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Abstract

Significance: Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled
asymptomatic diabetic patients, and it may advance to heart failure (HF).

Recent Advances: The diabetic heart is characterized by a state of ‘‘metabolic rigidity’’ involving enhanced
rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits
mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a
decreased NAD"/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD" is a co-substrate for
deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes
protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes.

Critical Issues: DCM lacks specific therapies with treatment only in later disease stages using standard,
palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to
improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes,
how the mitochondrial NAD*/NADH redox couple connects the remodeled energy metabolism with mito-
chondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mi-
tochondrial therapies targeting the mitochondrial NAD*/NADH redox ratio may alleviate cardiac dysfunction.
Future Directions: Specific therapies must be supported by an optimal understanding of changes in mito-
chondrial redox state and how it influences other cellular compartments; this field has begun to surface as a
therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron
transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes. Antioxid.
Redox Signal. 30, 375-398.
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Diabetes and the Heart cemia and dyslipidemia (8). Although historically considered
separate conditions, contemporary evaluation of T1D and T2D
suggests a significant overlap in presentation, complications,

and health outcomes, particularly with respect to the heart (8).

Clinical overview of diabetes mellitus incidence
and etiology

IABETES MELLITUS (DM) HAS BEEN a rapidly growing
health epidemic worldwide (47, 53). As a chronic meta-

bolic disease resulting from either autoimmune destruction of
the insulin-secreting pancreatic f§ cells (type 1 DM, T1D) or
impaired insulin secretion secondary to systemic insulin resis-
tance (type 2 DM, T2D), DM culminates in chronic hypergly-

The heart as a primary target of DM pathology

Cardiovascular disease is the leading cause of morbidity
and mortality in DM patients. There is an appreciable contri-
bution to DM cardiovascular pathology from atherosclerotic
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disease; however, this review will emphasize the effect of the
diabetic milieu directly on the myocardium through processes
that promote myocardial dysfunction. Disease pathology in the
myocardium is indicated by the presence of a unique clinical
entity, diabetic cardiomyopathy (DCM), which was first
documented in the 1970s in a small DM patient cohort for
which no attributable origin could be defined (159). This
pathological condition garnered support as clinically important
by epidemiological data in the Framingham study establishing
a link between DM and heart failure (HF), which demonstrated
DM as an independent risk factor for cardiac events when
correcting for comorbidities such as hypertension, coronary
artery disease, and dyslipidemia (99). Indeed, DCM develops
in a large proportion of well-controlled DM patients, empha-
sizing the need for investigation into the underlying molecular
events driving disease and development of targeted therapies.

Since its initial observation, DCM has been further charac-
terized, and it is typically indicated by a number of morpho-
logical and molecular changes (summarized in Fig. 1). Gross
structural aspects of DCM include an increase in left ventricle
(LV) mass and wall thickness. Histological examination reveals
interstitial fibrosis, and cardiomyocyte rarefaction and hyper-
trophy (66). Current clinical diagnosis of DCM relies on non-
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invasive imaging, that is, echocardiography or MRI. An early
decline in diastolic function (ventricular filling/relaxation) often
occurs without detectable changes in ejection fraction (diastolic
HF with preserved ejection fraction) in both human subjects
(95) and animal models (55). This subclinical diastolic dys-
function in DM patients is also evident by analysis of blood flow
velocities at the LV valves using Doppler echocardiography,
demonstrating prolonged filling times and rates (7, 166). As
diastolic function persists, systolic dysfunction may develop and
evolve into ultimately HF with reduced ejection fraction, an
end-stage condition without specific therapeutic approaches.

The underlying mechanism that initiates the pathology and
leads to compromised cardiac function has yet to be fully
understood. In addition to the derangement of circulating
substrates, metabolic changes in the myocardium are appar-
ent very early in DM, preceding compromised pump function
and thus pointing toward the crucial pathogenic role of en-
ergy metabolism.

Energy Metabolism in the Diabetic Heart

Optimal contractile function depends on continuous mi-
tochondrial oxidative metabolism to form the ATP needed
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Morphological and metabolic features of diabetic cardiomyopathy. Diabetic cardiomyopathy is defined by the

presence of an initial decreased myocardial diastolic dysfunction [heart failure with preserved ejection fraction (55)] in the absence
of diabetes-induced standard cardiac risk factors, and may evolve to systolic dysfunction (heart failure with reduced ejection
fraction) and congestive heart failure. These functional abnormalities are progressively induced by thickness and stiffness of the
ventricular wall (defect in cardiomyocyte relaxation, interstitial fibrosis, and cardiomyocyte hypertrophy), cardiomyocyte death,
and eventually contractile dysfunction. The heart relies on a large and constant energy supplied by oxidative metabolism. The
normal heart is free to switch fuel substrates for oxidation and ATP synthesis to respond to energy demands, whereas the diabetic
heart is insulin resistant and metabolically inflexible experiencing a decrease in glucose oxidation, and an increase in FA oxidation.
Diabetic cardiomyopathy is considered a disease of the myocardial energetic metabolism characterized by a decreased efficiency of
oxygen utilization induced by mitochondrial dysfunction. Healthy mitochondria release minimal ROS levels that are compatible
with the physiological signaling, whereas the ROS flux released by diabetic cardiac mitochondria is reported to be increased by most
studies. Other critical processes that are interrelated with mitochondrial failure are changes in the redox environment (described in
this review) and Ca*t handling (not shown in the picture). FA, fatty acids; LV, left ventricle; ROS, reactive oxygen species.
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daily to sustain the cardiac output. To accomplish this ener-
getic mission, cardiac mitochondria transform the chemical
energy stored in fuel substrates (fatty acids [FA], glucose,
lactate, ketone bodies, and amino acids) into ATP through
oxidative phosphorylation (Fig. 2). The normal adult heart
obtains 60% of energy from FA oxidation with the remaining
40% originating from the oxidation of other fuel substrates,
and it has the flexibility to switch substrates as energy sources
depending on physiological conditions (55). This character-
istic is vital for the ability of the normal heart to respond to
the energy demand as energetic substrates have different
energy efficiency, which is defined as the amount of ATP
produced for the amount of oxygen consumed, and assessed
by the P/O ratio. FA oxidation generates the greatest ATP
yield by using the highest amount of oxygen (P/O ~2.3).
Glucose is the most efficient energy substrate with a P/O ratio
of 2.58. (55). The oxidation of f-hydroxybutyrate (fHB) has
an intermediate efficiency with a P/O~2.5. fHB is oxidized
by the normal heart in proportion to its availability at the ex-
pense of FA and glucose (147); the diabetic heart acquires the
ability to shift the acetyl-CoA toward ketone body synthesis, a
characteristic of the fetal heart (48). Glucose oxidation is re-
quired for normal cardiac metabolism as a decrease induces
diastolic dysfunction (1, 181). A reversal back to a fetal met-
abolic state with overreliance on glucose oxidation and de-
creased FA oxidation occurs in the failing heart, and is
associated with a state of “‘energy starvation’ as glucose, al-
though a low oxygen-consuming substrate, is also a low ATP-
yield fuel (per mole). Conversely, an excessive dependence on
FA oxidation occurs in the diabetic heart, which supports the
central postulate to explain the negative impact of metabolic
inflexibility on cardiac function in diabetes.

Alterations in the cardiac metabolic profile:
changes in substrate utilization

There is an increased FA utilization in the hearts of asymp-
tomatic diabetic human subjects, suggesting that changes in
mitochondrial metabolism precede cardiac pathology and are
detrimental to the heart (82). Insulin resistance is not the
primary mechanism for this metabolic switch in models of
insulin resistance and obesity (32). Cardiomyocyte-specific
deletion of the insulin receptor leads to decreased insulin-
stimulated glucose uptake/oxidation and increased FA oxi-
dation but only modest cardiac dysfunction in the absence of
systemic insulin resistance (19). This work suggests that al-
though cardiac insulin resistance is an important event over
the course of obesity-T2D, increased FA availability to the
myocardium induced by systemic insulin resistance is re-
quired to trigger cardiac dysfunction in DM.

The allosteric activation of FA uptake and mitochondrial
oxidation precedes the transcriptional regulation of meta-
bolic remodeling. Hyperlipidemia, common in obesity and
DM, arises from both diet and adipose lipolysis that increases
circulating FA. Excessive FA cardiac uptake is observed in
rodent models of T1D (122), obesity (138), and T2D (40)
indicating that cardiac FA utilization is largely driven by
circulating lipid availability. Once inside cardiomyocytes,
FA are esterified to fatty acyl-CoA esters and transported into
mitochondria to be oxidized as energetic fuel (Fig. 2),
translocate to the nucleus, or undergo esterification to tri-
glycerides (TG) for cytosolic storage (105). Within the nu-
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cleus, FA activate transcription factors such as the nuclear
peroxisome proliferator-activated receptor-alpha (PPAR«) to
further promote mitochondrial FA oxidation, and PPARYy
coactivator 1o (PGC-1a) to improve mitochondrial oxidative
capacity through a coordinated transcriptional program that
drives metabolic remodeling (59, 112). PPAR« increases the
expression of genes that promote FA utilization and inhibit
glucose oxidation (59, 73); its expression is increased in
several rodent models of DCM (65), and its cardiac-specific
overexpression phenocopies the diabetic heart (65). Despite
increased FA utilization, there remains an excessive in-
tramyocardial TG accumulation leading to incompletely oxi-
dized and potentially detrimental lipid metabolites (29, 110)
that contributes to cardiac damage. Which one of these two
mechanisms of ““lipotoxicity” is prevalent is not known. Strong
evidence in favor of the detrimental effect of overreliance on
mitochondrial FA oxidation for ATP originates from studies
showing that increased FA oxidation comes with a higher ox-
ygen cost, thus reducing cardiac efficiency (cardiac contractile
force as a function of oxygen consumed) in obese (28), insulin-
resistant (32), T1D (90), and T2D diabetic rodents (90).
Despite the detrimental role of excessive FA in cardiac
function in DM, there is intriguing evidence of an acute
beneficial effect of palmitate on contractile function in hearts
from diabetic rodents exposed to high glucose (24, 63) and
adrenergic stimulation to mimic the diabetic heart during
stress (188). Diabetic hearts efficiently oxidized the excess of
FA and developed a higher contractile force whereas pal-
mitate was detrimental on normal hearts, consistent with the
notion that increased FA availability to the normal heart may
trigger cardiac pathology. The short-term benefit of FA on the
diabetic heart is further addressed in subsequent sections.

