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This work proposes using an evolutionary optimization method known as

simulated annealing to train artificial neural networks. These neural networks

are used to control posture stabilization of a humanoid robot in a simulation.

A total of eight multilayer perceptron neural networks are used. Although

the control is used mainly for posture stabilization and not displacement,

we propose a posture set to achieve this, including right leg lift in sagittal

plane and right leg lift in frontal plane. At the beginning, tests are carried

out only considering gravitational force and reaction force between the floor

and the humanoid; then tests are carried out with two disturbances: tilted

ground and adding a mass to the humanoid. We found that using simulated

annealing the robot maintains its stability at all times, decreasing the number

of epochs needed to converge, and also, showing flexibility and adaptability

to disturbances. The way neural networks learn is analyzed; videos of the

movements made, and the model for further experimentation are provided.

KEYWORDS

simulated annealing, bipedal robot, neural network control, neurorobotics, machine

learning

1. Introduction

Since ancient times, machines have been created that attempt to replicate the human

form (Boden, 2006). With the development of robotics, this search for the development

of machines with human characteristics has continued. This search is of vital importance

as we aim for robots that can carry out tasks that at the moment are achievable only by

human beings. A very useful feature that human morphology possesses is the ability to

locomote and this feature is the focus of this work. Research has been done that shows

that human morphology is the best option when using legged robots due to its energy

efficiency (Kuo A., 2007).
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To program the locomotion of a biped, classical control

strategies were previously used, making use of complex

equations to model the dynamics of the robot, however, with

the development of some areas in artificial intelligence, and

especially with the rise of artificial neural networks, significant

progress has been made in simplifying the locomotion control

process of bipedal robots. In Jha et al. (2005), a method

combining fuzzy control and genetic algorithms was proposed

to control a stair-climbing biped in a simulation. Another

work in which fuzzy logic was also used is in Murakami

et al. (1995) where a fuzzy controller was used for each leg

in a biped. In Miller (1994) and Kim et al. (2005, 2012)

the authors use trained neural networks with supervised

learning to control the balance of a biped. In Lin et al.

(2006) and Wu et al. (2007) unsupervised learning is used

to control the biped, however these proposals have the

disadvantage of additionally needing a controller to compensate

the torque with a PID controller. In other applications,

Sun et al. (2021) uses a neural network-based adaptive

control approach to stabilize the airgap of the nonlinear

maglev vehicle.

In this work, what is sought is to use a posture stability

control method for a biped in a simulated environment. This

control is based on artificial neural networks and evolutionary

optimization, but unlike other works, the use of transfer

equations and other classical control methods is ruled out. It

is sought that the control system has a simpler implementation

allowing the algorithm to be easily understood and reproducible

while its performance meets the assigned task. As a contribution

to stability control strategies in bipeds, this paper proposes

a method in which only artificial neural networks trained

by evolutionary optimization methods are used to achieve

stabilization in the posture of a simulated biped in a computer-

generated environment (MATLAB’s Simulink). The novelty

of this work is that it uses an optimization method in

which prior knowledge is not required, since its operation is

similar to reinforcement learning, being an important difference

that learning is done in real time, so that fewer iterations

are required.

This work focuses on the goal to achieve a stable standing

position in each moment. A sequence of these positions creates

movement. With the knowledge of this positions, it is possible

to produce a faster motion using reinforcement learning (Gil

et al., 2019), among other techniques; not only for walking

on a straight line but also to make another movements

including movement with disturbances. The prediction of

movement can be applied changing the architecture to a

recurrent neural network, this could also help to achieve a

faster motion.

The benefits of having this technology are that there is

no need of large datasets to train the neural network, it can

be trained online while the robot is moving. It can also be

implemented in other morphologies. So it can be applied in

robots with different shapes and the performance should be the

same. Nevertheless, more research is necessary.

The rest of the document is organized as follows: In

Section 2, the state of the art is presented, works related to

the area of bipeds are described. The works are presented

starting with classical approaches, then works with more

modern control methods are shown. Section 3 describes the

methodology followed for the development of this work.

Section 4 details the experiments carried out and the results

obtained. Finally, in Section 5 we draw our conclusions, and

some proposals are made to continue developing the project

proposed here.

