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1. Introduction
The 2019e20 coronavirus pandemic is the biggest threat that the world is facing today. The

coronavirus outbreak was first identified in Wuhan, China, in December 2019 [1].

The World Health Organization (WHO) declared the outbreak as a “public health

emergency of international concern” on January 30, 2020, and a “pandemic” on March 11,

2020 [2,3]. The disease caused by Severe Acute Respiratory Syndrome CoronaVirus-2

(SARS-CoV-2) is named as COVID-19 [1], which is coined from the term COronaVIrus

Disease, and 19 stands for 2019 since it was first identified in December 2019 in Wuhan,

China. It was previously referred to as the novel CoronaVirus or 2019-nCoV by WHO [2,3].

The symptoms of the coronavirus disease are quite common to cold, which include

fever, sore throat, dry cough, fatigue, shortness of breath, loss of smell, etc. Therefore,

observing the symptoms, it is quite difficult to distinguish the disease from normal or

seasonal flu. Moreover, the coronavirus is highly contiguous and is primarily spread

from the close-contact between people, often through small droplets produced by

sneezing, coughing, or talking [1,3]. It has also been observed that people may become

affected by touching a contaminated surface, followed by touching their faces.

Therefore, the rapid growth of the virus is noted across the world. As of April 29, 2020,

more than 3.19 million cases of COVID-19 have been reported across 185 countries,

where the world has witnessed about 2,27,000 death cases [4]. Fig. 11.1aec show the

worldwide cumulative affected cases, death cases, and country-wise death percentages,

respectively. From Fig. 11.1a, it can be easily observed that the COVID-19eaffected cases

are increasing exponentially.

To prevent the spread of the disease, the detection of this disease is utterly important.

However, the testing of this disease is facing an unprecedented challenge. On one hand,

as of now (April 29, 2020), this disease is almost impossible to detect from its symptoms.

Data Science for COVID-19. https://doi.org/10.1016/B978-0-12-824536-1.00021-6 213
Copyright © 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-824536-1.00021-6


FIGURE 11.1 Worldwide COVID-19 spread: (a) cumulative number of affected cases, (b) cumulative number of death cases, and (c) country-wise death
percentage. Data collected up to April 29, 2020 from Worldwide Coronavirus Dashboard: https://covid-019.com.
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On the other hand, providing the testing infrastructure considering the massive spread

rate of this disease is becoming nearly infeasible. Moreover, because of the infectious

nature of the disease, medical experts are also getting infected by this disease while

treating the patients. The major problems with conventional diagnostic strategies are as

follows:

� The diagnosis is a time-consuming approach.

� Infrastructure required to store specimens: special biosafety lab is required to store

a polymerase chain reaction (PCR) machine, which is very costly.

� Shortage of testing-kits: sufficient test kits are not available considering the

requirement to test this disease. Moreover, a reverse transcriptase (RT)-PCR kit

does not cost-efficient.

� A phlebotomist is required for testing purposes, who is getting exposed to invasive

swab.

� The testing is prone to human error and bias to a cost-effective approach.

Considering the above problems, an alternate coronavirus detection strategy can be

very useful along with the conventional testing mechanism. Other methods of diagnosis

include clinical approach, medical image (computed tomography (CT) or chest X-ray)

analysis, pathogenic test, etc. In this paper, we aim to analyze COVID-19 at an early stage

of infection by leveraging chest X-ray and CT scan images.

The use of chest X-ray and CT scan images are very common in medical image

processing to diagnose various kind of diseases. CT [5e7] is an X-ray measurement

obtained from diverse angles to generate cross-sectional images of certain regions of a

scanned object, which allows the user to inspect inside the object without any surgery.