Mitochondrial electron transport chain defects
in the diabetic heart

Measuring the cardiac high-energy phosphate metabolites
such as phosphocreatine/ATP ratio (PCr/ATP) as an indirect
assessment of oxidative phosphorylation shows that DM
patients with normal cardiac function have a decreased PCr/
ATP that is negatively correlated with circulating FA (168).
Oxidative phosphorylation rates of mitochondria from atrial
tissue of T2D patients are decreased (9). More recently, an
impaired mitochondrial function with cardiac contractile
dysfunction was reported in diabetic patients but not in
“metabolically healthy” obese patients (125), suggesting
that mitochondrial dysfunction is central to developing car-
diac dysfunction in the transition from obesity to DM.

Despite the lack of consensus regarding the specific mi-
tochondrial electron transport chain (ETC) site defective in
the DM heart in both human subjects (Table 1) and animal
models (Table 2), heart mitochondria are very susceptible to
DM-induced ETC dysfunction in comparison with kidney and
liver mitochondria (34). The impact of ETC defect on limiting
FA oxidation in the DM heart is also unclear. Mitochondrial
palmitoylcarnitine oxidation was decreased in cardiac samples
from T2D subjects (9), suggesting that the ETC defects limit FA
oxidation. In contrast, in rodent models of DM, increased FA
oxidation is not limited by defects in complexes I (192) and III
(27). Intriguingly, complex I inhibition with rotenone led to a
metabolic shift to increase FA oxidation and glutamate utili-
zation to compensate for the impaired energy production (199).
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FIG. 2. Metabolism of fuel substrates drives the levels of reduced equivalents (NADH and NADPH) in normal
cardiomyocytes. Normal adult heart obtains 40% of energy from metabolism of glucose, lactate, and ketones (mainly
SHB), with the remaining 60% delivered from FA oxidation (55). Glucose uptake into cardiomyocytes is insulin dependent,
whereas FA and fHB uptake is not hormonally regulated, and is driven by their bloodstream availability (FA ., fHB¢irc)
(17, 147). Glucose enters cardiomyocytes predominantly via the insulin-dependent glucose transporter 4 (GLUT4), and it
follows multiple metabolic pathways including glycolysis, glycogen synthesis, and polyol pathway (with sorbitol and
fructose formation), or is shuttled into the hexosamine biosynthetic or pentose phosphate pathways (with 6-
Phosphogluconate, 6-PG, and ribulose 5-phosphate formation). Pyruvate is either converted to lactate or transported into
mitochondria via the MPC, and converted by PDH to acetyl-CoA (AcCoA) for the TCA cycle. PDH is inhibited by pyruvate
kinase (PDK4) that is activated by an excess of AcCoA and NADH. For simplicity, fluxes through glycogen synthesis and
hexosamine pathways are not shown. After entry into cardiomyocytes (via CD36 and FA translocase, FAT), long chain FA
are activated to FA-CoA that is either esterified as triacylglycerol (stored in the cytosol, not shown) or enters the mito-
chondria via carnitine palmitoyltransferases (CPT1 and 2), and they are oxidized via FA f-oxidation. The end products of
each FA f-oxidation cycle are NADH, FADH,, and acetyl-CoA, which are further oxidized by ETC complexes or TCA,
respectively, ultimately leading to ATP synthesis via mitochondrial oxidative phosphorylation. FA S-oxidation is controlled
at different steps, including the inhibitory effect of malonylCoA (formed from AcCoA via AcCoA carboxylase, ACC),
FADH,/FAD" and NADH/NAD" redox ratios, and acetyl-CoA/CoA ratio, all of which are unfavorable to FA oxidation.
MalonylCoA is degraded by MCD, thus releasing its inhibitory effect on CPT1. The control of FA f-oxidation provided by
post-translational modifications of f-oxidation enzymes and their transcriptional regulation is not depicted in the figure.
SHB is the main ketone body utilized by the heart as an energy fuel. Produced by the liver at rates that are proportional to
FA oxidation and NADH/NAD™ ratio, SHB’s cardiomyocyte uptake is facilitated by the monocarboxylate transporter 1
(MCT1). Within mitochondria, fHB is oxidized by mitochondrial fHB dehydrogenase (BDH1) to acetoacetate (AcAc) that
is converted to acetoacetyl-CoA (AcAc-CoA) by the enzyme succinyl-CoA:3 oxoacid-CoA transferase (SCOT). AcAc-CoA
is then converted to acetyl-CoA for TCA cycle. Mitochondrial NADH/NAD" redox is unfavorable to the SHB oxidative flux
(147). Cardiac mitochondria can also fully metabolize branched chain amino acids (leucine, isoleucine, and valine),
providing acetyl-CoA for the TCA cycle and succinyl-CoA for anaplerosis (not depicted in the figure). TCA cycle is a
source of reducing equivalents in the form of NADH and NADPH. The figure depicts other sources of reducing equivalents.
GDH converts glutamate to a-ketoglutarate that is coupled to either NAD* or NADP* reduction. Mitochondrial isoforms of
ME:s also can reduce NADP" to NADPH. Mitochondrial oxidative phosphorylation provides more than 95% of the cardiac
ATP (55), with the remainder derived from glycolysis. Electrons are transferred from the reducing equivalents, NADH and
FADH?2, to oxygen by the ETC complexes, whereas an electrochemical gradient is built across the mitochondrial IM, which is
used by the ATP synthase (complex V) to form ATP. Mitochondrial-generated ATP is transferred to the cytosol by the
mitochondrial and cytosolic creatine kinases (CK) for contractile apparatus, sarcoplasmic reticulum Ca>* ATPase, and other ion
pumps. Components of the contractile apparatus and calcium handling are affected by oxidative damage (9, 10), supporting a
close link between mitochondrial bioenergetics, redox state, and myocardial contraction. The inset represents an electron
micrograph of cardiac muscle showing mouse interfibrillar mitochondria. For simplicity, the nicotinamide nucleotide transhy-
drogenase, a mitochondrial IM enzyme that reduces NADPH" by oxidizing NADH and using the mitochondrial proton motive
force, is not shown in this figure. The reduced NADH and NADPH are shown in red. fHB, f-hydroxybutyrate; CPT1, carnitine
palmitoyltransferase 1; ETC, electron transport chain; GDH, glutamate dehydrogenase; IM, inner membrane; MCD, malonylCoA
decarboxylase; ME, malic enzyme; MPC, mitochondrial pyruvate carrier; PDH, pyruvate dehydrogenase; TCA, tricarboxylic
acid cycle. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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TABLE 1. BIOENERGETIC IMPAIRMENT IN THE HEARTS OF HUMAN SUBJECTS WITH OBESITY AND T2D
Tissue/sample analyzed Type of bioenergetic impairment Ref.

Atrial fibers | Respiratory state 3 rate (with glutamate and palmitoylcarnitine, but not with pyruvate (9)
and succinate) in permeabilized atrial fibers from T2D patients with coronary artery
bypass graft surgery
| Respiratory state 3 rate (with glutamate/malate and succinate) in permeabilized atrial (57)
fibers from T2D patients with coronary artery bypass graft surgery
| Respiratory state 3 rate and RCR (with palmitoylcarnitine and pyruvate/malate) in (125)
permeabilized fibers from obese and T2D patients
| Complex I activity in obese patients
| Complex II and IIT activities in obese T2D patients
Atrial mitochondria | Respiratory state 3 rate (with glutamate/malate and palmitoylcarnitine) (52)

| Complex I and IV activities in subsarcolemmal mitochondria from atrial appendages

in T2D patients

|, decreased; RCR, respiratory control ratio (state 3, ADP-induced/state 4, ADP limited); T2D, type 2 diabetes mellitus.

Will the increase in mitochondrial FA oxidation efficiently
maintain a positive cardiac energy balance? Part of the
electrochemical proton gradient generated by FA oxidation,
usually used to generate ATP, is reported to be consumed in

T2D (27) and some (111, 192) but not all (33, 81) TID come energy starved.