2. Related work

Bipedal locomotion is an area that has been developed

for several decades and for locomotion, balance control

is an indispensable requirement. Bipedal robots are high

dimensional systems, the dimension varies depending on

the configuration of the robot but even those systems that

only have the legs and waist, have many dimensions. A

common way to solve the dimensionality problem is to

represent the biped as a low-dimensional inverted pendulum

(Kajita et al., 2001; Kuo A. D., 2007; Pratt and Drakunov,

2007). The robot is thus controlled so that its center

of mass follows a specific target. However, this approach

has some challenges: finding the stable solution in the

complete model, deciding how to associate the states of

the pendulum with the complete high-dimensional system,

even realizing the correct model of the inverted pendulum

is not an easy task (Da and Grizzle, 2019). These are the

reasons why a different non-linear control option is proposed.

The ability of neural networks to approximate functions

makes them a valuable tool for the design of nonlinear

controllers (Plumer, 1996; Zhang et al., 2003; Geng et al., 2006).

Movement trajectories can be generated depending on

the application. For example, that a bipedal robot moves in

a straight line. However, these trajectories usually do not

consider disturbances that may exist in the environment.

Therefore, the adaptability of the bipedal control system

to environmental disturbances is an important aspect to

take into account. To solve this problem, classical control

options have been considered. In Cho and Kim (2018),

the authors create a dynamic model of a biped based on

an inverted pendulum with a spring and damper. Later

they calculated the transfer equations to make a closed

control loop.

The next sections present a brief summary of some works

related to the control of bipedal robots. These works focus on

stabilization of bipedal posture and not on the gait cycle.
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2.1. Dynamic posture stabilization of a
biped robot SUBO-1 on slope-changing
grounds

This work (Cho and Kim, 2018) describes a dynamic posture

stabilization model for a bipedal robot on a tilted floor. The

work uses the Zero Moment Point method to stabilize posture.

It also makes use of an altering spotter that was designed to

counteract alteration due to ground tilt. This work focuses on

the control of blind walk on globally sloped terrain. Without

using a vision system or anymechanism in the foot. It is assumed

that the slope of the terrain changes continuously and that the

floor is flat and without local slopes. Combining Zero Moment

Point control and disturbance observer, a stabilization strategy

using force sensors in the feet and an inertial sensor in the pelvis

is proposed.

The control frequency used in that work is 200 Hz, for which

the central controller receives the sensory data and sends the

positions in a period of 5 ms. The structure of the walking

algorithm consists of a walking pattern generation and a posture

stabilizer with feedback. The pattern generator is a feedforward

control and the posture stabilizer is a feedback control. Finally,

the desired angle is calculated by solving the inverse kinematics

for the two control inputs.

The robot was modeled as an inverted pendulum with a

flexible joint consisting of a spring and a damper. Transfer

equations were calculated to apply the control loop. At the end

of the work it was concluded that adding an observer was very

useful to deal with sloping floors. In addition to stabilization

with ZMP control. It is hoped that in the future a control system

including vision can be built for use in rough terrain.

2.2. Nearly optimal neural network
stabilization of bipedal standing using
genetic algorithm

In this work (Ghorbani et al., 2007), the stability control for

a biped was studied. The model of the biped was simplified as an

inverted pendulum with one joint. The controller consists of a

general regression neural network with feedback that stabilizes

the biped in a vertical position, and a PID control with feedback

that maintains the pendulum in a vertical position. The neural

network is also designed to minimize energy cost.

For that work, a General Regression Neural Network

(GRNN) is used, which has the advantage that it is not necessary

to define the number of hidden layers or the number of neurons

per layer. When generating the trajectory, it is assumed that the

biped moves in a sagittal plane and is simplified as an inverted

pendulum with a rigid joint that is the foot.

As a first step, a closed-loop control with a GRNN was

designed to move the pendulum in a region around the vertical

position while minimizing the energy related to the cost function

(torque). To increase stabilization, a PID control tuned by

trial and error is activated to keep the biped upright. Three

restrictions were considered: there is no lifting of the foot, there

is no sliding, and the center of pressure is always maintained in

the region of contact between the ground and the foot.

