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Abstract

Compared with genomic data of individual markers, haplotype data provide higher resolution for DNA variants, ad-
vancing our knowledge in genetics and evolution. Although many computational and experimental phasing methods
have been developed for analyzing diploid genomes, it remains challenging to reconstruct chromosome-scale haplotypes
at low cost, which constrains the utility of this valuable genetic resource. Gamete cells, the natural packaging of haploid
complements, are ideal materials for phasing entire chromosomes because the majority of the haplotypic allele combi-
nations has been preserved. Therefore, compared with the current diploid-based phasing methods, using haploid ge-
nomic data of single gametes may substantially reduce the complexity in inferring the donor’s chromosomal haplotypes.
In this study, we developed the first easy-to-use R package, Hapi, for inferring chromosome-length haplotypes of indi-
vidual diploid genomes with only a few gametes. Hapi outperformed other phasing methods when analyzing both
simulated and real single gamete cell sequencing data sets. The results also suggested that chromosome-scale haplotypes
may be inferred by using as few as three gametes, which has pushed the boundary to its possible limit. The single gamete
cell sequencing technology allied with the cost-effective Hapi method will make large-scale haplotype-based genetic
studies feasible and affordable, promoting the use of haplotype data in a wide range of research.
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Introduction
A haplotype in a diploid individual is a set of DNA variants on
a chromosome that are coinherited from a parent.
Knowledge of haplotypes is essential in many research areas,
including evolutionary genetics and quantitative genetics. For
example, haplotype data have been applied to imputation of
unobserved low-frequency and rare variants (Huang et al.
2015; McCarthy et al. 2016), determination of parental origins
of genetic variants (Kong et al. 2009; Goldmann et al. 2016),
characterization of DNA–phenotype associations (Tr�egou€et

et al. 2009; Lambert et al. 2013; Xue et al. 2016), identification
of recombination hotspots (Coop et al. 2008), detection of
selection signatures (Sabeti et al. 2002; International HapMap
Consortium 2005; Pendleton et al. 2018), and inference of
genetic admixture, introgression, and demographic history
in a population (Lohmueller et al. 2009; Palamara et al.
2012). Mounting studies have indicated that using haplotype
variants rather than single nucleotide polymorphisms (SNPs)
may dramatically improve the power for detection of the
signatures of positive selection (Fariello et al. 2013).
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Moreover, long-range haplotypes, which provide higher DNA
resolution than short-range haplotypes or individual SNPs,
have been demonstrated to be very useful for deducing ge-
netic admixture, introgression, and demographic history
(Palamara et al. 2012; Harris and Nielsen 2013; Schiffels and
Durbin 2014; Snyder et al. 2015; Leitwein et al. 2020). Despite
these advantages of using haplotype data, the utility of this
genetic resource is still quite constrained due to the lack of a
cost-effective method for phasing individual genomes, espe-
cially for the inference of high-quality chromosome-length
haplotypes.

Phasing, or haplotyping, is the process of inferring haplo-
type structure based on genotypic data. The most widely
used haplotyping strategy is to phase common genetic var-
iants using population data (Stephens et al. 2001; Stephens
and Scheet 2005; Scheet and Stephens 2006; Browning and
Browning 2007; Howie et al. 2009; Li et al. 2010; Loh et al. 2016;
O’Connell et al. 2016); however, this approach is incapable of
phasing de novo mutations, rare variants, or structural var-
iants and is limited to inferring short-range haplotype frag-
ments (Glusman et al. 2014). Experimental whole-
chromosome phasing approaches usually involve the physical
separation of homologous chromosomes in diploid cells using
chromosome microdissection, FACS-mediated chromosome
sorting, or microfluidics, followed by single-chromosome se-
quencing (Ma et al. 2010; Fan et al. 2011; Yang et al. 2011).
Nevertheless, these approaches usually require specialized
and expensive equipment. Numerous sequencing technolo-
gies, including fosmid-based dilution pool sequencing, long
fragment read technology, PacBio single molecule real-time
long-read sequencing, 10X Genomics linked-read sequencing,
and proximity ligation (Hi-C) sequencing can also be
employed to generate long-range haplotype fragments
(Kitzman et al. 2011; Peters et al. 2012; Selvaraj et al. 2013;
Edge et al. 2017), but phasing haplotypes that span entire
chromosomes is still arduous for these approaches. A recent
single-cell DNA template strand-based technique, called
Strand-seq, sequences either the Watson strand or the
Crick strand of a chromosome in a somatic cell and then
uses pooled libraries to phase chromosomal haplotypes
(Porubsk�y et al. 2016; Porubsky et al. 2017). Generally, phasing
complete chromosomes with these sequencing technologies
is expensive, making large-scale haplotype-based research in-
feasible. There is a high demand for innovative methods
which can phase entire chromosomes for individual genomes
in a cost-effective manner.

Gametes, including pollen grains in plants or sperm and
eggs in animals, are the natural packaging of haploid comple-
ments that are formed during meiosis. Compared with the
current phasing approaches that analyze diploid materials,
using haploid genomic data of single gametes substantially
reduces the complexity in inferring the donor’s chromosomal
haplotypes. To infer the chromosome-scale haplotypes with
gametes, the objective simply becomes the identification of
recombination events which are rare with an average of <3
events affecting most gametic chromosomes (Beye et al.
2006). Current development of gamete-based phasing meth-
odologies is still at an early stage, requiring either a large