TABLE 2. BIOENERGETIC IMPAIRMENT IN THE HEARTS OF T1D AND T2D ANIMAL MODELS

models to generate heat as a result of mitochondrial un-
coupling, and did not match a parallel increase in cardiac
contractile force leading to cardiac inefficiency. The data
suggest that in some models of diabetes the heart may be-

Type of
diabetes Type of bioenergetic impairment Ref.
Heart tissue, LV fibers, and isolated mitochondria
T1D | Respiratory state 3 rate (with succinate and TMPD +ascorbate, but not with glutamate/malate) (189)
in cardiac mitochondria isolated from guinea pigs with STZ-induced T1D
| Respiratory state 3 rate (with pyruvate/malate) and RCR in cardiac mitochondria isolated (173)
from OVE26 mice with T1D
| Respiratory state 3 rate (with pyruvate/malate) in cardiac mitochondria isolated from rats 67)
with STZ-induced T1D; rates were improved with insulin treatment
| Respiratory state 3 (with glutamate and succinate) (192)
| Complex I and II activities
FA oxidation is not limited
| Respiratory state 4 rate (with succinate), <> ATP in cardiac mitochondria isolated from rats (81)
with STZ-induced T1D
| Respiratory state 3 rate (with glutamate/malate and succinate), improved after insulin treatment (111)
| Complex I and II activities in cardiac mitochondria isolated from rats with STZ-induced T1DM
| Respiratory state 3 rate (with glutamate/malate and pyruvate/malate, but not with (33)
palmitoylcarnitine) in LV fibers from Akita mice with T1D
| Respiratory state 3 rate (with glutamate/malate and succinate) that was improved after insulin (111)
treatment
| Complex I and II activities in cardiac mitochondria isolated from rats with STZ-induced T1D
T2D | Respiratory state 3 rate (with glutamate/malate and palmitoylcarnitine) in SSM (but not in IFM) (54)
1 Complexes I, III, IV, and V in SSM (but not in IFM) in cardiac mitochondria isolated from
db/db mice
| Respiratory state 3 rate (with glutamate/malate, pyruvate/malate, palmitoylcarnitine) (28)
1 Respiratory state 4 rate (with palmitoylcarnitine), | ATP due to FA-induced uncoupling in LV
fibers from db/db mice
| RCR (with glutamate/malate, succinate, TMPD) in cardiac mitochondria isolated from db/db (188)
mice with T2D
| Respiratory state 3 rate (with glutamate/malate, pyruvate/malate, and palmitoylcarnitine), | 27
ATP in LV fibers from ob/ob mice
< Respiratory state 3 rate, 1 respiratory state 4 rate (with palmitoylcarnitine), | ATP due to 93)
mitochondrial uncoupling in LV fibers from db/db mice
| Complex I and IV activities in LV tissue from ZDF rats (151)

|, decreased; <>, unchanged; LV, left ventricle; IFM, interfobrillar mitochondria (between the myofibrilles); TMPD, N,N,N’.N’-
tetramethyl-p-phenylenediamine; RCR, respiratory control ratio (state 3, ADP induced/state 4 ADP limited); STZ, streptozotocin; SSM,
subsarcolemmal mitochondria (beneath the sarcolemma); T1D, type 1 diabetes mellitus.
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Consequences of Mitochondrial Metabolic Changes
on Critical Pathogenic Mechanisms of DCM

Oxidative stress

Two major features of DCM are particularly sensitive to
antioxidant therapy, namely cardiac hypertrophy (130) and
fibrosis (205), highlighting the role of oxidative stress as a
critical pathogenic mechanism for DCM (174, 201). Multiple
sources contribute to reactive oxygen species (ROS) in the
obese and DM heart, including NADPH oxidases (92, 171),
uncoupled nitric oxide synthase (62), monoamine oxidase in
both humans (57) and animal models (180), and ETC. The
classical concept is that the univalent reduction of oxygen to
form superoxide occurs with increased electron pressure at
specific ETC sites caused by interruption of the electron flow
in ETC defects. A novel mechanism of increased oxidative
stress in the diabetic heart was reported by Nakamura et al.
(129), demonstrating oxidative stress-induced activation of
pS3 signaling leading to increased cytochrome c¢ oxidase
assembly protein and subsequent increases in mitochondrial
respiration, FA oxidation, and ROS generation in T1D and
T2D mouse models. These data support a novel concept
about the nuclear-mitochondrial interaction, and they indi-
cate that early genomic instability induced by the diabetic
milieu activates p53 pathway in the heart to induce mito-
chondrial oxidative stress (183). In addition, they bring forth
an interesting hypothesis that an increase, rather than a de-
crease, in mitochondrial electron flow may increase oxidative
stress in the diabetic heart.

Is the oxidation of excessive energetic sources responsi-
ble for the increased oxidative stress? Mitochondrial oxi-
dation of excessive glucose and subsequent ROS generation
has been put forth as the unifying pathogenic mechanism for
chronic diabetic complications based on work in endothelial
cells that are readily permeable to glucose in the absence of
insulin (136). During the development of overfeeding-
induced obesity and DM, the heart oxidizes an excessive
amount of FA, increasing the reducing equivalent pool
(NADH and FADH,, Fig. 2), leading to increased ETC
electron flow, and generating a greater mitochondrial inner
membrane electrochemical gradient that is usually used to
drive ATP synthase. In the normal heart, mitochondrial
oxygen consumption increases when the proton gradient is
collapsed by an uncoupler (a compound that dissociates
substrate oxidation from ADP phosphorylation), indicating
a physiologic limitation of oxidative phosphorylation by the
phosphorylation apparatus (ATP synthase, adenine nucle-
otide translocase, and mitochondrial phosphate carrier)
(157). Therefore, the larger electrochemical gradient pro-
duced during substrate oversupply that is not consumed for
ADP phosphorylation may increase electron pressure at
ETC sites that are known to leak electrons and form su-
peroxide such as the Qo in complex III (42). In addition,
sites in the mitochondrial FA oxidation pathway also leak
electrons during increased electron flux in normal heart
mitochondria, independent of the proton gradient magni-
tude (177). We reported similar findings from a T1D rodent
model examining mitochondria from kidney proximal tu-
bules, a structure that also over-relies on mitochondrial FA
oxidation in DM (158). ETC defects that interrupt electron
flow create additional sites for increased electron pressure
and leak as recently reported for complex II (192). Inter-
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estingly, mice bearing a genetic complex I defect in the
heart do not exhibit increased oxidative stress (100), im-
plying that mitochondrial sites other than ETC are also re-
sponsible for superoxide formation in the diabetic heart.
Alternatively, complex III may be the principal site of ROS
generation during excessive FA oxidation by diabetic car-
diac mitochondria, and a defect in complex I is protective by
limiting electron flow into complex III.

Oxidative stress triggers a vicious cycle whereupon mi-
tochondria are both the site and targets of oxidative damage.
The induction of the mitochondrial transition pore opening is
sensitive to oxidative stress, adding to mitochondrial dys-
function (175) and inducing apoptosis (184). In addition,
ROS lead to cardiac fibrosis and damage the contractile ap-
paratus (174). Mitochondrial uncoupling proteins dissipate
the inner membrane potential and are inducible by oxidative
stress, suggesting that they protect mitochondria by reducing
the electron pressure created by excessive substrate oxida-
tion. Indeed, human gene polymorphisms that decrease un-
coupling protein 2 expression lead to enhanced oxidative
stress (162).

Mitochondrial biogenesis

Mitochondrial biogenesis depends on a coordinated
program to regulate the formation of all mitochondrial
components. This process is orchestrated by PGC-1« that co-
activates the nuclear respiratory factors 1 and 2 (NRF-1 and
NRF-2) and enhances expression of the nuclear-encoded
mitochondrial transcription factor A (TFAM) (200). TFAM
binds to mtDNA, and it initiates mitochondrial transcrip-
tion and genome replication (36). PGC-1a is considered
the master regulator of mitochondrial biogenesis (102),
and is beneficial for cardiac function during development
and adaptation, but leads to cardiomyopathy with over-
expression (160). Although PGC-1 coactivator is required
for high-capacity mitochondrial respiratory function (13,
113), it is dispensable for maintenance of mitochondrial
density and cardiac function under basal conditions in the
adult heart.

Decreased cardiac PGC-1« is noted early in genetically
induced DM (58); whereas during high fat diet (HFD)-
induced insulin resistance, PGC-1« is initially increased,
but then progressively declines (124). Cardiac cells cul-
tured with various FA concentrations exhibit an increase in
PGC-1a-mediated mitochondrial biogenic response with
high FA levels (124). Increased PGC-1«, mtDNA content,
and mitochondrial mass have been reported in some
models of T1D and T2D (27, 173) though this biogenic
response was associated with decreased mitochondrial
function, suggesting an accumulation of defective mito-
chondria. As in animal studies, cardiac mitochondrial
biogenesis is reduced in patients with advanced stages of
DM (152, 154).

Calcium handling

Cardiomyocyte contraction depends on intracellular cal-
cium concentration and mitochondrial-generated ATP. Ca**
influx via the L-type Ca”** channels triggers sarcoplasmic
reticulum Ca®* release, which dramatically increases the
cytosolic-free Ca”* to trigger contraction. Ventricular relax-
ation and filling is induced by Ca®* removal from cytosol
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primarily by the ATP-dependent sarcoplasmic reticulum Ca-
ATPase 2a (SERCA2a). A decreased excitation-contraction
coupling induced by decreased SERCA2a was reported in
the hearts of both T1D (133) and T2D (20) rodents. Recent
research has focused on mitochondrial Ca®* handling in
DCM. Normal mitochondria act not only as Ca** buffers to
prevent cytosolic Ca®* overload but also as sensors with
Ca**sensitive mitochondrial dehydrogenases that are acti-
vated to improve mitochondrial oxidative capacity (74).
Decreased mitochondrial Ca** uptake precedes the contrac-
tile decline in a model of T1D (67), suggesting that Ca**
handling is compromised in the DM heart.