It has been reported that when standing subjects are exposed

to small disturbances, they typically respond by moving in

the sagittal plane and tend to keep their knees, neck, and

hips straight, moving primarily at the ankle (Kuo, 1995).

In conclusion, in the work it was possible to minimize

energy consumption by comparing the proposed system with a

previously proposed one (Yang and Wu, 2006). By comparison,

the new system managed to cut energy consumption in half

We have discussed several works that use modern control

methods such as artificial neural networks or bioinspired

algorithms; however, they still rely on classical techniques to

ensure correct control of the biped. In Ghorbani et al. (2007), the

authors use a general regression neural network with feedback

for vertical stabilization of a biped, and a PID control with

feedback to maintain the pendulum in a vertical position.

Again, modeling the biped as an inverted pendulum, and using

Lyapunov exponents to analyze the stability control. In the next

section, we present our proposal, where we seek to use only

neural networks for the purpose of moving a biped humanoid

without losing its balance.

3. Methodology

Our proposed method that allows a biped humanoid to

move without losing its balance consists of six stages.

1. Calculation of direct kinematics equations of the biped

2. Encoding of training algorithm

3. Modeling of the biped

4. Sense data filtering

5. Neural network training

6. Testing.

The next sections with provide more details on our

proposed model.

3.1. Kinematic model of the biped
humanoid

For this work, a kinematic model of the biped was conceived

in order to calculate the center of mass and thus perform a

stability analysis. Link lengths were modeled on average adult

male limb measurements. The model has 20 degrees of freedom,

however some of these will remain rigid during the simulation.

Of the 20 degrees of freedom, 16 have a biological counterpart

and four are necessary to make the complete model. The joints

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.934109
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Angeles-García et al. 10.3389/fnbot.2022.934109

with a biological counterpart are: ankle, knee, hip, shoulder and

elbow. Of these joints, the knee and elbow have one degree of

freedom, while the ankles, hips, and shoulders have two degrees

of freedom each.

In the model, both legs are modeled as a single powertrain.

This indicates that the foot that is resting on the ground is the

base of the robot. Therefore, the point X0Y0Z0 corresponds to

the center of the foot of the supporting leg. In case both legs

serve as support, X0Y0Z0 is taken from the center of the foot

of the left leg.

With the kinematic model, the position equations were

calculated by making the necessary multiplications of the

homogeneous transformation matrices. The position equations

of each joint in the X, Y, and Z axes are taken from

the last column of the matrix resulting from said matrix

multiplications. Once the position of each joint is known

and assuming the body has a uniform mass distribution, the

center of mass can be calculated with respect to the first

link (which will default to the left foot unless otherwise

stated). In this model there are 13 different elements, which

are:

• Left foot with mass

m1 = 578 g

• Right foot with mass

m2 = 578 g

• Left tibia with mass

m3 = 4,000 g

• Right tibia with mass

m4 = 4000 g

• Left femur with mass

m5 = 5,000 g

• Right femur with mass

m6 = 5,000 g

• Hip with mass m7 =
6,000 g

• Torso with mass m8 =
18,000g

• Left humerus with mass

m9 = 3,000 g

• Right humerus with

massm10 = 3,000 g

• Left radius with mass

m11 = 2 000 g

• Right radius with mass

m12 = 2,000 g

• Head with mass m13 =
4,189 g

Considering that each cm3 equals 1 g. The formula to calculate

the center of mass on the X axis is:

X =
13
∑

i=1

Xi ∗mi (1)

And the same procedure is followed for the Y and Z axes.

3.2. Using simulated annealing for
training artificial neural networks

The problem we are trying to solve at this point is

that we have a movement to perform (for example, raising

the right leg laterally) and we have the data on the angles

of each joint to achieve this movement, but the available

data does not consider any stability criteria. So, if such data

is entered into the simulation, it is likely that the biped

will fall as it is not in a stable position. Therefore, the

control system must find the value of the angle for each

joint that allows the biped to remain stable. As there are

no environmental disturbances, the stability criterion only

considers that the center of mass of the biped is within the

support polygon, which is delimited by the position of the feet

of the humanoid.

The control system chosen to solve this task is a multilayer

perceptron type neural network. This neural network requires

unsupervised training, since, although the data at the input (the

desired position) is known, there is no set of training data at the

output.