number of gametes or manual inspection to ensure phasing
accuracy (Lu et al. 2012; Hou et al. 2013; Kirkness et al. 2013;
Hinch et al. 2019). No easy-to-use software is available for
phasing chromosome-length haplotypes with gametes. To
fill this void, we developed an innovative methodology,
named Hapi (haplotyping with imperfect genotype data),
for automatic inference of an individual’s chromosomal hap-
lotypes using a few gamete cells, given the heterozygous loci
on the chromosome are known. Comprehensive compari-
sons, involving the use of a simulated data set, a maize mi-
crospore sequencing data set, and a human sperm
sequencing data set, demonstrated that Hapi outperformed
the only haploid-based algorithm, PHMM (pairwise hidden
Markov model [HMM]) (Hou et al. 2013), and two commonly
applied diploid-based phasing methods, WhatsHap (Martin
et al. 2016) and HapCUT2 (Edge et al. 2017) in terms of ac-
curacy, reliability, completeness, and cost-effectiveness. The
results also suggested that chromosomal haplotypes may be
inferred by using only three gamete cells if the genotype data
are of high quality. The rapid advancement of biotechnologies
will substantially reduce the experimental costs in isolation,
lysis, and whole-genome amplification of single gamete cells,
which if allied with the new Hapi method will make large-
scale haplotype-based studies affordable and feasible. In ad-
dition, the crossover analysis module in the Hapi R package
may be employed to investigate meiotic recombination
events on gamete chromosomes to disclose recombination
hotspots in a target population.

New Approaches
We developed an innovative Hapi methodology to infer chro-
mosomal haplotypes of individual diploid genomes using
three or a few more single gametes, which has pushed this
boundary to its possible limit. Implementing the Hapi algo-
rithm to phase an entire chromosome consists of three steps:
1) data preprocessing, 2) inference of draft haplotypes, and 3)
assembly of high-resolution chromosomal haplotypes (fig. 1).
In step (1), markers with potential genotyping errors in any
gamete cells are filtered out by iteratively analyzing gamete
pairs via an HMM. A subset of markers, which have been
successfully genotyped in at least three gametes, are selected
to form a “precursor” framework. In the framework, missing
data in each gamete are iteratively imputed using data avail-
able in other gametes. The markers, usually of a small number,
with missing data that cannot be fully resolved by imputation
are eliminated, resulting in the final framework for building
draft haplotypes. In step (2), the draft haplotypes are derived
by sequentially analyzing two neighboring markers in the
framework with majority voting, through which the phase
for any two adjacent framework markers is determined by
the majority (or most frequent) link type represented in the
gamete cells. The maximum parsimony of recombination
(MPR) principle is then adopted to proofread disputed posi-
tions of the draft haplotypes. In step (3), each gamete chro-
mosome is compared with the draft haplotypes to identify
haplotype-converting points (HCPs) to deduce gamete-
specific haplotypes, with the nonframework markers being
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phased in this step. Consensus high-resolution haplotypes are
eventually determined by these gamete-specific haplotypes
through voting. An easy-to-use R package has been devel-
oped for implementing the Hapi algorithm to infer
chromosome-length haplotypes using single gamete cells.
The package also includes a crossover analysis module, allow-
ing for downstream analyses and visualization of crossover
positions identified in each gamete.

Results

Comparison of Phasing Methods by Analyzing the
Human Sperm Data Set
A human sperm sequencing data set consisting of 11 inde-
pendent sperm cells from the donor of the HuRef diploid
genome sequence (Kirkness et al. 2013) was used to compare
the phasing performance of the two gamete-based phasing
methods (Hapi and PHMM) and the two read-based phasing
methods (WhatsHap and HapCUT2). Although the true chro-
mosomal haplotypes for this donor were unknown, a
“phased” genome consisting of 1.82 million hetSNPs had
been suggested based on a joint analysis of these 11 sperm
cells sequenced at 1.5–3.7� coverage and 16 additional
sperms genotyped using the Illumina HumanOmni-Quad
v1.0 BeadChip (array data not publicly available) (Kirkness
et al. 2013) which was adopted here as “ground truth” to
evaluate the phasing performance of the four competing
methods. Variant calling was conducted with the sequencing
reads to yield 1.66 million high-quality hetSNPs (out of the
total of 1.82 million SNPs), each of which was present in at
least one sperm. The number of hetSNPs on 22 autosomes
ranged from 15,340 (Chr22) to 141,669 (Chr2), and the rate of
missing genotype data ranged from 70.95% to 86.49% (sup-
plementary table S1, Supplementary Material online). The 11
sperm cells were sorted based on the rate of missing hetSNP
data in descending order, that is, the first sperm cell has the
most missing SNP data and so forth.

Four quality metrics, including completeness (COM), larg-
est haplotype segment (LHS), switch error rate (SER, the frac-
tion of incorrectly inferred phase connections), and hamming
error rate (HER, the fraction of incorrectly phased hetSNPs),
were used to evaluate the phasing performance for different
phasing methods (see Materials and Methods for details).

Various numbers of gametes, 3 through 11 from the sorted
sperm list, were successively used for haplotyping by four
different methods, respectively, to compare phasing com-
pleteness and accuracy at the whole-genome scale (fig. 2;
supplementary table S2, Supplementary Material online).
The phasing completeness for the two gamete-based meth-
ods was steadily and evidently greater than that for the two
read-based methods (fig. 2). Chromosome-length haplotypes
for the 22 autosomes can be successfully inferred with
99.947% of hetSNPs being phased on the LHS using the
gamete-based methods; in comparison, hundreds of thou-
sands of small haplotype segments were deduced with only
3.223% of hetSNPs being phased on the LHS by the read-
based methods even when 11 sperms were used (supplemen-
tary table S2, Supplementary Material online). These results
indicated that the latter two methods only inferred haplotype
segments whereas the former two methods were suitable for
phasing entire chromosomes. Hapi consistently had lower
SER and HER at the whole-genome scale than PHMM when
different numbers of gametes were analyzed (fig. 2). Although
the ways we calculate SER and HER were biased toward read-
based methods (see Materials and Methods for details), Hapi
was still superior to WhatsHap and HapCUT2 in terms of
accuracy. The running time for each method to phase the
22 autosomes using 3 or 11 sperms has been summarized in
supplementary table S3, Supplementary Material online.