Magnetic resonance imaging (MRI) [8e13] is another medical imaging technique used to

form pictures of the anatomy using nuclear magnetic resonance. Recently, radiography

images are also becoming popular [14], where the image capturing systems are equipped

with digital sensors that use X-rays, gamma rays, or similar ionizing/nonionizing

radiation to reflect the internal view of an object. In the field of medical image analysis,

various computer vision techniques (e.g., segmentation [15,16], slicing [17e19],

clustering [9,20]) have shown to be very effective and played a crucial role in the early

detection of major diseases in the brain, kidney, breast, prostate, etc. [21,22].

For example, diagnosis of heart diseases [23], tumor detection [24], bone fracture finding

[25], bone age prediction [26], etc., are carried out by analyzing medical images.

In this paper, we propose a new architecture to analyze the COVID-19eaffected

medical images. Our proposed method (say, DenserNet) uses the densely connected

convolution neural network. The proposed DenserNet is an improvement over the

DenseNet [27]. For experimental analysis, we employ two public databases containing

chest X-ray and CT-scan images. The experimental results are quite encouraging.

Our contribution to this paper is of two folds comprising a novel solution architecture

proposal and its application on COVID-19 study.
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� Solution architecture: We propose a new architecture (DenserNet) to tackle the

general classification problem. This architecture is an improvisation of the

DenseNet [27].

� Application: We propose a framework to analyze medical images, especially X-ray

and CT scan images to expedite the study of COVID-19eaffected cases.

This paper is organized as follows. Section 2 discusses the related works on medical

image analysis. Then Section 3 formulates the undertaken research problem. The

proposed methodology is given in Section 4. The experimental results are presented in

Section 5. Finally, Section 6 concludes this paper.

2. Related works
The medical image processing has acquired great attention in the field of health care

since the day digital images came into existence. Some common medical digital

imagings are CT [5e7], MRI [8e13], etc. Along with these digital imagings, the recent

addition of an analog imaging modality, i.e., radiography [14] equipped with digital

sensors, has attracted significant research attention. Many works have been performed

using digital images to address several problems of the medical domain [21,28,29].

With the alliance of medical imaging and computer vision, many successful works

have been proposed in the medical domain, which has played a significant role to

perform early identification of major diseases related to the brain, chest, breast, kidney,

prostate, and many other organs. Taking assistance from computer vision, the medical

image analysis explores various facets, such as segmentation [15,16,29,30], slicing

[17e19], clustering [9,20], acuity [21], etc., for a better view of the subsections with a

detailed study. Segmentation [29] of an image into small subsections provides a better

view of remote sections. Each subsection contains minute information that is subjected

to further processing for information extraction. Often the digital images used in medical

science come out to be blurry or having a blunt outline. The quality of images is also

sometimes not up to the mark because of which processing becomes tough.

Subsequently, the accurate localization of complex boundaries of various tiny isolated

parts cannot be performed properly. Kruggel [21] dealt with the quality of digital images

by taking the acuity measure and the statistical properties of images. Zhou et al. [29]

addressed this problem by exploiting the basic information of the images for a better

understanding of the outlines and subsections. They took into account the semantic

information of the images for accurate boundary localization.

For extracting the features and some other latent information from images, deep

learning has played a remarkable role in the field of medical sciences. The convolutional

neural network (CNN) has been an important part of analyzing the visual imagery.

A decent amount of research works [22,29,31] employed deep learningebased

approaches and extracted useful information from the medical images. The deep

learningebased models are usually dependent on huge training data, but sometimes the

availability of sufficient distinct images for training is not available. To deal with this
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issue, Zhang et al. [22] implemented a two-stage task-oriented deep learning method for

finding large-scale anatomical landmarks simultaneously in real-time with limited

training data.

For the extraction of fine patterns and features in a medical image, another kind of

method involves the slicing [17,18] of images. Slicing often creates fine pieces of an

image from various positions so that a diverse view of the image can be obtained for

additional processing. Manojlovic et al. [20] dealt with radiology images and dynamically

sliced it for further processing of images.