For the training of neural networks in an unsupervised

way, simulated annealing was used. As seen in the theoretical

framework, this algorithm has shown great performance in

optimization. Simulated annealing has been used in a wide

variety of problems. However, depending on the problem, it can

be encoded in different ways.

The first variable to define is an error function. For

convenience we will call this function E[f (s)], where s is

the output of the network and f(s) is a function that

represents the environment in which the element is evaluated.

output performance. If the training is not online, at each

iteration the input data set can be evaluated and fed

into the function f(s). Then calculate the error of each

of the outputs and, as is common in backpropagation

training, calculate the mean square error. With the value

of the error it is evaluated if the change is accepted or

not. To calculate the mean square error, Algorithm 1 is

followed.

To use simulated annealing in neural network training,

each weight and each bias are considered as a dimension of

the problem. The calculation of the neighbor of a given point

will be done for each of the variables of the neural network.

Ideally, in each iteration, the neighbor of each one of the

variables would have to be calculated and see if with the

neighbor there is a better performance, however, due to the fact

that in the perceptron the network is completely connected,

there is a large number of variables that increase with each

neuron added to each layer. This is why the algorithm is

Algorithm 1 Calculation of the mean error (emean).

m: number of training examples

n: data number of the output vector of the neural network

medium = 0

for i = 1:m do

for j = 1:n do

emean = emean + (y(i, j)− output(i, j))2

emean =
√
emean
m∗n
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coded so that it only calculates the neighbor of K variables

for each iteration. Each modified variable is chosen randomly.

The training algorithm for the neural network is shown in

Algorithm 2.

Figure 1 shows an example of the error by epoch without

(left) and with (right) simulated annealing for a sample of joint

points. Without simulated annealing, the number of epochs is

greater, and an unstable progression can be observed.

3.3. Modeling the biped

The biped model consists of a series of rectangular blocks

joined by rotational joints modeled in Simulink. Simulink

was chosen because, being part of MATLAB, it does not

need to connect to external programs and all the code is

written in MATLAB. Simulink also allows to obtain useful

information since it has blocks of pressure sensors or inertial

sensors. Additionally, the position of each block in the three

axes can be known, but this last feature will not be used.

For the distance of each block, the average measurements

of the extremities of an adult man are taken into account.

The humanoid model consists of two legs, made up of

three blocks each, a torso, hips, two arms, made up of

two blocks each, and a head. Figure 2 shows the total

connection of the humanoid, however, the blocks of the

arms and legs are kept as a subsystem to make the diagram

more understandable.

In order to illustrate the posture control system applied to

movement, in the following section we present details for right

leg raise in frontal plane.

Algorithm 2 Neural network training method.

choose a large variable T

choose a number k ∈ [1, length(X)]

for each variable xi ∈ X

xi = rand(−1, 1)

for epoch = 1:Epochs do

for k = 1:K do

evaluate the neural network with the weights X for all inputs

calculate mean error

r = rand(1,length(X))

xi = X(r)

calculate neighbor x′i of xi

substitute xi for x′i in X

evaluate the neural network with the new weight for all inputs

calculate newmean error

if newmeanerror < meanerror || rand(0, 1) < 1

e
f (xi )−f (x′i )

T

then

xi = x′i
Decrease the temperature T

4. Experiments and results

4.1. First neural network training for
biped balance

As a first approximation for balance control of a biped, we

continue with the procedure presented in the previous section.

A MATLAB simulation of the biped was performed. Figure 3A

shows this biped and a small movement in Figure 3B. This

simulation is a plot of the position of each joint of the biped

calculated in Section 3.1. In this simulation, the only information

obtained to calculate the control is the center of mass. But thanks

to the calculation of the Zero Moment Point, it is possible to

calculate the biped’s error and determine whether or not it is in

a balanced position.