The phasing performance of these four methods was fur-
ther compared at the chromosomal scale. When only the first
three sperms were used, the completeness levels of Hapi and
PHMM were much higher than those for WhatsHap and

FIG. 1. Overview of the Hapi package. Hapi consists of two modules: the Haplotype Phasing Module and the Crossover Analysis Module. In the
Haplotype Phasing Module, three main steps are required for haplotype phasing using genomic data of single gamete cells: 1) data preprocessing;
2) draft haplotype inference; 3) high-resolution haplotype assembly. Crossovers in each gamete cell can be identified and recombination-asso-
ciated analysis can be performed by the Crossover Analysis Module.
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HapCUT2 across 22 autosomes (consistent with the results of
comparison at the whole-genome scale shown in fig. 2), and
the two read-based phasing methods could only generate
small haplotype segments (fig. 3, inner circles). Therefore, in
the subsequent analysis of phasing accuracy, we mainly fo-
cused on the comparison between the two gamete-based
phasing methods. As the chromosomal haplotypes suggested
in the original article (Kirkness et al. 2013) may be subject to
errors, we defined a successful phasing of a chromosome as
having over 95% of phased markers on that chromosome
were in agreement with the suggested haplotypes. The results
showed that Hapi can correctly phase all 22 autosomes with
three sperm cells, whereas PHMM required at least seven
sperm cells to achieve the same level of accuracy. When seven
or fewer sperm cells were used, Hapi performed consistently
well but the performance of PHMM fluctuated wildly, indi-
cating Hapi provided more reliable phasing results with small
samples. Interestingly, PHMM can correctly infer the haplo-
types of Chr1 with 6–10 gametes but failed when all 11
sperms had been used. Out of a total of 198 scenarios (22
chromosomes � 9 numbers of gametes) for the analysis by
Hapi, 164 scenarios (82%) achieved phasing accuracies of 99%
or greater. The majority of scenarios with phasing accuracies
between 95% and 99% was for the analyses of Chr15, Chr16,
and Chr21, which also appeared to be challenging to PHMM,
suggesting a complication in the genomic data for these three
chromosomes. Overall, among the 1.66 million hetSNPs
phased by Hapi using all the 11 sperms, 99.73% (1,658,197/
1,662,611) of them were concordant with the chromosomal
haplotypes suggested in the original paper (Kirkness et al.
2013). An inspection of the nonconcordant hetSNPs showed
that 49.1% of them were only supported by one sperm cell
and 33.4% of them had discordancy among two or more
supporting sperm cells. The disputably phased hetSNPs
tended to cluster around the centromere or at either end
of the chromosomes (supplementary fig. S1, Supplementary
Material online). The hetSNPs that were not in agreement
between Hapi and the suggested haplotypes on Chr15 were

evenly distributed along the chromosome, which might be
ascribed to a complication in data of sperm Y47 that was
contaminated by DNA from other lysed cells as mentioned in
the original article (Kirkness et al. 2013).

Comparison of Phasing Methods in the Maize
Microspore Data Set
A maize microspore sequencing data set from F1 hybrid
individuals of a cross between two inbred lines (Li et al.
2015) was used to further evaluate the performance of
Hapi versus PHMM. This is an ideal validation data set be-
cause the parental haplotypes were known. To avoid using
microspores from the same meiosis event, one microspore
from each of the 24 tetrads was randomly selected to form a
24-gamete pool. The number of hetSNPs on the maize chro-
mosomes ranged from 42,691 (Chr10) to 82,689 (Chr1). The
average rate of missing genotype data for ten chromosomes
across the 24 selected gametes was about 50%, with the max-
imum missing rate equal to 72.46% (supplementary table S4,
Supplementary Material online). For each of ten maize chro-
mosomes, the 24 selected gametes were sorted in a similar
way as we did for human sperm data. Various numbers (3–
15) of gametes from the sorted list were sequentially analyzed
with Hapi and PHMM, to infer the complete haplotypes for
that chromosome. This process was repeated to phase all ten
chromosomes, yielding a total of 260 scenarios (13 numbers
of gametes � 10 chromosomes � 2 methods). In each sce-
nario, the phased chromosome was compared with the
known parental haplotypes to calculate phasing accuracy.

At the whole-genome scale, the two methods had the
same completeness but Hapi generally outperformed
PHMM in terms of accuracies, especially when few gametes
were used in the phasing analysis (fig. 4A; supplementary
table S5, Supplementary Material online). The comparison
of the phasing results between Hapi and PHMM at the chro-
mosome scale indicated that Hapi consistently had lower
HER than PHMM. The haplotypes inferred by Hapi had
HER < 1% in almost all the scenarios, except for Chr2

FIG. 2. Comparison of the two gamete-based phasing methods (Hapi and PHMM), and the two read-based methods (WhatsHap and HapCUT2) in
terms of COM, SER, and HER at the genome scale using the human sperm cell sequencing data set. Various numbers of gametes, 3 through 11 from
the sorted sperm list (based on the rate of missing data of hetSNPs in a descending order, that is, the first sperm cell has the most missing SNP data),
were successively used for haplotyping analysis by the four different methods, respectively.
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when three gametes were analyzed (fig. 4B). A close look at
Chr2 of these three gametes disclosed two crossovers on two
gamete chromosomes in a small region (39 hetSNPs in be-
tween) near one end of the chromosome. In the default set-
ting of Hapi, any small block (<100 hetSNPs) delimited by
two crossovers from the draft haplotypes will be excised, prior
to implementation of MPR, to construct a reliable draft hap-
lotype; thus, in some cases, the phase of the two merging
framework markers may be incorrectly inferred by misinter-
preting the link types in between due to the removal of this
block. The results showed that Chr2 was also challenging for
PHMM. Moreover, at least seven gametes were required for
PHMM to achieve the same phasing accuracies (especially for
HER) across all of the ten chromosomes. When a small num-
ber of samples (<7 gametes) were analyzed, the phasing per-
formance for PHMM fluctuated and did not monotonically
increase as the number of gametes increased, suggesting that
PHMM is not suitable for handling small samples.