With the outbreak of COVID-19 pandemic, multiple research works are being carried

to detect the possibilities of positive cases and also to find solutions to its recovery.

Medical images of the COVID-19eaffected patients have been taken into account to

study the patients. One such convenient medical image is the chest X-ray image of

COVID-19eaffected patient, which has been widely used for predictions and classifi-

cation of positive and nonpositive cases. The combination of medical sciences with

computer vision has helped to an extent in figuring out the positive cases of COVID-19.

Multiple works [32e36] have been done on COVID-19 by considering the CT scans and

chest X-ray images of COVID-19eaffected patients. Most of the studies have employed

deep learning techniques [31,32,34,37e39] supported by CNNs for the detection of

COVID-19 cases with respect to the chest X-ray images. To determine the COVID-19

positive cases, the task is mostly modeled into a supervised classification [33,40] of

medical images. However, the deep learning techniques are dependent on the training

data, for which sufficient data supply is required to train the model properly. Because of

the inaccessibility of a sufficient amount of data, it becomes difficult to train the model.

This problem can be handled by the transfer learning technique, which allows using the

knowledge gathered from some other computer vision tasks. The studies reported in

Refs. [36,41] employed transfer learning to address the problem of insufficient data and

analyzed the COVID-19 positive cases concerning X-ray and CT scan images. However,

there is a scope of improvement over the past works [42] concerning the accuracy, which

we address in this paper.

3. Problem formulation
In this section, we formulate the problem considered in this paper.

Our framework is an analysis framework, where we have a medical image database.

This database contains multiple labeled chest X-ray and CT scan images of various

classes. Such an image is the input to the framework. The problem is formulated as a

supervised classification task and includes the following analyses:

� We first formulate our problem as a binary classification task, where the objective

is to identify COVID-19 versus non-COVID-19 medical images.

� We further concentrate on more granular classification and formulate a multiclass

classification problem. The objective of this problem is to categorize the medical

images into classes like normal, bacteria, viral COVID-19, viral non-COVID-19, etc.
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Primarily, we create a trained model based on the training set. After the proper

training, the trained model can be used to predict the class of an unlabeled image. Thus,

a chest X-ray/CT scan image can be analyzed whether the patient is COVID-19eaffected

or not. More details regarding the research tasks undertaken in this paper can be found

in Section 5.2.

4. Proposed methodology
In this section, we discuss our proposed method. This research emphasizes the

classification task. Therefore, we propose a novel architecture that can handle the

classification problem.

In a deep convolutional architecture [43], an image is fed to the system and usually

passed through a sequence of layers. The input image transforms through every layer l,

which comprises nonlinear transformation Gl. This Gl is a composite function of mul-

tiple operations, such as batch normalization (BN) [44], activation function (e.g., ReLU)

[45], and convolution [43,45], or pooling [43,45], etc. The output of the lth layer is

denoted as xl.

Convolutional neural network: In the traditional CNN [43], during feed-forward

connection, the input of the lth layer is the output of the previous ðl �1Þth layer,

which can be written as below.

xl ¼Glðxl�1Þ (11.1)

ResNet: The residual network (ResNet) [46] adds a skip connection besides the main

feed-forward connection, which utilizes the residues of the previous layer. This is

represented as follows:

xl ¼Glðxl�1Þ þ xl�1 (11.2)

In ResNet, the skip connection (output of Gl) and the main identity connection (xl�1)

is combined with a summation/linear transformation, which may lead to some infor-

mation loss [27]. Therefore, instead of summation, concatenation can be used.

Dense connection: In a dense convolutional network (DenseNet) [27], besides

introducing the concatenation idea, the information flow between layers is improved. In

DenseNet, multiple dense blocks are linked sequentially with the transition layers

comprising convolution and pooling operations. Inside a dense block, the connection is

dense, where the feature map of the lth layer (xl) is dependent on all the feature maps of

all the preceding layers, i.e., x0, x1, ., xl�1. It can be denoted as follows.

xl ¼Glð½x0; x1;. ; xl�1�Þ (11.3)

where ½x0; x1;.; xl�1� is the concatenation of the feature maps obtained from layers

0; 1;.; l � 1, and Gl is a composite function.