The purpose of this simulation is to train a neural network

whose input is a series of positions of the biped to perform a

movement, these positions do not consider any stability criteria,

so the movement may or may not be in a stable region. In the

case presented in this section, the movement consists of raising

the right leg in the frontal plane. The movement consists of 50

positions in which the lateral hip joint opens from an angle 0 to

π/2rad.1

The neural network proposed to solve this task is a fully

connected multilayer perceptron-type neural network. This

network has 20 neurons in the input layer and 20 neurons in the

output layer. Figure 4 shows the correspondence of each joint

with each neuron in the input layer. Sixteen blue lines and four

red lines are shown in the image. The blue lines correspond to

mobile joints that the biped has, the red lines are rigid joints

that are necessary to show the complete model. The joints in red

could have been omitted in the training of the neural network,

but keeping them in the simulations did not affect themodel. It is

important to clarify that during training a limit is not considered

in the angle of each joint, a limit that would exist in the case of

testing with a physical robot.

Apart from the joints, there are 15 points of interest in

the humanoid that are useful to calculate the similarity in the

input and output trajectories of the neural network. These points

coincide with the joints of the humanoid except for the points on

the hands and on the head.

The problem to be solved in this neural network is the

minimization of the error. The calculation of the error is made

considering twometrics: the proximity of the center ofmass with

the 0 point of the XZ plane and the average error between the

input and output joints of the network. The calculation of the

mean error is done by subtracting the total of the training data

set from the output data set and squaring the result. For more

details on the calculation of the mean error, refer to Algorithm 1.

1 The movement can be seen on https://youtu.be/DKR9xuieMFk. The

path marked in red is the center of mass and how it changes position

according to the movement made.
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FIGURE 1

Error by epoch when training without (left) and with (right) simulated annealing.

FIGURE 2

Block model of the complete system.

To calculate the center of mass error, the direct kinematics

function is used, which gives the position of the center of mass in

the three axes X,Y,Z. Since the humanoid stands on the XZ plane,

it is on this plane that the position of the center of mass must be

minimized. For this, we calculate the distance from 0 to the point

of the center of mass with the equation cm =
√

x2 + z2.

Both the mean error of the joints and the position of the

center of mass are multiplied by a constant to give greater

or lesser importance to each metric. The error related to the

difference between coordinates, called errorequal is multiplied

by a constant α. The error related to the position of the center

of mass, called errorcm is multiplied by a constant β . The total

error is the sum of both errors, as shown in Equation (3).

Te(ep, n,m, p) = ep(4mnp+ 2m)error = α ∗ errorequal
+ β ∗ errorcm (2)

The parameters related to simulated annealing are: T s the initial

temperature, TempVar indicates every how many epochs the

temperature decreases, andDeltaTemp indicates the percentage

of temperature that will remain after TempVar epochs. The

variables that must be defined are:

1. T Initial temperature

2. DeltaT Temperature Change

3. TempVar, or the number of epochs before the temperature

drops

4. DeltaEpoch or the number of epochs until the temperature is

increased again

5. Epochs

6. LimitsW or the range in which the weights and bias are

initialized

7. LimiteV or the maximum value of neighbor value for each

weight

8. K or the number of weights and bias that are modified for

each epoch

9. alpha and beta or the importance value given to each error

parameter.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.934109
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Angeles-García et al. 10.3389/fnbot.2022.934109

FIGURE 3

Movement of the biped. (A) Initial position. (B) First stable position.

FIGURE 4

Correspondence of each joint with each neuron in the input layer.

The parameters of the algorithm used in this work are shown

below.

1. T = 1,000

2. TempVar = 5

3. DeltaT = 0.85

4. DeltaEpoch = 100

5. LimitsW = [−2, 2]

6. LimitsV = [−0.5, 0.5]

7. K = 100

8. α = 0.75

9. β = 0.25

To know if the center of mass is within the support polygon,

it must not exceed 0.085 both in the x axis and in the z axis.

This due to the architecture of the humanoid that is taken as a

reference.2

2 The video of the complete movement can be seen at https://youtu.be/

ViPiFOuDbDA
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FIGURE 5

Architecture of the neural networks used.

4.2. First standing training (front plane
right leg raise)

The biped must always start in position 0 (in which all joints

are at 0), then take it to some initial position other than 0 (if

required) and from there start doing the experiments. This is

because if the robot is initialized in a different position, the

pressure sensors can appear inside the ground and mark very

high values that decrease over time until the biped “goes up” and

is positioned on the ground. It is possible to initialize the biped

to a position other than 0, however there are sometimes errors,

so it is preferable to follow the instructions above. Figure 3A

shows the biped in position 0, which is when all its joints are

at 0 position. For this simulation, we chose to perform the

movement which is to raise the right leg 90◦ in the frontal plane.