Comparison of Phasing Methods in a Simulated Data
Set
We carried out a comprehensive simulation study to further
benchmark the Hapi algorithm for haplotype phasing. Three
factors that may affect phasing accuracy and completeness
were considered in each scenario, that is, 1) the number of
hetSNPs on the chromosome, 2) the number of gametes, and
3) the rate of missing genotype data. As phasing one chro-
mosome is independent of phasing another chromosome, we
only considered a single chromosome in the simulated study
where a pool of 100 haploid gametes were generated from a
diploid donor. The number of hetSNPs on the chromosome
ranged from 5,000 (or 5K) to 100,000 (or 100K). Three to 15
gametes, each with one to three crossovers generated on the
chromosome, were arbitrarily selected from the 100 haploid
gametes without replacement. The majority of the crossovers
was randomly positioned, but in some scenarios, we inten-
tionally placed some crossovers approaching the ends of the

FIG. 3. Circos plot visualizing the comparison of four phasing methods, that is, H (Hapi), P (PHMM), W (WhatsHap), and C (HapCUT2) for phasing
the 22 autosomes in the human sperm cell sequencing data set. The four inner circles show the phasing results when three sperm were used, with
blue/orange representing the correctly/incorrectly phased hetSNPs. Only the phased hetSNPs are shown and density of the hetSNPs indicates the
completeness of phasing for each of the four phasing methods. The two outer circles show the phasing accuracies based on HER for two gamete-
based methods when 3 through 11 sperms were used for haplotyping.
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chromosomes, which are generally challenging regions to
phase. We also generated a few imitative noncrossover
(NCO) gene conversions (GCs), each of which possessed
two seemingly apparent “crossovers” in a very small region
on the gametic chromosomes to increase the complexity.
Missing hetSNPs data (i.e., NA) ranging from 10% to 70%
were randomly introduced to each simulated gamete chro-
mosome. Moreover, 1% genotyping errors were randomly
placed on the simulated gamete chromosomes. The 15 game-
tes were sorted using the same method that was used for the
analyses of human sperm data and maize microspore data.
We compared the two gamete-based methods under differ-
ent scenarios with a predetermined number of gametes,
number of hetSNPs, and missing genotype rate. Each scenario
was repeated 100 times. A high-quality inference in a scenario
was defined if more than 99% of the hetSNPs were correctly
phased.

The results showed that the average performance (based
on 100 replicates of each scenario) of Hapi and PHMM was
similar when nine or more gametes were included in the
analysis; however, Hapi outcompeted PHMM significantly in
terms of SER and HER when fewer gametes were used (fig. 5).

We used a heatmap to depict the phasing repeatability or
reliability of the two methods based on the 100 replicates for
each scenario (fig. 6). The results indicated that the repeat-
ability of Hapi steadily increased when 1) the number of
hetSNPs increases, 2) the missing genotype rate decreases,
or 3) more gametes were used for analysis. In contrast, the
repeatability of PHMM did not change with the number of
hetSNPs or missing genotype rate. Although PHMM became
more repeatable when more gametes were used for phasing,
the trajectory fluctuated rather than increasing monotoni-
cally. Asymptotically, Hapi can correctly infer chromosomal
haplotypes only using three gametes if the hetSNPs were
dense enough and the missing genotype rate was not too
high, which did not seem to be achievable by PHMM.

The same simulation data set was then used to systemat-
ically benchmark Hapi for crossover detection on the basis of
true positive rate (TPR, the proportion of actual crossovers
which were correctly identified) and false discovery rate (the
proportion of false crossovers). As aforementioned, we inten-
tionally designed the simulation to include some crossovers
at the ends of the chromosomes and also introduced a few
mimic NCO GCs in the chromosomes. It was not surprising

FIG. 4. Comparison of the two gamete-based phasing methods (H: Hapi and P: PHMM) in the maize microspore sequencing data set. (A)
Comparison of Hapi and PHMM in terms of COM, SER, and HER at the genome scale. (B) HER of each individual chromosome for haplotype
phasing with Hapi and PHMM methods when 3–15 microspores were used.
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to see that the performance of Hapi and PHMM for crossover
detection was consistent with that for phasing chromosomes
because the identification of crossovers relied on the inferred
haplotypes (fig. 7). Thus, imprecise haplotype phasing may
lead to inaccurately identified crossovers. For both Hapi and
PHMM, the TPR increased when the number of hetSNPs or
the number of gametes rose, whereas TPR decreased if miss-
ing genotype rate declined. Over 99.5% of the crossovers can
be accurately identified by Hapi when four gametes with
5,000 hetSNPs and <50% of missing data were used. With
more than 50,000 hetSNPs, all the crossovers can be identified
under almost all of the scenarios. The capping strategy
designed in the Hapi phasing module ensured the accuracy
of phasing of hetSNPs at either end of a chromosome and,

therefore, led to a successful detection of crossovers in those
challenging regions. The HMM adopted in Hapi recognized
NCO GCs and did not erroneously call them as crossovers.
Although PHMM also had a satisfactory level of TPR, many
false crossovers were identified. The performance of PHMM
was even worse when more hetSNPs were used. This was
likely owing to the fact that a direct inference of crossover
positions in the core strategy of PHMM is rather sensitive to
regions with ambiguous data (i.e., genotyping errors, or com-
plications caused by multiple crossovers in more than one
gamete) and dense hetSNPs data would add to the intricacy.
Such a problem may be resolved by increasing the number of
gametes (i.e., nine or more) in the phasing analysis, which was
also the case in the simulation study.

FIG. 5. Comprehensive simulation study comparing the performance of the two gamete-based phasing methods Hapi and PHMM in terms of
COM, SER, and HER. A pool of 100 haploid gametes were simulated where the number of hetSNPs ranged from 5,000 (5K) to 100,000 (100K) and
the rate of missing genotype data ranged from 10% to 70%. For the chromosome in each simulated gamete, one to three crossovers and 1%
genotyping errors were introduced. In each comparison, 3–15 simulated gametes were randomly selected from the gamete pool for haplotyping
and the process was repeated for 100 times to compute the average of COM, SER, and HER.