DenserNet: We adopt the idea of a dense block in our proposed architecture. We

pictorially present the internal view of a dense block in Fig. 11.2 that is used in our

architecture, where the dense connectivity among layers can be observed. The main
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connections are shown by horizontal rigid lines, whereas the skip connections are shown

using dotted lines. The composite function Gl comprises six successive operations, i.e.,

BN, Rectified Linear Unit (ReLU) activation, 1 � 1 convolution (conv), followed by BN,

ReLU, 3 � 3 conv. In a dense block, x0 is the input feature map, and xl is the output

feature map. In Fig. 11.2, l ¼ 4.

In DenseNet, the dense connection is only present inside a dense block, i.e., intra

dense block connection [27]. We propose an architecture, where besides the intra-dense

block connection, additional dense connections exist among the dense blocks, i.e., inter-

dense block connection. Therefore, our proposed architecture is denser than DenseNet.

We coin the name “DenserNet” to refer to our architecture.

Our DenserNet architecture contains multiple dense blocks. Here, all the dense

blocks are similar, i.e., each has the same l number of layers. In a dense block, the

number of channels of input and output feature maps is kept the same. Therefore, for

simplicity, all the feature maps inside a dense block contain the same number of

channels. For example, in Fig. 11.2, if the input feature map x0 contains nc number of

channels, then the output feature map x4, and in-between feature maps x1; x2; x3 also

contain nc number of channels, individually.

In Fig. 11.3, we graphically present a generalized version of our DenserNet archi-

tecture. The output of themth dense block is dm, which is actually the last feature map of

the mth dense block.

The input of the ðmþ1Þth dense block is a feature map fm. The fm is a concatenation

of multiple feature maps, calculated as follows.

fm ¼ �
Q1

mðdmÞ;Q2
mðdm�1Þ;Q3

mðdm�2Þ;. ;Qm
mðd1Þ

�
(11.4)

where Qi
m is a composite function applied after the mth dense block.

Qi
m contains four consecutive operations, BN, ReLU, 1 � 1 convolution (conv), and

2i � 2i max pooling (pool) layers; ci ¼ 1; 2;.;m, and m � 1. The input and output

feature maps of Qi
m consist of the same number of channels.

The main connection contains composite functions Qi
m, for i ¼ 1. As a matter of fact,

the main connection comprises only 21 � 21 max-pooling layers.

In Fig. 11.3, m ¼ 4. Here also, we show the main connection with rigid lines, and the

skip connections with dotted lines.

FIGURE 11.2 Internal view of a Dense Block.
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FIGURE 11.3 DenserNet architecture.Ă
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Input: An image is fed to our DenserNet architecture. The image is then transformed

using a composite function containing BN, ReLU, and 1 � 1 conv. Here, during the

convolution, we employ k number of filters to obtain a feature map with k channels.

The transformed output is fed to the first dense block. Therefore, the first feature map of

the first dense block consists of a k channeled feature map.

Growth rate: The input and output feature maps of a dense block contain the same

number of channels. The composite function Qi
m also maintains the same number of

channels. After the operation of the first dense block, the number of channels of feature

map f1 is k. The value of k grows with the number of dense blocks because of concat-

enation. As a matter of fact, f2 has 2k channels obtained after the execution of the second

dense block, f3 contains 4k channels attained after the operation of the third block, and

so on. In this manner, after the execution of the mthth block, fm consists 2m�1k number

of channels. Here, k is a hyper-parameter, which grows with the number of dense blocks.