To accomplish this, the biped was started at position 0. Once in

this position, instructions are given for the biped to move each

of its joints to a range of [−0.2, 0.2] radians, moving one joint at

a time. This to know what is the position in which the center of

mass is placed on the left leg, which will be the one that remains

on the ground3. To know the position of the center of mass, the

Inertial Sensor block of the Simscape Multibody Body Elements

library was used. This block gives information on the position

of the center of mass of each body. Therefore, calculating the

average of the center of mass of each body, gives the total center

of mass of the humanoid. This position is the absolute position

of the center of mass with respect to point 0 of the world in

which we are working. To calculate the position relative to the

supporting leg it is necessary to subtract the total center of mass

minus the center of mass of the foot of the supporting leg.

Once the degree configuration of the joints necessary to

place the center of mass on the supporting leg is known, the

neural networks are trained to reach said position. A total of

eight neural networks were used: two for right hip (one for each

3 The video showing these movements can be found at https://youtu.be/

AHMae7Ki1Go

joint) and other two for left hip, one for each knee and one for

each arm.

For the control of the ankle joints, a different algorithm was

used, which is explained later. The architecture is the same for

all neural networks and is shown in Figure 5. The inputs of the

neural network are:

1. Reference path consisting of 16 data.

2. Previous position consisting of 18 data.

3. Left and right sensors consisting of 8 data.

4. Relative position of the center of mass of the body with

respect to the position of the foot of the supporting leg in the

x,y plane.

Hyperbolic tangent was used as activation function. The neural

networks were trained so that, while at the input the position

is position 0, each one delivers the necessary value to place

the center of mass of the biped on the left leg, we will call

this position the first position of stability, which is shown in

Figure 6. Once the neural network is trained, it runs until it

reaches the first stability position. Figure 7 shows the trajectory

of the center of mass in the X axis of the body relative to

the support leg. A red line is shown, which is the limit at

which a stable position is considered if only the left leg is

supported.

In this problem of optimization, we are trying to minimize

the error, for this we are taking into account two parameters:

the center of mass of the body and the difference between

angle joint input and output. We know the center of mass

of the body using the function block described called Inertia

Sensor, which gives the position of the center of mass in the

three axes X,Y,Z. Since the humanoid stands on the XY plane,

it is on this plane that the position of the center of mass

must be minimized. For this, we calculate the distance from

0 to the point of the center of mass with the equation cm =
√

x2 + y2.

error = α ∗ errorequal + β ∗ errorcm (3)
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FIGURE 6

First stable position of the humanoid.

Algorithm 3 Learning algorithm in Simulink.

c = 1;

The vector of positions called Vector

is received while simulation == true do

target = Vector[c]

Calculate the output of the neural network

error = α(target − output)+ βcm

while error > 1e do

The neural network is modified according to the simulated

annealing algorithm

Calculate the output of the neural network

error = α(target − output)+ βcm

if c < length(Vector) then
c = c+ 1;

Both the error of the joint and the position of the center

of mass are multiplied by a constant to give greater or

lesser importance to each metric. The error related to the

difference between angle joint, called errorequal is multiplied

by a constant α. The error related to the position of the

center of mass, called errorcm is multiplied by a constant

β . The total error is the sum of both errors, as shown in

Equation (3).

Once the biped is in the first position of stability, the

first value of the position vector, which is specific for each

joint, is entered into each neural network as a target. Once

the difference between the network output and the target

is small enough (remembering that the output may not be

the same since the neural network considers the center of

mass error). The target is updated to the next value in

the array of positions. A brief description of the learning

algorithm is shown in Algorithm 3. This ensures that it will

not advance to the next position until the previous position

has been learned first, and will not advance beyond the last

indicated input.

Algorithm 4 Storage method.

The output is calculated by doing the matrix multiplication.

The information is sent to the model and the error is evaluated.

If the error is less than or equal to a given value e, the input and output

are saved in the respective vector and it is repeated from Step 1 with a

new position.

If the error is still not small enough, another modification is made to the

neural network and steps 2–5 are repeated.