Li et al. . doi:10.1093/molbev/msaa176 MBE

3690



Recombination Analysis in the Human Sperm Data
Set
With the phased chromosome-length haplotypes, an HMM
was used to infer crossover positions in the sperm genomes
by successively contrasting hetSNPs in each sperm with the
inferred chromosomal haplotypes (supplementary fig. S2,
Supplementary Material online). A total of 254 crossovers
along the 22 autosomes were identified in the 11 sperms
with an average of 1.05 per chromosome. Compared with
the 260 crossovers identified in the original article (Kirkness
et al. 2013), 251 were also identified by the Hapi method
(supplementary table S6, Supplementary Material online).
The 12 inconsistent crossovers were all located at the ends
of chromosomes, and such inconsistency may be ascribed to
either of the two following reasons: 1) The method in the
original article did not accurately infer haplotypes at the chro-
mosome ends, yielding incorrect crossovers in those regions,
or 2) the observed double crossovers in a very small region
were considered to be either caused by a GC event or con-
secutive genotyping errors and thus were filtered out by Hapi.
The number of crossovers was counted in each bin (5 Mb in
length) along 22 autosomes and distributions of the 254
crossovers are depicted in figure 8A. The resolution of cross-
over locations ranged from 79 bp to 788 kb with a median of
89.3 kb, which was roughly the same as the 82.5-kb resolution
reported in the original article (Kirkness et al. 2013). Over 75%
of the 254 crossovers were located within an interval of <
200 kb (fig. 8B). Distribution of distances between any two
chromosomally adjacent crossovers was provided (fig. 8C),
which can be used for recombination-relevant research

such as interference in the formation of chromosomal cross-
overs during meiosis. Functions for downstream analysis and
visualization were included in the “crossover analysis” module
of the Hapi package.

Discussion
In the past decades, genetics and evolution studies have
benefited from various types of advanced genotyping tech-
nologies that can survey genome-wide SNP variants.
However, most of the studies were based on the analysis of
individual SNPs, yielding limited interpretation of the
genomes. Haplotypes, which represent definitively phased
neighboring SNPs, provided improved resolution in terms
of DNA variants for various genetics analyses. For example,
The use of long-range haplotypes or microhaplotypes has
been demonstrated to benefit many studies, such as increas-
ing the accuracy for inferring kinship or population structure
(Baetscher et al. 2018), and enhancing the analytical power in
the detection of genetic stock (McKinney et al. 2017), in the
detection of positive selection signatures (Fariello et al. 2013),
or in the assessment of admixture, introgression, and demo-
graphic history in target populations (Palamara et al. 2012;
Schiffels and Durbin 2014; Snyder et al. 2015; Leitwein et al.
2020). Thus, obtaining complete and accurate haplotype data
at the chromosome scale will provide tremendous potential
to advance various types of genetic research.

The current knowledge of haplotypes is often fragmented
or even biased due to the limitations of the existing phasing
methods which are mostly based on the analysis of diploid
materials. Moreover, most of these diploid-based phasing

FIG. 6. Heatmap visualizing the reliability and repeatability of the two gamete-based phasing methods (Hapi and PHMM) under the scenarios with
different number of hetSNPs (5K–100K), different missing genotype rate (10–70%), as well as different number of gametes (3–15). The number in
each cell represents the counts of low-quality phasing (HER > 1%) out of the 100 replicates in each scenario.
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methods are costly, limiting a wider application of haplotypes.
Such boundaries may be lifted by the alternative phasing
methods using individual gametes, where the complexity of
phasing will be dramatically reduced because the majority of
the haplotypic allele combinations has been preserved be-
tween recombination breakpoints. In this study, we devel-
oped a cost-effective methodology that only requires a few
gametes to correctly reconstruct high-resolution chromo-
somal haplotypes. We first demonstrated that read-based
methods are not suitable for inference of chromosomal hap-
lotypes as they only infer haplotype segments, the phase of
which need to be resolved too. It should be noted that
WhatsHap and HapCUT2 were not devised to analyze game-
tes for phasing; therefore, it is not surprising to see unfavor-
able results when they were applied to haploid genomic data.
The comparison between Hapi and the other existing
gamete-based algorithm, PHMM, indicated that Hapi outper-
formed PHMM in accuracy, repeatability, and cost-
effectiveness based on the human sperm data, maize micro-
spore data, and comprehensively simulated data. To achieve
the same level of phasing accuracy, Hapi required fewer game-
tes and can tolerate more missing hetSNPs than PHMM. The
major deficiency in the phasing algorithm of PHMM is due to
its core strategy of a direct inference of crossover positions,

which is sensitive to regions with ambiguous data due to
genotyping errors or GC events, or complications caused by
multiple crossovers in more than one gamete. In Hapi, such
genomic regions harboring complicated multiple CV-links
will be detected and excised from the draft haplotypes to
reduce the chance of phasing errors. Moreover, novel algo-
rithms for handling imperfect data (missing and erroneous
genotypes) are also devised for the Hapi method. When dif-
ferent numbers of gametes were used for phasing, the new
Hapi method performed consistently well but the perfor-
mance of PHMM fluctuated wildly, indicating that the Hapi
method can sufficiently handle ambiguous data to produce
reliable phasing results.