We present an example concerning Fig. 11.3 and Eq. (11.4) as follows:

f4 ¼
�
Q1

4ðd4Þ;Q2
4ðd3Þ;Q3

4ðd2Þ;Q4
4ðd1Þ

�
(11.5)

The feature map f4 is a concatenation of 4k, 2k, k, and k channeled features maps

obtained from Q1
4ðd4Þ, Q2

4ðd3Þ, Q3
4ðd2Þ, and Q4

4ðd1Þ, respectively. Therefore, f4 contains a

total of 8k
� ¼ 4kþ2kþkþk¼ 24�1k

�
number of channels.

Classification: The fm is passed through a global average pooling (avg pool) layer that

produces 2m�1k channeled feature maps, each of size 1 � 1. We flatten this feature map

and generate a linear representation of a feature vector with dimension 2m�1k. This

flattened layer (FC1) with 2m�1k number of nodes is fully connected to a successive layer

(FC2) that contains h number of nodes. Then FC2 is fully connected to a sequential layer

FC3 comprising c number of nodes, where c is the number of classes. Finally, a softmax

layer [45] is added to obtain the classified output.

Implementation details: In our DenserNet, an image of size 224� 224 is fed as an

input. Here, all the convolutional layers use the same convolutions, i.e., the input and

output of a convolutional layer are of the same dimension. For our study undertaken in

this paper, we use five dense blocks in total, and four layers in each of the dense blocks.

In dense blocks, we use dropout with a rate of 20% at the end of every composite

function Gl. It helps in preventing the overfitting problem.

The hyper-parameter k is set as 32. Therefore, the feature map f1 has 32 number of

channels, each of size 112 � 112

�
¼ 224

2 �224
2

�
, which we represent as f1: 112 � 112@32.

Similarly, the feature maps f2, f3, f4, and f5 can be represented as f2: 56 � 56@64, f3: 28�
28@128, f4: 14 � 14@256, and f5: 7 � 7@512, respectively. Thus, after the fifth dense

block, we obtain feature map f5 containing 512
�¼ 25�1:32

�
number of channels, each of

size 7 � 7. Now, f5 is fed to the avg pool layer, where the employed filter is of size 7 � 7.

As a matter of fact, FC1 layer contains 512 number of nodes. For FC2, we fix the number

of nodes as h ¼ 128. In FC3, the number of nodes c is decided based on the task

undertaken, e.g., for the binary classification task, c ¼ 2.
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5. Experiments and discussions
In this section, we discuss the experimental study and analyze the efficacy of our system.

To perform the experiments, we required a database containing radiological images. For

this purpose, we gathered some publicly available databases. The database employed is

discussed below followed by the performance evaluation of our proposed method.

5.1 Database employed

For experimental analysis, we employed two separate databases containing chest X-ray

and thorax CT-scan images. The details of these databases are as follows.

(i) X-ray database (DX): This database (say, DX) contains a large collection of chest

X-ray images of several human-beings of various demographics. The total count of

X-ray images in DX is 6116 (¼1576 þ 2777 þ 270 þ 1493). In DX, the pneumonia-

affected image count is 4540 (¼2777 þ 270 þ 1493), and normal image count is

1576. The pneumonia images are categorized into two groups, i.e., bacteria and vi-

rus, which contains 2777 and 1763 (¼270 þ 1493) number of images, respectively.

The virus-affected images are further divided into two categories, i.e., COVID-19

versus non-COVID-19 X-ray images, which consist of 270 and 1493 number of

samples, respectively. In Fig. 11.4, we pictorially represent this categorization.

The X-ray images are collected from some publicly available data repositories

mentioned as follows. The normal, bacterial pneumonia, and non-COVID-19 viral

pneumonia X-ray images are gathered from Ref. [47]. The COVID-19 viral

pneumonia-affected X-ray images are collected from Ref. [48]. We only used the

frontal chest X-ray images for our experimentation. In Fig. 11.5, we present some

examples from DX.