Figure 8 shows how one of the neural networks learns. In this

case it is the neural network that controls the lateral right hip

joint. The blue signal is the target, the red signal is the output

delivered by the neural network. The staggered shape of the

target is due to the fact that it will not change to the next position

until the error between the two signals is not small enough, that

is why when the red signal approaches the blue one, the target

signal jumps.

Since the neural networks ensure a stable movement for

the current position, a series of inputs and their corresponding

output are known to move in a stable way. So the information

is stored in case you want to train a subsequent neural

network in a supervised way. To store such information, a

vector of inputs and outputs is initialized to zero. As the

epochs progress, the inputs collected from the sensors are

saved. Only those outputs that ensure a sufficiently small error

are saved and not all the outputs delivered by the neural

network. Algorithm 4 shows the steps to follow to collect the

data that can be used later to train a neural network in a

supervised way.

It is important to clarify that the output delivered by

the neural network is not directly input to the algorithm.

This is due to the sensitivity of the simulator to sudden

changes in the joints.4 Therefore, once the neural network

delivers an output with a sufficiently small error, the joints

are instructed to reach this value by changing their value

by 1c each cycle. For this work, 1c = 0.00007rad was

selected. This value may seem small but it is necessary

so that the change in position of the joint is not made

abruptly.

It should be sought that the four sensors of each foot are in

contact with the ground and that the force is evenly distributed

in each sensor. This is why the algorithm is relatively simple.

For the four joints, an algorithm similar to the one shown in

Algorithm 5 is followed.

Figure 9 shows the initial and final position of the biped

performing the movement of raising a the right leg in frontal

plane5. The trajectory of the center of mass in the X axis is

4 Video at https://youtu.be/HU5L8lLqmrA shows a simulation in which the

ankle joint was changed from position 0 to 0.1.

5 The full video of this move is at https://youtu.be/2SNglSgEwzw
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FIGURE 7

Trajectory of the center of mass on the X axis.

Algorithm 5 Ankle control algorithm.

if s1 < s2|s4 < s3 then
joint = joint + num;

if s1 > s2|s4 > s3 then
joint = joint - num;

observed in Figure 10A. Recall that the biped is standing on

the X,Y plane, the X axis is the frontal plane of the biped and

the Y axis is the sagittal plane. Therefore, for this movement

the axis that has more importance is the X axis. Figures 10B,C

also shows the trajectory of the center of mass in the Y and Z

axes6.

Figure 11 shows the output of the neural network in blue as

well as the trajectory of the joint that moves the right hip laterally

in red. There is a clear time lag between the output of the neural

network and the articulation. This displacement is due to what

was previously mentioned, by having to slowly modify the angle

of the articulations, the neural network converges faster than the

joint reaches the desired position.

6 For a better visualization the video of the trajectory of the center of

mass in the X and Y axes while the movement is executed can be found

at https://youtu.be/xxBiI43VpeM

4.3. Training the biped with added
perturbation (ground tilt)

As explained in previous sections, the training used for

neural networks is a learning style that does not require full

knowledge of the desired output. This flexibility in learning

allows the neural network to learn in an environment with

certain disturbances. As an added disturbance, the platform on

which the humanoid is standing tilted. The tilt was 1◦ and was

done on the X axis.

Figure 12 shows the initial and final position of the

biped seen from the front (left) and the same positions

seen from the side for a better visualization of the slope

of the ground (right).7 The learning trajectory and the

actual motion path, compared with regard to the desired

one, can be seen in Figure 13. This figure shows the

output trajectory of the neural network in blue, this is to

visualize how the trajectory of the neural network is modified

according to the desired target. Figure 13B shows the same

target, this time in blue but with the actual output of

the joint. In this figure, the disturbance of inclined ground

is considered.

7 The full motion video can be found at https://youtu.be/7ktSoxzQo_0
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FIGURE 8

Output trajectory and target of the neural network.

FIGURE 9

Initial (A) and final (B) position of the movement performed.
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FIGURE 10

(A) Trajectory of the center of mass in X axis, (B) Y axis, and (C) Z axes of movement 1.

FIGURE 11

Comparison of desired move (blue) with performed movement (red).

4.4. Training the biped with added mass
perturbation

As an added disturbance a 0.1 m sphere was added to the

biped’s right arm. This represents 7.5% of the humanoid’s weight.