Our study also indicated that three gametes may be
enough to reconstruct chromosome-length haplotypes by
Hapi if the genotype data are of high quality. This is theoret-
ically reasonable because DNA recombination is very rare
with an average of <3 events affecting most gametic chro-
mosomes in most studied diploid organisms (Beye et al.
2006). It should be noted that using three gametes may fail
in a special scenario when two sampled gametes each have a
crossover within a very small region. This is because, in the
step of proofreading draft haplotypes, small blocks (i.e.,<100
hetSNPs) are excluded from the draft haplotypes by default,

FIG. 7. Comprehensive simulation study comparing the performance of Hapi and PHMM for crossover detection in terms of TPR and false
discovery rate (FDR). The same simulation data set for haplotype phasing analysis was used; that is, a pool of 100 haploid gametes were simulated
where the number of hetSNPs ranged from 5,000 (5K) to 100,000 (100K) and the rate of missing genotype data ranged from 10% to 70%. For the
chromosome in each simulated gamete, one to three crossovers and 1% genotyping errors were introduced. In each comparison, 3–15 simulated
gametes were randomly selected from the gamete pool for haplotyping and the process was repeated for 100 times to compute the TPR and FDR
for crossover detection.
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assuming the probability of having multiple crossovers within
these blocks in more than one gamete is low. In this specific
but rare scenario, removal of such blocks may lead to the
wrong determination of the major link type and thereafter
the haplotypes. If only three gametes are available, it is rec-
ommended to implement the Hapi method with and with-
out removing blocks in constructing draft haplotypes and
check the consistency in results from two different settings.
Such ambiguity can be easily resolved by slightly increasing
the sample size to four or five.

Unlike many other phasing algorithms that demand se-
quencing long-reads or linked-reads in diploid cells, the Hapi
method can analyze hetSNP data of single gamete cells gen-
erated using any genotyping platform. Advanced technolo-
gies, such as 10X Genomics linked-read sequencing, are not
necessary for the Hapi method but may be used as ancillary

approaches to generate designated long-range haplotype
fragments for complex and challenging genomic regions, fur-
ther perfecting the chromosomal haplotypes inferred by the
Hapi method. Alternatively, the Hapi method may be first
used to analyze hetSNPs acquired by inexpensive genotyping
methods for the inference of a sketch of chromosomal hap-
lotypes; then, these sketch chromosome-length haplotypes
can be used to guide haplotype-resolved genome assembly.

Another application of the Hapi package is to implement
the crossover analysis module to derive maps of recombina-
tion in gametes based on the inferred chromosome-length
haplotypes. Results from both the comprehensive simulation
study and the human sperm sequencing data analysis sug-
gested the feasibility of Hapi for crossover detection in the
gamete cells. This unique function may be used to investigate
recombination hotspots in a population of interest, or

FIG. 8. Crossover analysis in the human sperm sequencing data set. (A) The distribution of 254 identified crossovers on the 22 autosomes. (B) The
distribution of the crossover resolutions (distance between two adjacent markers that involve a crossover). (C) The distribution of distances
between two neighboring crossovers.
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monitor the chromosomal crossovers in individual plants to
facilitate crop improvement. Recombination events are nor-
mally rare, with an overall frequency in a measurable range,
which may be used as a gauge for diagnosis of abnormal
recombination activity. In our study, we used the available
whole-genome sequencing data of 11 sperm cells to bench-
mark the performance of Hapi; whereas, in a clinical setting, it
is simple to survey many more sperm cells with little extra
cost to produce a high-resolution and reliable recombination
map for each male subject. For example, Lu et al. (2012)
sequenced 99 sperm cells from a male and observed a de-
creased crossover frequency in companion with an increase
of autosomal aneuploidy in human sperm. This strategy can
be equally applied to female subjects too. Hou et al. (2013)
identified 2,370 and 2,355 crossovers in the second polar body
and female pronucleus of 55 euploid oocytes from eight
donors, respectively, and they used these data to create a
female personal genetic map and to study crossover interfer-
ence and chromatid interference. The second study, which
focused on human female gametes, also reported lower cross-
over activity in aneuploid oocytes. Abnormality in recombi-
nation frequency during meiosis is one of the primary causes
leading to miscarriage and birth defects. These research or
clinical practices on the human reproductive system may
remarkably benefit from the crossover analysis function, sug-
gesting a translational potential of Hapi.

In summary, we have developed the innovative Hapi
method for an accurate and efficient inference of
chromosome-length haplotypes in individual genomes. The
crossover detection module may be used to study DNA re-
combination and its underlying biological mechanisms. This
cost-effective tool will promote a large-scale use of haplotype
data in many research areas and inspire scientists who have
never used single-gamete sequencing technology to design
improved experiments for their studies.

Materials and Methods

Key Component Algorithms Employed in Hapi
HMM for Detection of Genotyping Errors
An HMM is adopted to linearly scrutinize hetSNP markers
along the chromosome in two gametes to identify markers
bearing genotyping errors (supplementary fig. S3,
Supplementary Material online). In the HMM, there are
two observations “s” and “d” indicating the two possible out-
comes, either same or different, in terms of the relationship of
observed genotype calls at a hetSNP locus between two
gametes. Two hidden states, “S” and “D,” represent the invis-
ible relationship between the true genotypes of this marker in
these two gametes, with “S” and “D” denoting the same and
different genotypes, respectively. The initial probabilities of
the two states are 0.5. Because the observed genotype out-
comes may be different from the hidden states due to the
genotyping errors at rate E, the emission probabilities to ob-
serve the same genotype calls, that is, s, given the S hidden
state, is 1 � 2E � (1 � E), and to observe the different
genotype calls, that is, d, is 2E� (1 � E). The emission prob-
abilities given the D state are defined in the same way. A

transition is defined as a change in state when scanning
two adjacent markers, indicating that a meiotic recombina-
tion likely occurs between these two markers on either gam-
ete chromosome. Suppose the recombination frequency is R,
the transition probabilities from one state to itself is 1� 2R�
(1� R), and to the other state is 2R� (1� R). After defining
the HMM, Viterbi’s algorithm (Viterbi 1967) can be used to
determine the most likely sequence (or path) of the hidden
states for the DNA markers along the chromosome. Markers
with genotyping errors are determined where there are con-
flicts between the observed outcomes and the inferred states.
The HMM is iteratively applied to all gamete pairs for the
detection of disputed SNP loci with potential genotyping
errors.