The training set of DX contains 1342, 2535, 199, and 1345 number of samples of

normal, bacteria, COVID-19, and non-COVID-19 categories, respectively. The

details of the training, validation, and test sets of DX are presented in Table 11.1.

(ii) CT scan database (DCT): This database (say, DCT) contains CT-scan images of human

thorax. DCT contains a total of 746 (¼ 349 þ 397) number of CT-scan images of

human thorax. In DCT, the count of COVID-19eaffected images is 349, and the count

FIGURE 11.4 Medical image categories of X-ray database DX with sample count (#).
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of non-COVID-19 images is 397. The samples of DCT are obtained from a publicly

available collection [49]. In Fig. 11.6, we present a pair of samples from DCT.

The dataset DCT is divided into training, validation, and test set as presented in

Table 11.2.

5.2 Experimental results

In this subsection, we present the performance of our system carried out on databases

DX and DCT. Here, we undertake various tasks to analyze bacterial pneumonia, viral

pneumonia, and pandemic COVID-19.

FIGURE 11.5 Examples from DX database: (a) normal, (b) bacterial pneumonia, (c) non-COVID-19 viral pneumonia,
(d) COVID-19 viral pneumonia.

Table 11.1 Training, validation, and test set distribution of DX.

Category Training Validation Test Total

Normal 1342 46 188 1576
Bacteria 2535 48 194 2777
COVID-19 199 15 56 270
Non-COVID-19 1345 28 120 1493
Virus (COVID-19 þ non-COVID-19) 1544 43 176 1763
Pneumonia (Bacteria þ virus) 4079 91 370 4540
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The tasks are mostly formulated as classification problems as below.

� Task-1: In this task, we perform a binary classification to classify the X-ray images

of normal and pneumonia-affected patients.

� Task-2: Here, we classify the X-ray images of bacterial and viral pneumonia-

affected patients.

� Task-3: In this task, the viral COVID-19eaffected patients are separated from viral

non-COVID-19 patients with respect to the X-ray images.

� Task-4: This task comprises the classification of four classes of X-ray images,

i.e., normal, bacteria, viral COVID-19, and viral non-COVID-19.

For Tasks 1, 2, 3, and 4, we use the X-ray images of DX database.

� Task-5: Here, we perform a binary classification to detect COVID-19 and

non-COVID-19 CT-scan images of DCT database.

With respect to these five tasks, we train five models by employing the corresponding

training sets as mentioned in Tables 11.1 and 11.2. At first, we train our DenserNet model

for Task-4, then transfer the weights of the initial two dense blocks to the models for

Task-1, Task-2, and Task-3. Here, we adopt the idea of transfer learning.

The training details of the models are mentioned as follows.

Training details: To tackle the overfitting problem, we employ data augmentation

[50] with shear_range ¼ 0.2, zoom_range ¼ 0.2, brightness_range ¼ [0.2,1.0],

horizontal_flip ¼ True, rotation_range ¼ 30. All our models were trained using Adam

optimizer [51] with mini-batch of size 64. Here, we fixed some hyper-parameters such as

learning rate (a) ¼ 0.01, weight_decay ¼ 10�4, b1 ¼ 0.9, b2 ¼ 0.999, ε ¼ 10�8. We trained

our models for 500 epochs. We did not use any early stopping [52]. We employed cross-

entropy [52] as a loss function.

Table 11.2 Training, validation, and test set distribution of DCT.

Category Training Validation Test Total

COVID-19 219 36 94 349
Non-COVID-19 259 40 98 397

FIGURE 11.6 Examples from DCT database: (a) non-COVID-19 and (b) COVID-19.
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We measured the performance of our system in terms of accuracy, precision, recall,

and F1 score. The performance measures of our tasks are shown in Table 11.3.

From Table 11.3, we can note that our method performed the best for Task-3 by

attaining 96.18% accuracy, where the task was to separate the viral COVID-19eaffected

patients from the viral non-COVID-19 patients with respect to the X-ray images.