Overall, alterations in mitochondrial biogenesis and me-
tabolism are linked to contractile dysfunction via oxidative
stress and Ca®" mishandling, likely contributing to reduced
diastolic function. However, earlier events driving the met-
abolic inflexibility that precede these critical pathogenic
loops have yet to be uncovered.

Mitochondria as Mediators of Redox Status
and Signaling in DCM

The concept of redox status and signaling

Redox reactions involve electron transfer between reduced
and oxidized compounds. Classic examples are the transfer of
electrons in the mitochondrial ETC from reduced to oxidized
subunits according to their redox potential until the ultimate
tetravalent addition of electrons to oxygen. There are four
major redox couples (redox players) (97) that reflect the
cellular redox status, and they are involved in redox signal-
ing: NAD" (oxidized)/NADH (reduced), NADP*/NADPH,
GSSG (glutathione disulfide)/GSH (glutathione), as well as
TrxSS (oxidized disulfide thioredoxin)/TrxSH2 (reduced
thioredoxin) (Fig. 3).

Redox state is compartmentalized within the cell. En-
ergized mitochondria have a high NADH concentration to
provide electrons for oxidative phosphorylation (100). In the
cytosol, NAD" exceeds NADH, reflecting a relatively oxi-
dized state with NAD" available as a cofactor for oxidative
reactions (i.e., glyceraldehyde-3-phosphate dehydrogenase
reaction in glycolysis). In contrast, the cytosolic NADPH/
NADP" ratio is maintained in a reduced state via several
enzymatic reactions (Fig. 3) to drive reductive biosynthesis
and maintain antioxidant defense. The cytosolic GSH/GSSG
couple is also maintained in a reduced state for ROS detox-
ification. These redox couples are interconnected (Fig. 3).
In mitochondria, the nicotinamide nucleotide transhy-
drogenase (NNT) reduces NADP" at the expense of NADH
oxidation, utilizing the mitochondrial inner membrane pro-
tonmotive force to drive this process. Although there are
additional enzymatic oxidative reactions that generate
NADPH (isocitrate dehydrogenase, malic enzyme, and glu-
tamate dehydrogenase, depicted in Fig. 2), NNT is a physi-
ologically relevant source of mitochondrial NADPH (155).
The NADPH/NADP" redox couple is central to the antioxi-
dant defense by donating electrons to glutathione and thior-
edoxin systems, both of which are critical in scavenging
hydrogen peroxide (H,0,) via the enzymes glutathione per-
oxidase (GPx) and thioredoxin reductase-peroxiredoxin
(Prx), respectively. The mitochondrial antioxidant system is
mirrored by a similar scavenging mechanism in the cytosol.
Mitochondrial redox state of the NADH/NAD* and NADPH/
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NADP" redox couples is maintained independently as the
nucleotides have different metabolic roles. The NADH/
NAD" couple supports the divergent transfer of electrons
from fuel substrates to both the ETC (via complex I) and the
antioxidant system (via NNT). The NADPH/NADP" couple
is far more reduced as it supplies electrons to GSH reductase
and thioredoxin reductase 2 to keep mitochondrial GSH and
thioredoxin pools reduced. NNT maintains the NADPH/
NADP" ratio several fold higher than the NADH/NAD" in
mitochondria (161).

In conclusion, redox signaling regulates metabolism whereas
metabolic state influences redox signaling. The NAD*/NADH
redox couple is a critical node integrating metabolic and sig-
naling events. Our discussion will emphasize changes in the
NAD'/NADH redox couple in the heart over the course of
obesity, insulin resistance, and DM.

Total NAD pool

The redox signaling network linked to the NAD*/NADH
couple depends on the total extramitochondrial and mito-
chondrial NAD pools (Fig. 4). NAD is a substrate for en-
zymes, including the family of sirtuins (SIRTs) and poly
ADP ribose polymerases (PARPs), which continuously
converts NAD™ to nicotinamide. As NAD is continuously
degraded, cardiomyocytes must maintain a constant pool by
de novo synthesis from diet-derived tryptophan and conver-
sion of nicotinamide mononucleotide (NMN), nicotinamide
(NAM), or nicotinamide riboside (NR) to NAD. However,
mammalian cells, including cardiomyocytes, rely mainly on
the NAD salvage pathways that recycle NAM generated by
NAD-consuming enzymes to replenish NAD. Transforma-
tion of NAM to NMN is catalyzed by nicotinamide phos-
phoribosyltransferases (NAMPTs), rate-limiting enzymes in
the salvage pathway. Conversion of NMN to NAD is then
catalyzed by NMN adenylyltransferases (NMNATSs) with
different isoforms (NMNAT1 is nuclear, NMNAT?2 is in the
Golgi apparatus, and NMNATS3 is mitochondrial) supporting
organelle cellular NAD pools. In cardiomyocytes, the mito-
chondrial NAD pool is relatively high, matching its critical
role in mitochondrial function (4). It is unclear whether NAD
pools are completely segregated or exchanged between
subcellular compartments. Recently, it was shown that nu-
clear and mitochondrial NAD concentrations match the Mi-
chaelis constants of the respective SIRTs that are also
compartmentalized (Fig. 4). The rate of NAD depletion is
similar in the nucleus and cytosol on PARP activation,
whereas mitochondrial NAD is minimally affected by the
cytosolic NAD-consuming enzymes, further indicating that
the mitochondrial NAD pool is finely balanced. Mitochon-
drial NAD pool is dependent on the conversion of NMN via
NMNAT?3 and the potential import of cytosolic NAD through
transport mechanisms that are not fully elucidated in mam-
mals (35), although its existence is supported by the fact that
exogenously added NAD leads to greater accumulation in
mitochondria than the cytosol (145).

Compared with exercise-induced cardiac hypertrophy,
pathological cardiac hypertrophy is associated with a de-
crease in the cardiomyocyte NAD pool whereas NAD re-
pletion inhibits the cardiac hypertrophic response (144). Why
is the cardiomyocyte NAD pool decreased in cardiac pa-
thology? One explanation is that chronic oxidative stress with
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FIG.3. The four main redox couples governing the redox balance in cardiac mitochondria (NAD*/NADH, NADP*/
NADPH, GSH/GSSG, and TrxSH2/TrxSS) are hinged by NNT. Normal cardiomyocytes maintain a constant NAD pool
mostly by converting biosynthetic precursors via the salvage pathway rather than de novo synthesis [not shown in the figure,
revised in (83)]. Mitochondrial NAD content is increased by the import of cytosolic NAD through hypothetical transport
mechanisms (35) that were identified in many species but not in mammals. However, it is believed that a bi-directional
mitochondrial-cytosol transport system exists for both NAD and its precursors because exogenously added NAD leads to a
greater accumulation in mitochondria than the cytosol (145). NAD" is both a coenzyme for redox enzymes and an enzyme
substrate for nonredox reactions in which the adenine diphosphate ribose moiety of NAD" is cleaved, leading to the depletion
of the NAD pool (not shown). Nicotinamide adenine nucleotide (NAD™) is a phosphate acceptor being converted to the
phosphorylated form, NADP, via the enzyme NAD kinase (120). Only the cytosolic isoform of the NAD kinase is depicted in
the figure. Therefore, NAD" is a precursor for NADP. Both NAD" and NADP" are hybrid acceptors, and are converted to the
reduced forms, NADH and NADPH. NADH transfers reducing equivalents that are derived from fuel oxidation, and,
therefore, the NAD"/NADH couple is critical for energy generation. The NADPH/NADP" redox couple is central to
anabolism and antioxidant defense by donating electrons to glutathione (GSH/GSSG) and thioredoxin [Trx(SH)2/TrxSS)]
systems, both of which are critical in scavenging H,O, (generated from superoxide, O°,, by dismutation) via the enzymes
GR, GPx, and thioredoxin reductase-Prx, respectively. Mitochondrial antioxidant system is mirrored by a similar scavenging
mechanism in the cytosol. In these reactions, the reduced and oxidized members of the redox couples interconvert but are not
consumed. Unlike these antioxidant mechanisms, catalase, which also scavenges H,O,, does not require reducing equivalents
from NADPH for its function. Mitochondrial NADH/NAD* and NADPH/NADP" redox couples are linked by the enzyme
NNT that reduces NADP" at the expense of NADH oxidation and utilizing the mitochondrial IM proton motive force to drive
this process. NNT maintains mitochondrial matrix NADPH/NADP" pool in a reduced form, and it is a physiologically relevant
source of NADPH to drive the enzymatic degradation of H,O,. The figure shows that the mitochondrial redox state of the NADH/
NAD" and NADPH/NADP" redox couples are maintained different as the nucleotides have different metabolic roles. The NADH/
NAD™ pool supports the divergent transfer of electrons from fuel substrates to both the ETC and antioxidant system via NNT, and
thus is only partially reduced in comparison to NADPH/NADP". NNT maintains the NADPH/NADP ratio several fold higher than
the NADH/NAD" (161). Cytosolic NADPH is regenerated via the pentose phosphate pathway, and redox reactions are catalyzed by
isocitrate dehydrogenase, malic enzyme, aldehyde dehydrogenase, and methylene tetrahydropholate dehydrogenase (115). The
cytosolic NADH is imported in mitochondria by redox shuttles, most commonly the M-A and glycerol 3 phosphate shuttles (G3P).
GPx, glutathione peroxidase; GR, glutathione reductase; GSH, glutathione; GSSG, glutathione disulfide; H,O,, hydrogen peroxide;
NNT, nicotinamide nucleotide transhydrogenase; M-A, malate-aspartate; Prx, peroxiredoxin. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars

secondary DNA alterations stimulates PARP to consume bition with either an NAD analog (139) or a genetic approach
NAD for DNA repair (143). Oxidative stress may also cause  (91) leads to a decreased NAD pool in cardiomyocytes as-
NAD loss via connexins that are sensitive to oxidative stress  sociated with mitochondrial dysfunction, insulin resistance,
(144). A reduced NAMPT and NAD synthetic pathways may and decreased cardiomyocyte ability to respond to stress. Is
be also responsible for NAD depletion (144). NAMPT inhi- the diabetic or obese heart NAD deficient? The myocardial
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NAD pool was decreased in a model of DM, and NAD re-
plenishment was protective against streptozotocin (STZ)-
induced destruction of pancreatic f-cells (104). A more specific
question then emerges: Are subcellular NAD pools altered in
the obese and DM heart? This is yet to be determined.

Whole body increases in NAD availability appear to
benefit metabolic health, especially with conditions of nu-
trient excess such as obesity and metabolic syndrome.
Boosting NAD with NR increases the NAD*/NADH ratio
(41). However, skeletal muscle-specific overexpression of
NAMPT increased the NAD pool in parallel with NADH
without altering the NAD*/NADH ratio in any cellular
compartment (69). Apparently, the increase in the total
skeletal NADH reflects an equilibrium between the oxi-
dized and reduced forms of NAD to maintain the NAD™/
NADH ratio within a range of absolute concentrations.
These mice were not protected against obesity and meta-
bolic syndrome, and this begs the question as to whether
changing the NAD*/NADH redox ratio rather than the ab-
solute NAD concentration mediates the effects of NAD-
boosting interventions. The increase in NADH without
changing the redox status did not prevent metabolic disease,

suggesting that excessively increasing the reducing equiv-
alents (NADH) is not beneficial (69).

Mitochondrial NAD"/NADH redox state
and its regulation

NAD" serves as a cofactor in fuel breakdown, whereas
NADH is a substrate for complex I in the ETC and NNT.
Therefore, the NAD"/NADH ratio reflects the overall status
of mitochondrial metabolism. Although the NAD"/NADH
redox ratio has been extensively studied in other organs, a
description of the NAD"/NADH redox ratio in the obese or
diabetic heart, and its involvement in diabetic cardiac pa-
thology remains to be elucidated.

NADH is produced from NAD™ during energy substrate
oxidation, serving as a key energy-transfer intermediate. In
comparison with glucose oxidation that consumes 10 NAD",
palmitate (long-chain FA) consumes 31 NAD" during mito-
chondrial oxidation. In addition to greater NAD* consump-
tion, the increased NADH from FA f-oxidation activates
pyruvate dehydrogenase kinase to phosphorylate and inhibits
pyruvate dehydrogenase, thus limiting glucose oxidation by
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the glucose-FA cycle (Randle cycle) (137, 150). It has not
been determined whether increased circulating ketone bodies
are associated with an increased cardiac uptake and oxida-
tion. Therefore, mitochondrial FA oxidation is the major
NADH producer in the diabetic heart.

NAD" adjusts cell metabolism to meet energetic chal-
lenges. During energy crises (caloric restriction, fasting, ex-
ercise), NAD" level rises (38); whereas during energy
overload (i.e., increased fuel substrates in the form of FA),
the NAD" decreases and its reduced form, NADH, increases.
The amount of NADH production and NAD™ consumption is
tightly linked to energetic fuel oxidation, whereas mito-
chondrial NAD recycling (NADH consumption and NAD"
production) is linked to the ETC and decreases with ETC
defects. For example, Complex I (100) and IV (183) defects
lead to increased mitochondrial NADH content. The defi-
ciency of frataxin, a mitochondrial protein integral to the
assembly and function of iron-sulfur proteins in ETC com-
plexes I, II, and III and aconitase (tricarboxylic acid cycle,
TCA cycle), is associated with an 85-fold decrease in cardi-
omyocyte NAD"/NADH ratio and pathologic cardiac hy-
pertrophy (194). Approaches to correct mitochondrial ETC
defects increased NAD™ content (3). In conclusion, the dis-
ruption of the electron flow to oxygen by ETC defects in-
creases NADH, causing a highly reduced redox environment
within mitochondria.

Cardiac NAD" is reduced in HF (89). Is there a change in
the NAD"/NADH redox couple or its components in the
obese and diabetic heart? Though a plethora of reasons
suggest it is, direct measures of NAD* or NADH in the obese
and diabetic heart are limited. In OLETF rats, a model of
T2D, diastolic dysfunction, and stiffness correlated with ATP
depletion; whereas the NAD*/NADH redox ratio was un-
changed (109). In the ZDF rat T2D model, NADH was un-
changed in cardiac tissue in the absence of dysfunction (24).
Although NADH/NAD™ redox ratio determines the produc-
tion of mitochondrial ROS, the NADPH/NADP ratio is key
to antioxidant defense. They are linked by the enzyme NNT
that transfers electrons from NADH to NADP" (Fig. 3). Al-
though they are engaged in distinct metabolic pathways, their
reduced forms, NADH and NADPH are spectrally identi-
cal, making specific quantification technically challenging,
though fluorescence lifetime imaging (25) has been promis-
ing in distinguishing the two reduced pyridine nucleotide
cofactors in the heart (135). Most studies measure a mixture
of NADH and NADPH (24, 188, 189). Using a protocol that
does not allow NADPH interference (Cell Technology), we
found an increase in NADH in isolated cardiac mitochondria
energized with FA substrates (21); whereas Bhatt et al. report
a decrease in the steady-state NAD(P)H in diabetic cardio-
myocytes incubated with high glucose and palmitate (24).
These results suggest that the reducing power of NADH ex-
cess [induced by either excessive FA oxidation (21) or de-
fective complex I (100, 192)] may be split between ATP
production and antioxidant defense (to NADPH, via NNT).
The increase in the NADH/NAD" ratio and NAD" decrease is
supported by our work showing decreased activity of mito-
chondrial NAD"-dependent SIRT3 with secondary increases
in protein lysine acetylation (21).

Two critical observations suggest that the NAD*/NADH
ratio is decreased in the diabetic heart mitochondria: (i) The
activity of NAD*-dependent sirtuins is decreased, leading to
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increased lysine acetylation of mitochondrial proteins; (ii)
NAD replenishment or interventions (i.e., caloric restriction)
to normalize the NAD*/NADH are beneficial for DCM.
Therefore, manipulating the NAD*/NADH redox couple with
novel therapeutic strategies is a promising, yet unexplored
target to improve cardiac mitochondrial metabolism and to
alleviate DCM. The next sections will discuss these topics.

The NAD*/NADH Couple in Redox Signaling

The role of the NAD" as a cellular signaling regulator has
only begun to be understood. NAD* modulates key cellular
processes, including energetic metabolism, mitochondrial
integrity, gene expression, cell death, and degeneration; all of
these are altered in DCM.

NAD" is an electron acceptor and functions as a cofactor
for enzymes that catalyze reduction-oxidation (redox) reac-
tions. Redox reactions are readily reversible, and they do not
contribute directly to changes in the total NAD pool in a
specific subcellular compartment. NAD* and NADH inter-
convert but are not irreversibly consumed. NAD" participates
in all major energetic pathways, including glycolysis, TCA,
FA oxidation, ketone body metabolism, and ETC (Fig. 2).
NAD™ is a potent activator of the TCA enzymes, whereas
NADH is a TCA allosteric inhibitor and increases in ETC
defects (3, 100, 194). Approaches to correct mitochondrial
ETC defects increased NAD" content (3). Therefore, the
NAD*/NADH redox couple regulates energy production.
NAD is also used as a co-substrate by enzymes, including
sirtuins and PARPs.

Sirtuins

SIRTs remove an acetyl group from lysine residues in an
NAD*-dependent manner by cleaving NAD" to nicotin-
amide. SIRT2 was initially reported to mediate longevity in
response to caloric restriction in Saccharomyces cerevisiae
(94). Sirtuin orthologs also enhance lifespan in mammals,
including mice (165). There are seven mammalian sirtuins
that differ in their cellular localization, suggesting that sirtuin
activities are compartmentalized in parallel with NAD"
pools. Although all sirtuins are NAD" dependent, SIRT1 and
3 are well-known players in the heart, and they are the focus
of this review.