Imputation of Missing Genotypes
We define a framework as a set of selected hetSNPs for con-
structing draft haplotypes for each chromosome. Missing
data for the framework markers in the gametes are imputed
in an iterative manner (supplementary fig. S4, Supplementary
Material online). When a missing region (either a single
marker or consecutive markers) of a “target” gamete is to
be imputed, the two markers immediately around this region,
called comparator markers, are first compared with those in
other “support” gametes. The missing region can be imputed
with the information from a support gamete cell only if the
genotype calls for these two comparator markers in the target
gamete are either both identical or both complementary to
those in the support gamete. For example, if genotype calls of
the two comparator markers in the target gamete are both
identical to those in the support gamete, the missing region
on the target gamete is simply imputed with genotype calls of
markers in the same region in the support gamete. Otherwise,
the missing region in the target gamete is imputed with the
reciprocal genotypes in the support gamete. Missing geno-
types in one gamete can be eventually resolved only if the
imputations are supported by more than two support game-
tes and no imputation conflict is incurred. Once all the game-
tes are imputed in one iteration, genotypes in the missing
regions are updated and the entire process described above
will be repeated until no more missing data can be further
imputed.

Majority Voting
With the assumption that recombination is generally rare on
the chromosome and even rarer between two neighboring
framework markers (a small region) in multiple gametes, the
haplotypes of these two adjacent framework markers are
deduced by analyzing genotype links (genotype patterns for
these two markers) across all gametes based on the majority
voting principle. There are two types of links between these
two neighboring framework markers, that is, type I links in-
clude genotype patterns 0-0 and 1-1 and type II links include
genotype patterns 0-1 and 1-0, where 1 and 0 represent two
complementary genotype calls that are arbitrarily and inde-
pendently assigned at either locus (supplementary fig. S5,
Supplementary Material online). The most frequent link
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type is determined as HAP-link which represents the likely
haplotypes for the two framework markers, whereas the mi-
nority link type is considered as CV-link arising from a cross-
over. The final draft haplotypes can be deduced through
walking and voting along the framework of the chromosome.

Maximum Parsimony of Recombination
MPR (Xie et al. 2010), an optimality criterion to search for the
haplotype arrangement with minimum number of crossovers
in a chromosomal region across all gametes, is adopted by
Hapi to proofread the equivocal regions (two adjacent frame-
work markers) of draft haplotypes where disputed CV-links
have been observed. When five or more gametes are analyzed,
we treat any two adjacent markers with two or more CV-links
as candidate regions for proofreading (supplementary fig. S6,
Supplementary Material online). If very few (e.g., 3 or 4)
gametes are in use, every two adjacent markers with any
CV-link are subject to proofreading. The draft haplotypes
are first segmented into blocks by the equivocal regions.
Small blocks (<100 hetSNPs) with little genotypic data are
excluded from the construction of the draft haplotypes. To
phase two neighboring blocks, raw genotype calls (with pos-
sible missing data) of the joining hetSNPs markers, that is, the
last 100 consecutive hetSNPs in the first block and the first
100 consecutive hetSNPs in the second block, are retrieved.
As haplotypes within each block are unambiguous, there are
only two possible combining haplotypes for these two blocks.
The total number of crossovers in all gametes is counted
given the two combining haplotypes, and the one generating
less crossovers is preferred by the MPR algorithm.

Assembly of Consensus Chromosome-Length Haplotypes
One of the inferred draft haplotypes is arbitrarily selected and
used as a blueprint to deduce gamete-specific haplotypes and
eventually assemble the chromosome-length consensus hap-
lotypes through three steps (supplementary fig. S7,
Supplementary Material online). In step 1, genotype calls of
framework markers in each gamete chromosome are com-
pared with the blueprint to identify HCPs which are caused
by potential recombination. These HCPs partition each gam-
ete chromosome into k haplotype segments, where k � 1 is
the number of HCPs identified for this gamete chromosome.
For the segments 1 through k, genotype calls of hetSNPs in
every second segment are flipped to form a gamete-specific
haplotype, where “flip” refers to switching the current geno-
type call to its reciprocal genotype. In step 2, each gamete-
specific haplotype is synchronized with the blueprint by ei-
ther remaining the same or flipping over the genotypes of
entire chromosomal hetSNPs. In step 3, the first consensus
chromosome-length haplotype is reconstructed via voting for
the most frequent allele at each hetSNP locus across all the
gamete-specific haplotypes. The second consensus haplotype
is obtained by simply flipping genotypes of hetSNPs on the
first chromosome-length haplotype.

If a crossover occurs at the end of a gamete chromosome
where hetSNPs are not enclosed in the framework, it becomes
challenging to correctly infer the haplotypes for this

chromosome-tip region. Hapi employs an additional capping
strategy to polish two ends of chromosomal haplotypes. First,
hetSNPs in such a region are combined with the immediately
adjacent 200 consecutive hetSNPs at the joining end of the
framework to form a capping block, of which the haplotypes
can be inferred by treating them as a small chromosome.
Then, small-scale draft haplotypes are constructed for the
selected framework markers of this capping block by using
the most frequently represented genotype calls across the
gametes. The same strategy is adopted to generate gamete-
specific haplotypes to deduce consensus haplotypes for this
small chromosome-tip region. Lastly, the inferred haplotypes
for the capping block are integrated into the chromosome-
length haplotypes.

Rival Phasing Methods
Pairwise HMM
The PHMM approach, the only published gamete-based
phasing pipeline, adopted a reference-offspring pairwise-com-
parison strategy to identify HCPs in each gamete using an
HMM to assemble the chromosome-length haplotypes (Hou
et al. 2013). For each reference chromosome, a crossover can
be directly inferred if, within a 1-Mb sliding window, HCPs can
be identified in over 60% of the reference-offspring pairs.
Detailed description of the pipeline can be found in the orig-
inal article (Hou et al. 2013). The source code, which consists
of a series of Cþþ programs and Perl scripts for implement-
ing the PHMM pipeline, is publicly available from https://
sourceforge.net/projects/phacro/files/ (last accessed July 21,
2020). To facilitate the comparison analysis in this study,
we directly applied the Cþþ programs for crossover identi-
fication but rewrote the Perl scripts in R (without changing
the original algorithm) for the inference of consensus
haplotypes.