On database DX, our system obtained the lowest 82.40% accuracy for Task-4, where

we classified into four classes of X-ray images, i.e., normal, bacteria, viral COVID-19, and

viral non-COVID-19.

For Task-1 and Task-2, we obtained 89.26% and 86.85% accuracies, respectively.

On database DX, the highest to lowest performances of the tasks are in the following

order: Task-3 > Task-1 > Task-2 > Task-4.

On database DCT, we executed only Task-5, where we obtained 87.19% accuracy for

detecting COVID-19 versus non-COVID-19 with respect to CT-scan images.

In Table 11.3, we observe a similar trend with respect to the F1 score. The highest F1
score was achieved for Task-3, and the lowest F1 score was attained for Task-4.

Fig. 11.7 shows the bar chart representation of our DenserNet performance over the

five tasks in terms of accuracy.

Table 11.3 Performance of DenserNet on various tasks.

Database Task Accuracy (%) Precision (%) Recall (%) F1 score (%)

DX Task-1 89.26 87.89 89.40 88.64
Task-2 86.85 86.12 86.34 86.23
Task-3 96.18 96.26 95.46 95.86
Task-4 82.40 82.15 81.79 81.97

DCT Task-5 87.19 87.10 86.94 87.02

FIGURE 11.7 Bar chart representation of DenserNet performance on various tasks.
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5.3 Comparison

We compared our proposed DenserNet architecture with some state-of-the-art deep

learning-based architectures, such as GoogLenet [53], VGG-16 [54], ResNet-101 [46], and

DenseNet [27] that work well on ImageNet database [55].

For a fair comparison, all the architectures were trained on the same training data

and a similar experimental setup. In Table 11.4, we present this comparison analysis

with respect to the accuracy measure.

From Table 11.4, we can observe, overall, our DenserNet performed the best on

databases DX and DCT with respect to the five undertaken tasks. This can be easily

observed from the bar chart of Fig. 11.8. Overall, for all the tasks, the highest to lowest

performances are as follows:

DenserNet > DenseNet > ResNet-101 > VGG-16 > GoogLenet.

Table 11.4 Comparison with state-of-the-art methods on DX and DCT.

Database Task

Accuracy (%)

GoogLenet VGG-16 ResNet-101 DenseNet DenserNet

DX Task-1 81.76 82.65 85.45 87.75 89.26
Task-2 79.34 81.14 84.30 85.28 86.85
Task-3 87.74 88.39 91.76 94.53 96.18
Task-4 74.15 75.33 79.27 81.52 82.40

DCT Task-5 81.06 81.79 84.65 85.73 87.19

FIGURE 11.8 Bar chart for comparative analysis.
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5.4 Research impact

Our method can be impactful in such a geographic location, where the proper COVID-19

test kit is not available, whereas the availability of an X-ray/CT-scan facility is there. In

addition, our system has minimal human intervention, which is quite advantageous for

breaking the chain of COVID-19 spread.

Moreover, our work can be extended to inspect some other medical images related to

tuberculosis, tumor, bone fracture, etc.

6. Conclusion
In the present scenario, the whole world is facing a pandemic situation because of a

massive outbreak of beta coronaviruses, specifically SARS-CoV-2 (COVID-19). In this

paper, we work on analyzing COVID-19eaffected medical images. For this purpose, we

propose a densely connected deep CNN, named as DenserNet. We employ two publicly

available databases DX and DCT, which contain chest X-ray and thorax CT scan images,

respectively. For COVID-19 versus non-COVID-19 medical image separation, our

DenserNet achieved 96.18% and 87.19% accuracies on databases DX and DCT,

respectively.

In the future, we will endeavor to collaborate with some medical establishment to

obtain more data, so that our system can learn various facets to produce better results.

Currently, our system is mainly trained in analyzing COVID-19eaffected medical

images. However, our system can be extended to analyze some other medical images

concerning tumor, tuberculosis, etc.
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