Sirtuinl has been observed in both the nucleus and the
cytosol (185), where it serves several roles, including (i)
epigenetic regulation by targeting specific lysine residues on
histones to alter gene transcription, (ii) metabolic control by
acting on transcription factors (p53, NF-kB, PGCla, fork-
head box O [FOXO]3a), and components of insulin signaling,
and (iii) mediating the cardiomyocyte circadian clock. SIRT1
protein abundance is relatively stable, whereas its deacety-
lation of key lysine residues of histone 3 follows circadian
NAD" variations (128). Fasting activates SIRT1 through
adrenergic-dependent phosphorylation by cAMP/PKA to
sensitize the enzyme to NAD™ fluctuations and maintain
energy homeostasis during stress (72). SIRT1 protects
against pathologic cardiac hypertrophy as knockout mice
exhibit developmental cardiac defects (43). Sustained SIRT1
overexpression causes cardiomyopathy whereas moderate
SIRT1 expression ameliorates age-induced cardiac hyper-
trophy and dysfunction (5), suggesting that its effect is dose
dependent. SIRT1 also protects mitochondrial function by
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activating PGC-1a (132) to increase mitochondrial FA oxi-
dation (71). Deacetylation by SIRT1 facilitates insulin sen-
sitivity. The effect of SIRT1 on mitochondrial FA oxidation
is complex and varies according to the setting, a topic ad-
dressed later in this review. In a model of T1D, SIRT1 sup-
presses cardiomyocyte apoptosis (78). Overall, SIRT1 is
critical to the heart in obesity and DM by regulating patho-
logical hypertrophy, insulin sensitivity, and mitochondrial
metabolism.

SIRT3 is the major mitochondrial NAD*-dependent dea-
cetylase (118). Although the SIRT3-deficient mice do not
exhibit baseline metabolic changes (118), an HFD regimen
recapitulates the human metabolic syndrome characterized
by obesity, glucose intolerance, dyslipidemia, liver steatosis,
protein hyperacetylation, and chronic inflammation (86). A
single nucleotide polymorphism in the human SIRT3 gene
was identified that reduces enzymatic activity, suggesting a
genetic component to the metabolic syndrome, and further
underscoring the role of sirtuins as master regulators of me-
tabolism (86). Genetic manipulation of SIRT3 gene has re-
vealed its role in deacetylating and increasing hepatic
mitochondrial enzyme activity involved in oxidative phos-
phorylation, FA oxidation (84), antioxidant defense, and
mediating the effect of caloric restriction on age-induced
hearing loss (176). SIRT3 also mediates the circadian control
of mitochondrial oxidative phosphorylation (142).

Sirtuin3 regulates cardiac changes in the setting of obesity
and DM such as hypertrophy, insulin sensitivity, and fuel me-
tabolism. SIRT3 knockout causes age-related cardiac hyper-
trophy and failure with pathologic challenges (106), whereas
overexpression protects against pathological hypertrophy by
activating FOXO3a and its downstream antioxidant genes, mi-
tochondrial manganese Superoxide dismutase (MnSOD), and
catalase (182). SIRT3 also targets cyclophilin D, a modulator of
the mitochondrial permeability transition pore (mPTP), to sup-
press pore opening, apoptosis, and cardiac hypertrophy (79).
Modulation of the mPTP and mitochondrial Ca* by cyclophilin
D maintains the mitochondrial metabolism and NAD"/NADH
redox state, and it controls the mitochondrial acetylome (134).

SIRT1 and SIRT3 act in concert to regulate energy me-
tabolism during energetic crises. SIRT3 deacetylation acti-
vates enzymes involved in glycolysis (96, 140), FA oxidation
(22, 84, 86), TCA cycle (176), and the ETC (2). During
fasting, SIRT1 mediates a switch from glucose to FA oxi-
dation in response to increased circulating FA (75) and in-
creased NAD™ (37) in the muscle. By upregulating metabolic
machinery during states of decreased fuel availability, SIRT3
appears to be a critical metabolic regulator of coupling sub-
strate oxidation with the formation of reducing equivalents to
ATP production, thus maximizing efficiency. However, most
studies in this area have been performed in extracardiac tis-
sues, comparing the fasting versus fed conditions and/or
genetic manipulation of sirtuins. The effect of fasting on
NAD*-dependent deacetylase has not been investigated in
the heart.

SIRT1 and SIRT3 are classically defined as NAD*-
dependent deacetylases, but more recent data suggest that
SIRT3 depends on the NAD*/NADH ratio rather than the
absolute [NAD™] (100). NADH exhibited a dose-dependent
inhibition of SIRT3 activity despite constant NAD" con-
centrations, suggesting that NADH competes with NAD at
the binding site. In vitro experiments show that NADH in-
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hibits SIRT3 at concentrations that are nonphysiologic, thus
unlikely to regulate SIRT3 activity in vivo. This conundrum
is complicated by the observation that mice bearing a genetic
defect in complex I, the major NADH oxidation site, do not
exhibit changes in mitochondrial NAD" concentrations but
rather a significant increase in NADH and a dramatic increase
in lysine acetylation of cardiac proteins (100). We also
showed that decreasing NADH consumption at complex I
facilitates mitochondrial lysine acetylation in the diabetic
heart (192), and that [NADH] rather than NAD+ correlates
with increased SIRT3 activity (21).

NAD*-dependent sirtuins have been investigated as ther-
apeutic targets in DCM. For example, resveratrol, a poly-
phenol and well-known SIRTT1 activator, alleviated DCM in
models of both T1D and T2D via activating sirtl, 2, 3, and 5
(14, 15), improved glucose metabolism in human sub-
jects (23, 117), and decreased oxidative stress in cultured
cardiomyocytes (186). In a rodent model of genetic obesity,
resveratrol mitigated cardiac fibrosis and improved FA me-
tabolism (18)

SIRT1 compete with PARPs for the NAD pool. PARP
activity increases in chronic diseases, including obesity-
induced DM due to increased DNA damage, and is reported
to be a more rapid and efficient N AD™ consumer than SIRT1,
suggesting that its activation may limit SIRT1 activity in
these conditions. Competition for the NAD" pool was vali-
dated in a mouse model of human accelerated aging where
either PARP inhibition or NAD pool replenishment was
protective (167). Increasing NAD availability by inhibiting
PARP-1 increased SIRT1 activity, mitochondrial content,
energy expenditure, oxidative metabolism, and protected
against metabolic disease (16). PARP-1 inhibition in a mouse
model of T1D alleviated DCM (148). However, therapeutic
manipulation of PARP-1 activity with the purpose to correct
the NAD/NADH redox state, increase sirtuin activity, and
protect against DCM should be considered with care due to
the critical role of PARPs in the cellular response to stress and
DNA repair.

NAD'/NADH ratio, sirtuins, and mitochondrial
health in DCM

NAD" is a vital cofactor in the cardiac metabolic program
and mitochondrial fitness (39) through regulating mito-
chondrial biogenesis, dynamics (fusion/fission processes),
and mitochondrial quality control.

Mitochondrial mass depends on the formation of mito-
chondria (biogenesis) and degradation of defective mitochon-
dria (mitophagy). Both SIRT1 and SIRT3 regulate PGC-1¢, the
master regulator of mitochondrial biogenesis. SIRT1 deace-
tylates and increases the transcriptional activity of PGC-1a
(132), whereas SIRT3 is a PGC-1u target as its activation is
required for PGC-lo-induced mitochondrial biogenesis
(107). The decrease in nuclear NAD* and SIRTI activity
caused a downregulation of TFAM, the major factor re-
sponsible for the replication and transcription of the mito-
chondrial genome, with decreased mitochondrial respiration
and increased glycolysis, a pseudohypoxic phenomenon that
is mitigated by NAD supplementation (76). SIRT1 and PGC-
1o were recently found to be associated with mitochondrial
DNA nucleoids and TFAM (26), suggesting that both SIRT1
and PGC-1a can directly affect mitochondrial transcription.
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ETC protein subunits are encoded by both nuclear and
mitochondrial genomes. Unbalanced gene expression results
in accumulation of unassembled subunits and induces pro-
teotoxic stress with activation of the mitochondrial unfolded
protein response (UPR™) (98) as part of mitochondrial
quality control. The UPR™ induces a nuclear gene expression
program, including FOXO3a, MnSOD, and catalase, along
with stimulating autophagy. SIRT3 is a critical coordinator of
the UPR™ by enhancing the antioxidant defense and mito-
phagy (141). SIRT3 exerts cardioprotection by activating the
FOXO3a-Parkin-mediated mitophagy, thus preserving mi-
tochondrial homeostasis and alleviating cardiomyopathy in a
model of T1D (202). SIRT3 also regulates mitochondrial
morphology by influencing factors that are responsible for
fusion/fission processes (163).

Complex I is the major hybrid acceptor from mitochon-
drial NADH; its inhibition traps this redox couple in its re-
duced form with a decrease in NAD™, SIRT3 inhibition, and
increased mitochondrial protein lysine acetylation with ac-
celerated HF in the presence of stress (100). NR supple-
mentation in mouse models of mitochondrial defects
increased cellular NAD with an increase in mitochondrial
biogenesis (41, 103). Known targets of the NAD-dependent
deacetylase SIRT1 are the tumor suppressor p53, the
myocyte-specific enhancer factor 2, the FOXO factor, and
PGC-1a, all of which activate transcriptional programs and
promote mitochondrial function (11). Gomes et al. (76)
reported that the control of mitochondrial metabolism ex-
erted by the nuclear NAD*-dependent SIRT1 is regulated by
energy supply in the heart. With normal or increased energy
supply, the acetyl-CoA-dependent acetyltransferase GCN5
acetylates and inhibits PGC-1a (64) to depress mitochon-
drial biogenesis and function. In contrast, caloric restriction
increases nuclear NAD"' and SIRT]1 activity to improve the
nuclear-mitochondrial communication and metabolism by
alleviating the state of ‘‘pseudohypoxia’ induced by the
decreased NAD", and it increases TFAM promoter activity
to enhance transcription and mtDNA replication. This sig-
naling pathway is believed to operate in insulin-resistant
tissues, including the heart (146). In conclusion, NAD*-
dependent sirtuins may be a key therapeutic target to
maintain mitochondrial integrity in DCM.

