploidy by DNA content, the authors found that a
substantial proportion of tumors with high CIN4 scores have a
normal DNA ploidy and that a significant proportion of aneuploid
cases had a low CIN4 score.23

Chromosome missegregation and aneuploidy enhance genetic
recombination and defective DNA damage repair34 to drive a
‘mutator phenotype’ required for oncogenesis.35 Genomic
instability caused by deregulated mitotic spindle assembly
checkpoint and aneuploidy has been termed ‘non-oncogene
addiction’.36,37 It is tempting to suggest that CIN and aneuploidy
are exploited by breast cancer stem cells, which are high in
TNBCs38 owing to the link between cancer stem cells, aneuploidy
and therapy resistance.39,40 This is supported by studies that
implicate several genes involved in the spindle assembly
checkpoint and chromosome segregation in tumor initiation,

progression and cancer stem cells, e.g., AURKA in ovarian cancer,41

MELK/FOXM1 in glioblastoma,42,43 MELK44 and MAD245 in breast
cancer and SKP2 in several cancers.46 The role of CIN genes in
protecting aneuploidy could provide an insight to the paradox
that TNBCs show a better response to chemotherapy owing to the
higher level of proliferation, yet these tumors have poorer
outcome. We propose that resistance in TNBC could be
attributed to the ability of aneuploid cells to adapt and drive
recurrence. At least in vivo, chemotherapy has been shown to
induce the proliferation quiescent aneuploid cells as a mechanism
for therapy resistance.39 We envisage that the high level of the CIN
metagene in TNBC, particularly genes involved in chromosome
segregation, is protective of this state. Indeed, one study found
that a high level of TTK is protective of aneuploidy in breast cancer
cells, and its silencing reduces the tumorigenicity of breast cancer
cell lines in vivo.47 Our results from the patient cohort demonstrate
that high TTK protein expression exclusive of mitosis was indeed
prognostic in aggressive tumors and support the concept that
protection from aneuploidy and genomic instability is an
aggressive phenotype that drives poor outcome.

Our results with the TTK molecular inhibitor, in agreement with
published studies using siRNA depletion,47,48 support the idea of
targeting chromosomal segregation in tumors with a high CIN
phenotype as a therapeutic strategy. We also suggest that while
TTK is high in TNBC, as previously described,47,48 a considerable
proportion of non-TNBC tumors that display aggressive features
also show an elevated level of CIN genes, and would benefit from
such targeted therapies. To our knowledge, the combination of
sublethal doses of taxanes with TTK inhibition has not been
investigated so far in breast cancer, but it has been investigated in
other cancers.34 Our results reveal that TTK inhibition indeed
sensitizes breast cancer cells with high TTK to docetaxel.

In conclusion, our study emphasizes that classification of breast
cancer on the basis of biological phenotypes facilitates the
understanding of the drivers of oncogenic phenotypes and
therapeutic potentials. Importantly, our studies demonstrate that
immunohistochemistry assessment of CIN genes, exemplified
by TTK here, provide better characterization and understanding
for the contribution of CIN to tumor aggressiveness and
prognosis.
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Figure 6. TTK protein expression associates with breast cancer survival. The overall survival of patients in a large cohort of breast cancer
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mitotic index.
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MATERIALS AND METHODS
Meta-analysis of global gene expression in TNBC
We performed a meta-analysis of global gene expression data in the
Oncomine database19 (Compendia Bioscience, Ann Arbor, MI, USA) using
a primary filter for breast cancer (130 data sets), sample filter to use
clinical specimens and data set filters to use mRNA data sets with more
than 151 patients (22 data sets). Patients of all ages, gender, disease
stages or treatments were included. Three additional filters were applied
to perform three independent differential analyses: (1) triple negative
(TNBC cases vs non-TNBC cases, eight data sets;49–55 (2) metastatic event
analysis at 5 years (metastatic events vs no metastatic events, seven data
sets51,53,56–60); and (3) survival at 5 years (patients who died vs patients
who survived, seven data sets52,53,55,57,60–62). Deregulated genes were
selected on the basis of the median P-value of the median gene rank in
overexpression or underexpression patterns across the data sets
(Supplementary Figure 1). The union of these three deregulated gene
lists resulted in a gene list of deregulated genes in aggressive breast
cancers (Supplementary Figure 2). The METBRIC data set21 was used
as the validation set for further analysis. The normalized z-score
expression data of the METABRIC data set was extracted from
Oncomine and imported into BRB-ArrayTools63 (V4.2, Biometric
Research Branch, NCI, Bethesda, MD, USA) with built-in R Bioconductor
packages. Survival curves for the METABRIC data set were constructed
using GraphPad Prism v6.0 (GraphPad Software, San Diego, CA, USA), and
the log-rank (Mantel–Cox) Test was used for statistical comparisons of
survival curves.