Figure 14 shows the initial (Figure 14A) and final (Figure 14B)

position of the biped’s movement. The movement he performs

is the lifting of the right leg in the frontal plane. The learning

trajectory and the trajectory of the desired (blue) and actual (red)

movement are shown in Figure 15. This figure allows to visualize

how the trajectory of the neural network ismodified according to

the desired target. Figure 15B shows the same target in blue, with

the actual output of the joint when a mass is added to the biped.

5. Conclusions

This work has presented the use of neural network control

for robot stabilization and displacement. Although there are

already several works that use neural networks in control,

they usually require the help of external control methods or

complicated training of many iterations to solve the assigned

task. In this case the control was implemented in a simple way

with little prior knowledge. The method we have presented

allows having both flexibility and adaptability, as it has been

presented in the last two sections above: the neural network

adapted its weights despite having changing conditions such as

a floor inclination, or adding a mass. The presented method is
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FIGURE 12

Initial and final position of the biped seen in the XZ (left–A,B) and YZ (right–A,B) planes for ground tilt.

FIGURE 13

(A,B) Learning path for ground tilt and desired and actual motion path for ground tilt.

a mixture of supervised and reinforcement learning, combined

in a novel way, allowing to implement several neural network

applications easily and with little prior knowledge. Simulated

annealing was used as a means of training the neural networks;

although this optimization method has been used previously,

it is not common to apply this method for training this

kind of application. We have found that using this method

in the application of robot control can help to reach a goal

position while keeping the biped humanoid stable. Although

the presented solution is slower at some steps than other better

known methods, by using simulated annealing, in overall there

is a noticeable reduction in the epochs needed to converge,

making this method feasible for many applications. A difficulty

to consider is that the learning time is variable because, being

a heuristic method, the random component in learning means

that the learning time is not always optimal.

One of the applications of postural stability is that, by

knowing or calculating the stable positions, it is possible

to implement passive locomotion. Although this type of

locomotion is more inefficient than active locomotion, it

allows movement and has a robust response to disturbances.

Although there is software specialized in robot simulation,

sometimes it is difficult to know how to run or control these

simulators. If it is not necessary to have many sensors, and

the purpose is to test robots whose constitution is relatively

simple, MATLAB is a good option, since within this program

the necessary actuators can be controlled without the need for

an external program. There is a drawback, however, in that

the simulation time can be long. In this work, a humanoid

was developed that can be used for future projects. The

link to download the humanoid can be found at Yoqsan

(2022).
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FIGURE 14

Initial and final position of the movement seen from the XZ plane. (A) Initial position of motion. (B) Final position of motion.

FIGURE 15

Learning Path for Added Mass and Trajectory of the desired (blue) and actual (red) movement for Added Mass (B). (A) Desired trajectory (blue)
and output network (red).

5.1. Future work

This work presented a robot control method that had not

been presented before, so it is still in its infancy and can be

optimized in many areas. The simulated annealing method can

be mixed with other optimization methods to find more optimal

neighbors than looking for close neighbors, which is what was

done in this work. Other types of architectures can also be

tested, in this work a multilayer perceptron was used, however,

there are other neural architectures that may help improve

the response.

The objective of this work was to achieve a balance

in the posture of a humanoid and, although the objective

was achieved, slow movements were required to achieve

it. If, in addition to the anterior position of the joint,

information on the speed and acceleration of the joints is

included, it would be possible to increase the speed at which

the biped moves. If the error also considers a criterion

of energy expenditure, it would also be possible to make

the optimal movements energetically, just as human beings

do.

Furthermore, having this type of locomotion, it is

possible to optimize it to achieve dynamic locomotion.

Experiments of this latter point are left as future work.

According to the data obtained from the experiments, it

is known that this method allows a robot to function in
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an environment where there are unknown disturbances.

Motion prediction is not done yet, however, it is

possible to implement another neural network or modify

existing ones by adding memory and recursion to

predict motion.

As seen in the experiments presented, neural networks

behaved correctly despite adding disturbances, so it is possible

that the same control system works to move robots with

another configuration. Although this was not tested, in future

works the control system could be implemented with different

configurations of robots and obtain information on the

difference between their movements.
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