How Mitochondrial NAD*/NADH Redox Dysregulation
Potentially Drives DCM

The interplay between bioenergetics and NAD*/NADH
redox state is a critical point of regulation in the heart.
Understanding the nature of how this relationship fails in
DM may reveal novel targets for treating DCM. We pro-
pose that an excess energy supply with a secondary shift
toward a highly reduced NAD"/NADH redox couple is an
early event in cardiac pathology of overfeeding-induced
obesity and DM. In the setting of increased fuel avail-
ability, their full oxidation provides excessive NADH and
acetyl-CoA.

The role of high glucose

Because hyperglycemia is the hallmark of diabetes, and
carbohydrates are major parts of the Western diet, a reason-
able question arises: Does glucose contribute to the increased
mitochondrial Acetyl-CoA/CoA and NADH/NAD™ ratios in

BERTHIAUME ET AL.

the heart in these conditions? Optimal glycemic control in
diabetes reduces cardiovascular morbidity (153), suggesting
that hyperglycemia is an important pathogenic factor for
cardiovascular complications. Glucose is taken up by cardi-
omyocytes via GLUT1 and GLUT4, with the latter being
responsible for insulin-dependent glucose uptake. Absence
of GLUT4 significantly decreased cardiac glucose uptake
under insulin-stimulated conditions but did not fully abol-
ish (61) the observed increase of basal cardiac glucose
uptake and glycogen content (1). Because GLUTI is re-
sponsible for the bulk of basal glucose uptake, these data
suggest that circulating hyperglycemia increases GLUT1-
mediated insulin-independent glucose uptake. However,
glycolysis and pyruvate oxidation are decreased in the di-
abetic heart (164). This shift away from glucose oxidative
metabolism is not restricted to diabetes as it precedes the
diastolic dysfunction on angiotensin II infusion (126) and
pressure-overload hypertrophy models (203). In addition,
transgenic mice with a mutation that decreases pyruvate
oxidation develop both diastolic (1) and systolic (181)
dysfunction, supporting the concept that glucose oxida-
tion is required for normal cardiac metabolism. Retaining
the capacity to freely switch between energy substrates to
optimally respond to energy demands is a characteristic of
normal cardiomyocytes, skeletal and liver cells (172). The
question that arises pertains to the role of hyperglycemia
in DCM.

If cardiomyocyte glucose uptake is only moderately af-
fected whereas glycolysis and pyruvate oxidation are in-
hibited, it is unlikely that hyperglycemia contributes to the
increase in mitochondrial acetyl-CoA/CoA and decreased
NAD*/NADH in the diabetic heart. Rather, the increased
flux through alternative non-ATP-producing glucose path-
ways such as polyol pathway, activation of protein kinase C,
formation of advanced glycation end products, and hex-
osamine pathways, recognized as central to diabetic chronic
microvascular complications, are more likely to mediate
cytosolic redox changes (Fig. 5). Do they affect the myo-
cardium? Glucose conversion to sorbitol (via aldose re-
ductase with NADPH oxidation) and then to fructose (via
sorbitol dehydrogenase with NAD™ reduction) has been
extensively studied in microvascular complications, but its
effect on myocardium in diabetes has not been established.
High cytosolic glucose increases diacylglycerol, causing
chronic activation of protein kinase C isoforms and car-
diomyopathy (193). Excessive glucose and glucose-derived
dicarbonyls (i.e., methylglyoxal) react with lysine and
arginine amino groups of proteins, forming advanced gly-
cation end-products that damage cardiomyocytes. In-
tracellular targets of methylglyoxal have been reported,
including mitochondrial proteins (156) and components
of calcium cycling (187), indicating a direct effect on en-
ergetic metabolism and cardiac contraction (131). The
hexosamine pathway provides the end product UDP-N-
acetyl-glucosamine (UDP-GIcNAc) used by the enzyme O-
-GlcNACc transferase to modify proteins by O-GlcNAcylation,
thus causing contractile dysfunction (149), epigenetic mod-
ifications, and changes in gene expression in the diabetic
heart [reviewed in (101)]. Diversion of the glycolytic inter-
mediates to pathways others than full oxidation and ATP
production is favored by the inhibition of the glycolytic en-
zyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
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by oxidation. In addition, chronic oxidative stress and ROS-
mediated DNA damage activate DNA repair mechanisms,
including PARP1 that polyADP-ribosylates and inhibits
GAPDH, thus creating an amplification loop by depleting
cytosolic NAD* and inhibiting SIRT1 (Fig. 5).

The role of FA

In comparison with glucose, chronically excessive FA
reach the mitochondria, and pose a great challenge to mito-
chondrial metabolism by increasing NADH, thus favoring
ETC electron flow and mitochondrial inner membrane hy-
perpolarization that favors superoxide formation (108). In
addition, the various ETC defects in the diabetic heart will
further increase NADH. Therefore, in contrast to the general
consensus that the diabetic heart functions under more oxi-
dizing conditions that drive pathology (12), we propose that a

reductive redox stress may precede and induce the observed
oxidative stress.

A mainstream hypothesis in the field of DCM supports the
dependency of the net mitochondrial ROS efflux on the mi-
tochondrial redox environment, and it states that the ROS
levels are minimal at intermediate redox environment values
[redox optimized ROS balance hypothesis; for more details,
readers are referred to an excellent review on this topic (12)].
The mitochondrial redox environment is provided by the
mitochondrial redox couples [NADH/NAD", NADPH/
NADP", GSH/GSSG, and Trx(SH),/TrxSS], ranging from
extremely reduced to oxidized values depending on mito-
chondria energetic state. Although the mechanisms differ,
both extremes are associated with increased mitochondrial
ROS release. At a highly oxidized redox state, the mito-
chondrial antioxidant defense is overwhelmed. A highly
reduced mitochondrial redox state is achieved when the
levels of the reducing equivalents in the redox couples are
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increased. As seen in Figure 3, primary changes in NADH may
induce secondary alterations in other redox couples via the
forward NNT reaction, and they may occur when NADH is
either excessively produced or not oxidized. An excessive
oxidation of energy substrates may cause increased mito-
chondrial NADH, whereas either mitochondrial ETC defects
(i.e., complex I defect) or NNT deficiency may decrease
NADH oxidation. However, NNT deficiency has been re-
ported to protect the heart against overload-induced HF (135),
and, therefore, this is unlikely to contribute to an overly re-
duced redox environment. Due to increased oxidation of en-
ergy substrates with high reducing power and mitochondrial
ETC defects, diabetic heart mitochondria may achieve an
extremely reduced redox environment. For example, we re-
ported that the NADH/NAD" ratio is increased in cardiac
mitochondria oxidizing palmitoyl-CoA, and normalizing the
NADH/NAD" ratio is beneficial to the diabetic heart (21).

Our hypothesis does not exclude the redox-optimized ROS
balance hypothesis, and it proposes that the effect of exces-
sive FA oxidation by the metabolically inflexible diabetic
heart is more complex, and exceeds the participation in ox-
idative stress. The early increase in the reactive metabolites,
NADH and acetyl-CoA, may initiate cardiac damage through
pathogenic mechanisms such as lysine acetylation of cardiac
proteins. Increased circulating FA seems to be the primary
event that changes the cardiac NAD'/NADH redox state
during nutrient challenges. For example, long-term caloric
restriction reduces circulating FA (68) and activates NAD"-
dependent mitochondrial sirtuins to deacetylate ETC proteins
and alleviate diastolic dysfunction and DCM in T2D (46). In
contrast, a short-term (overnight) fasting triggers adipose li-
polysis to increase circulating nonesterified FA (75, 80) and
decrease cardiac NAD™,

In addition to NAD*/NADH redox couple regulating
protein lysine acetylation and energetic metabolism (de-
scribed in previous sections), the role of increased acetyl-
CoA derived from oxidation of excessive fuel substrates is
gaining recognition. The importance of acetyl-CoA as a sensor
of caloric excess is supported by experiments in mice bearing a
deficiency of carnitine acetyltransferase (transports mito-
chondrial acetyl-CoA to the cytosol), which exhibit increased
mitochondrial lysine acetylation induced by excessive mito-
chondrial acetyl-CoA (127). In addition, an increase in nuclear
acetyl-CoA caused histone lysine acetylation and induction of
genes involved in utilizing the nutrient excess (197). Acetyl-
CoA is used by acetyltransferases as a substrate to acetylate
protein lysines. Histone acetyltransferases (p300, CBP,
GCNS) regulate chromatin dynamics to activate gene tran-
scription. General control of amino acid synthesis 5 (GCNS) is
involved in lysine acetylation and inhibition of PGC-1o (114).
A mitochondrial acetyltransferase, GCN5-1, was recently de-
scribed to counter the effect of SIRT3 on ETC proteins (170).
With low binding affinity for acetyl-CoA, acetyltransferases
are controlled by acetyl-CoA availability within cellular
compartments (196), and are inhibited by CoA, suggesting that
the acetyl-CoA/CoA is equally important in regulating their
activity (44). Acetyl-CoA can also promote nonenzymatic
lysine acetylation (195), and is increased in skeletal muscle
(110) and liver mitochondria (88) with high fat feeding.