Ingenuity Pathway Analysis and derivation of the eight-gene list
Pathway analysis was performed using the Ingenuity Pathway Analysis
(Ingenuity Systems, Redwood City, CA, USA). For pathway analysis in IPA,
we used only direct relationships. After pathway analysis, we set out to
identify the minimum gene list that recapitulates the aggressiveness 206-
gene list. We used the METABRIC data set to perform statistical filtering in
the BRB-ArrayTools software to derive the minimum gene list as follows: (1)
the correlation of each gene in the CIN metagene and the ER metagene to
the metagene itself was determined by quantitative trait analysis using the
Pearson’s correlation coefficient (univariate P-value threshold of 0.001);
(2) the association of each gene with overall survival using univariate Cox
proportional hazards model (univariate test P-value o0.001); and (3) the
fold change of gene expression between high aggressiveness score tumors
and low aggressiveness score tumors was calculated for each gene.
We selected genes with Pearson’s correlation coefficient 40.7 to the
metagenes, strongest survival association and more than two-fold
deregulation between high and low agressiveness score tumors. The
METABRIC data set and four publically available data sets were used to
validate the 8-gene score. The four data sets (GSE25066,51 GSE3494,64

GSE299015 and GSE203465) were analyzed as described previously.66

Cell culture and drug treatments
Breast cancer cell lines were obtained from ATCC (Manassas, VA, USA) and
cultured as per ATCC instructions. All cell lines were regularly tested for
mycoplasma and authenticated using short tandem repeat profiling.
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Figure 7. TTK associates with aggressive subtypes and is a therapeutic target. (a) Kaplan–Meier survival curves are shown for Grade 3 tumors,
lymph node-positive patients (LNþ ) and LNþ patients with grade 3 tumors. Log-rank Test and P-value were used for these survival curves. For
patients with TNBC and HER2, survival was statistically significant using the Gehan–Breslow–Wilcoxon test (P-values marked by two asterisks),
which gives more weight to deaths at early time points. The poorer survival of patients with high Ki67 tumors and high TTK staining was a
trend, but it did not reach significance. Survival curves and statistical analyses were performed using GraphPad Prism. (b) TNBC and non-TNBC
cell lines were treated for 6 days with the specified concentrations of docetaxel (doc) alone, TTK inhibitor (TTKi) alone or the combinations.
The survival of cells was measured using the MTS/MTA assay, as described in Methods. ***Po0.001 comparing the combination with single
agents and with non-TNBC cell lines from two-way ANOVA in GraphPad Prism. (c) MDA-MB-231 cells were treated with docetaxel or TTKi
alone or in combination and collected at 96 h to perform apoptosis assays by flow cytometry. Early apoptotic cells were defined as annexin
Vþ /7-AAD� . **Po0.01 and ***Po0.001 comparing treatments using one-way ANOVA in GraphPad Prism.
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For the siRNA screen, siRNA solutions (Shanghai Gene Pharma, Shanghai,
China) were used to transfect cells (MDA-MB-231, SUM159PT and Hs578T)
with 10 nM of respective siRNA using Lipofectamine RNAiMAX (Life
Technologies, Carlsbad, CA, USA). For drug treatments, docetaxel and
the TTK inhibitor AZ3146 were purchased from Selleck Chemicals LLC
(Houston, TX, USA) and diluted in dimethylsulfoxide. Six days after siRNA
knockdown or after drug treatments, the survival of cells in comparison
with control was determined using the CellTiter 96 Assay, as per the
manufacturer’s instructions (Promega Corporation, Fitchburg, WI, USA). For
immunoblotting, standard protocols were used and membranes were
probed with antibodies against TTK (anti-MPS1 mouse monoclonal
antibody [N1] ab11108 (Abcam, Cambridge, UK) and g-tubulin (Sigma-
Aldrich, Sydney, NSW, Australia), and then developed using chemilumines-
cence reagent plus (Millipore, Billerica, MA, USA). Flow cytometry to
quantify apoptosis was performed using Annexin V-Alexa488 and 7-AAD
(Life Technologies), as per the manufacturer’s instruction by using the BD
FACSCanto II flow cytometer (BD Biosciences, San Jose, CA, USA).

Breast cancer tissue microarrays, immunohistochemical and
survival analysis
The Brisbane Breast Bank collected fresh breast tumor samples from
consenting patients; the study was approved by the local ethics
committees. Tissue microarrays were constructed from duplicate cores of
formalin-fixed, paraffin-embedded breast tumor samples from patients
undergoing resection at the Royal Brisbane and Women’s Hospital
between 1987 and 1994. For biomarker analysis, whole tumor sections
or tissue microarrays (depending on the marker) were stained with
antibodies against ER, PR, Ki67, HER2, CK5/6, CK14, EGFR and TTK
(Supplementary Table 5), and scored by trained Pathologists. The
Vectastain Universal ABC kit (Vector Laboratories, Burlingame, CA, USA)
was used for signal detection according to the manufacturer’s instructions.
Stained sections were scanned at high resolution (ScanScope Aperio, Leica
Microsystems, Wetzlar, Germany), and then images were segmented into
individual cores for analysis using the Spectrum software (Aperio, Wetzlar,
Germany). Survival and other clinical data were collected from the
Queensland Cancer Registry and original diagnostic Pathology reports, and
in addition we performed an internal histopathological review (SRL) of
representative tumor sections from each case, stained with H&E. For the
analysis of HER2 amplification, tissue microarrays were analyzed using
HER2 CISH. Criteria for assigning prognostic subgroups in this study are
summarized in Supplementary Figure 7.

Other statistical analysis
Statistical analyses were performed using GraphPad Prism v6.0. The types
of tests used are stated in Figure Legends. Univariate and multivariate Cox
proportional hazards regression analyses were performed using MedCalc
for Windows, version 12.7 (MedCalc Software, Ostend, Belgium).
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