WhatsHap
WhatsHap is a read-based method which was initially devised
for phasing long-read sequencing data from diploid somatic
cells sequenced by third-generation sequencing technologies,
such as PacBio and Oxford Nanopore sequencing (Martin
et al. 2016). Nevertheless, the method can also be adapted
to next-generation sequencing data for inference of haplo-
types. WhatsHap directly uses mapped sequencing reads
spanning at least two heterozygous variants to assemble hap-
lotype segments of an individual. The core algorithm of
WhatsHap is to compare all potential haplotypes to deter-
mine the optimal one, which can assign all reads with the
least amount of sequencing errors to be corrected and/or
erroneous reads to be removed by solving the weighted min-
imum error correction problem. In this study, sequencing
data of single gametes from the donor were combined and
the default settings were applied to infer the haplotypes of
the individual.

HapCUT2
The HapCUT2 approach, similar to WhatsHap, is another
popular read-based phasing method for data generated using
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various sequencing platforms (Edge et al. 2017). This method
infers longer haplotypes that are most agreeable to the ob-
served mini-haplotypes represented by the sequence of alleles
at heterozygous variant sites identified from aligned sequence
reads. The default settings were applied to the phasing anal-
ysis in the study.

Quality Metrics for Evaluation of Phasing Performance
Four quality metrics, which have been used in previous re-
search (Porubsky et al. 2017), were adopted in the study to
assess and compare the phasing performance of the com-
pared methods.

Completeness
A phase connection between two neighboring hetSNPs is
defined if these two hetSNPs can be phased by a method.
The number of phase connections at the chromosomal scale
equals to the number of phased hetSNPs minus the number
of inferred haplotype segments on that chromosome. The
COM of phasing a chromosome is defined as the ratio of
the number of phase connections to the maximum possible
number of phase connections, which equals to the total num-
ber of hetSNPs on that chromosome minus 1. We calculated
the COM of an entire genome as the weighted sum of COMs
across chromosomes, with the weights being proportional to
the numbers of hetSNPs on each of these chromosomes.

Switch Error Rate
The SER is defined as the number of incorrect phase con-
nections (switch errors) divided by the total number of phase
connections within each inferred haplotype segment. It is a
commonly used measure of “local” accuracy for a phased
haplotype segment or a phased chromosome. The SER for
a whole chromosome can be accurately calculated for the
gamete-based phasing methods because chromosome-length
haplotypes can be inferred. Nevertheless, block-wise SER (cu-
mulative switch errors across all phased segments divided by
the total number of phase connections on the chromosome)
was calculated for the read-based phasing approaches to rep-
resent the chromosomal SER, which may be severely under-
estimated because the connections between haplotype
segments cannot be taken into account. The SER of an entire
genome was calculated as the weighted sum of SERs across
chromosomes, with the weights being proportional to the
numbers of phase connections on each of these
chromosomes.

Hamming Error Rate
The fraction of incorrectly phased hetSNPs, called the HER,
was proposed to evaluate the phasing accuracy for the LHS
(Porubsky et al. 2017). This is because a single switch error in a
large phased haplotype segment may result in substantial
difference (or Hamming distance) between the inferred and
true haplotypes. Similar to SER, the HER for a whole chromo-
some can be accurately calculated for the gamete-based phas-
ing methods, whereas block-wise HER (cumulative Hamming
distance across all phased segments divided by the total

number of hetSNPs on the chromosome) was calculated
for the read-based phasing approaches to represent the chro-
mosomal HER. Similarly, the HER for a genome can be calcu-
lated as a weighted sum of chromosomal HERs, with the
weights being proportional to the numbers of the phased
hetSNPs on these chromosomes.

Largest Haplotype Segment
As we are interested in ability of inferring the haplotypes that
span the whole length of a chromosome, the fraction of
phased hetSNPs in the LHS was reported for each chromo-
some to reflect the contiguity for each phasing method.

Human Sperm Sequencing Data Set
Single sperm cell sequencing data of 11 sperms from the
donor of the HuRef diploid genome were downloaded from
the NCBI SRA under the accession number SRP017516
(Kirkness et al. 2013). Sequencing reads were aligned to the
human GRCh37 reference genome using BWA-MEM (Li and
Durbin 2009) implemented in the SpeedSeq software (Chiang
et al. 2015). Duplicate-marked, sorted, and indexed BAM files
were produced by the SpeedSeq align module, which utilizes
SAMBLASTER (Faust and Hall 2014) to mark duplicates and
uses Sambamba (Tarasov et al. 2015) to sort and index BAM
files. For each sperm, the genotypes at 1.95 million heterozy-
gous SNP loci in the HuRef genome were determined using
the Genome Analysis Toolkit (GATK) (DePristo et al. 2011).

Maize Microspore Sequencing Data Set
The raw sequencing data in the maize microspore sequencing
data set were available from the National Center for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA) (https://www.ncbi.nlm.nih.gov/sra; last accessed July
21, 2020) under the accession number SRP047362 (Li et al.
2015). In the study, a total of 96 (24� 4) microspores from 24
tetrads were isolated from F1 hybrid individuals of a cross
between two inbred lines (SK and ZHENG58) and were se-
quenced at �1.4� depth coverage. Parents of the F1 hybrid
were also sequenced at up to 8� (SK) and 15.7� (ZHENG58)
genome coverage depth, respectively. After a stringent filter-
ing process, a total of 599,154 high-quality SNPs were
obtained for both parents and the microspores.

Data Availability
Hapi is an R package that is freely available at https://github.-
com/Jialab-UCR/Hapi.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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