Both acetyl-CoA excess and NAD*-dependent sirtuin de-
ficiency favor lysine acetylation of cardiomyocyte proteins
with a purportedly inhibitory effect on metabolic enzymes to
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limit the further generation of acetyl-CoA and NADH. This is
illustrated in the context of SIRT3 deficiency where known
targets, including mitochondrial FA oxidation enzymes (85,
169) and protein subunits of ETC complexes I and II (2, 45),
are hyperacetylated and inhibited. However, this potentially
sets in motion a vicious cycle that favors increased NADH
and a mitochondrial reduced state, further facilitating protein
lysine acetylation. In the setting of over-nutrition, a para-
doxical association arises: increased cardiac fat utilization
not limited by lysine acetylation and mitochondrial ETC
defects. In a T1D rodent model, we found increased lysine
acetylation of cardiac FA oxidation enzymes despite un-
changed SIRT3 protein abundance, which was associated
with increased mitochondrial FA oxidation (192). Similarly,
HFD led to increased lysine acetylation of FA oxidation
enzymes and long chain acylCoA dehydrogenase, LCAD,
activation, thus enhancing cardiac FA oxidation (6). We also
reported that improving the NAD*/NADH redox state and
decreasing lysine acetylation of FA oxidation enzymes lim-
ited mitochondrial FA oxidation and improved heart function
in T1D (21) (Fig. 6). In conclusion, in the setting of high FA
availability, mitochondrial FA oxidation enzymes are acti-
vated when hyperacetylated.

This paradox suggests that the effect of sirtuins and lysine
acetylation on mitochondrial FA oxidation depends on both
the pre-existing biochemical environment and tissue type,
and that additional regulatory mechanisms may operate
during nutrient excess in the heart. The details underlying this
unique mechanism have begun to unfold. One aspect of ad-
ditional regulation occurs during HFD where SIRT3 is
downregulated and the NAD*/NADH ratio is decreased; heat
shock protein 10 (SIRT3 substrate) becomes acetylated and
induces optimal folding of FA oxidation enzymes to enhance
activity and, subsequently, mitochondrial FA oxidation (121).
In addition, both enzymatic and nonenzymatic acetylation is
operative during nutrient overload, leading to acetylation of
lysine sites beyond those recognized as sirtuin targets. Future
research will establish whether nonspecific lysine acetylation
activates FA oxidation, overriding the inhibitory effect of
SIRT3-targeted lysines. An interesting hypothesis was raised
by Griffin et al. regarding the functional effect of the site-
specific lysine acetylation; the authors noted that several
proteomic studies have identified more than 2000 acetylated
lysine residues in 400 mitochondrial proteins that function
within metabolic pathways. In comparison to phosphorylation,
the functional impact of the large number of lysine acetylation
sites remains unknown (77). The authors suggest a similarity
of acetylation with the oxidative changes of proteins that
commonly occur with yet-to-be-known functional changes,
but are likely determined by the intensity to which the protein
is ““decorated’”” with these post-translational modifications
(77). This hypothesis emphasizes the need to understand the
critical and specific role of the NADH/NAD" and acetyl-CoA/
CoA as energy sensors, between many others, and pathogenic
factors in DCM.

Despite the mainstream postulate supporting the detri-
mental role of the chronic exposure to excessive FA on car-
diac function in DM, there is evidence of an acute beneficial
effect of palmitate on cardiac contractile function in mod-
els of T1D (189) and T2D (24, 188) during both basal and
adrenergic stimulation. In the presence of high glucose,
the diabetic hearts efficiently oxidized FA and developed a
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higher contractile force whereas palmitate was harmful to the
normal hearts.

Mitochondrial oxidation of high levels of glucose has been
established as having a central mechanistic role in the de-
velopment of chronic complications in tissues with pre-
dominantly insulin-independent glucose uptake, such as the
endothelium during microvascular complications (31). In
contrast, as pyruvate oxidation decreases in the DM heart,
chronic hyperglycemia induces an excessive oxidative redox
environment and exhausts mitochondrial antioxidant scav-
enging systems (24, 188, 189) via extra-mitochondrial
mechanisms. As the glutathione and thioredoxin redox cou-
ples (major mitochondrial and cytosolic scavengers for the
highly diffusible HO,) become more oxidized during hy-
perglycemia, short-term mitochondrial palmitate oxidation
provides reducing equivalents (NADH) that normalize the
mitochondrial redox status, restore the antioxidant poten-
tial, and provide a higher energetic budget that rescues the
diabetic heart. This emphasizes the short-term benefit of

optimizing the high glucose-induced oxidative redox envi-
ronment by using palmitate, a powerful reducing equivalent
generator. A similar benefit was obtained with GSH, em-
phasizing the acute benefit of correcting the oxidized redox
environment to where the net mitochondrial ROS flux is
minimal. Chronic administration of palmitate has not been
investigated; thus, the results remain in an unresolved con-
tradiction to support the detrimental role of increased mito-
chondrial FA oxidation in cardiac function.

In light of metabolic changes, the existence of a difference
in FA handling between the normal and diabetic heart is not
surprising. Chronic exposure of the diabetic hearts to both
hyperglycemia and excessive FA has multiple long-term
metabolic effects. In addition to decreased insulin signaling,
acetyl-CoA and NADH from excessive FA oxidation activate
PDK4 (pyruvate dehydrogenase [PDH] inhibitor), thus in-
hibiting pyruvate oxidation and requiring enhanced FA oxi-
dation to meet cellular demand. Moreover, metabolic gene
expression reprograming via PPAR« facilitates FA oxidation
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and suppresses glucose oxidation. Therefore, in contrast to
the normal heart, the diabetic heart is conditioned to oxidize
the FA excess over glucose. Noteworthy is that ATP is not
always measured in DM myocardial samples, raising the
possibility that diabetic samples exposed to experimental
conditions of high glucose as the only energetic fuel may be
energetically deficient and this accounts for the observed
decline in cardiac function and palmitate benefit (188).

Acute palmitate has also been reported to rescue the dia-
betic heart exposed to a f-adrenergic agonist mimicking a
physiological increase in workload (188). On physiologic
stress, the f-adrenergic-induced increase in cardiomyocyte
Ca”" levels stimulates TCA cycle enzymes (30) to produce
NADH to respond to increased NADH demand resulting
from increased consumption by the ETC to produce ATP for
contraction. FA oxidation fits this ‘‘parallel activation’’ (49),
whereas glucose oxidation by the diabetic heart does not [a
very informative review is provided in (198)]. On a non-
physiologic workload, such as an increase in preload or
postload, the primary mechanism to increase inotropism is
governed by the Frank Starling mechanism without an ap-
propriate adrenergic signaling and increase in Ca®* cardio-
myocyte level. The beneficial effect of palmitate has not been
studied when the diabetic heart is under these pathological
stresses.

Nevertheless, these experiments are in agreement with our
hypothesis that FA oxidation is detrimental to the normal
heart, and may trigger the cardiac pathology on substrate
oversupply. In the oxidized cytosolic redox environment in-
duced by hyperglycemia, mitochondrial FA oxidation offers
maximal reducing power and optimizes the redox environ-
ment to a level where the mitochondrial ROS release is
minimal. However, at higher concentrations, FA oxidation
induces an increase in ROS mitochondrial flux (50). We
propose that chronic, excessive FA oxidation by the meta-
bolically inflexible diabetic heart is more complex than
changing the level of oxidative stress, and includes lysine
acetylation and epigenetic changes as key mechanistic fac-
tors in DCM.

Future Directions

Cardiac dysfunction induced by overfeeding-induced
obesity and diabetes has a multifactorial pathogenesis, and
the initiating mechanism is yet to be understood. These
conditions cause an increased energetic supply. The increase
in mitochondrial FA oxidation at the expense of glucose
oxidation indicates the onset of metabolic inflexibility. Ca-
loric restriction alleviates obesity and diabetes-induced dia-
stolic dysfunction in humans and mice; its health benefits are
partly mediated by sirtuins, enzymes that remove the acetyl
group from lysine residues on proteins, and regulate their
activity in an NAD"-dependent manner. NADH, the reduced
form of NAD, is produced by fuel oxidation and consumed by
mitochondria to produce the oxidized form, NAD?, in the
process of oxidative phosphorylation while ATP is formed. In
addition, NADH serves as an electron donor used by the
enzyme NNT in the forward reaction to form NADPH to
maintain optimal antioxidant response. Therefore, the NAD*Y/
NADH redox ratio reflects the mitochondrial function, and it
is a cellular regulation node. Although the mitochondrial
NAD*/NADH redox ratio has been studied in other organs,
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its relationship with other cellular compartments and in-
volvement in obesity and diabetes-induced cardiac pathology
remains to be elucidated. Exogenous administration of NAD
or its precursors increases mitochondrial NAD pool and is
beneficial to the metabolic health by maintaining mitochon-
drial integrity. Their use in the setting of the obese and dia-
betic heart needs further investigation. Normalizing the
mitochondrial redox by shifting electrons away from NADH
without changing the NAD pool proved a beneficial thera-
peutic approach for the diabetic heart (Fig. 6). The role of the
NNT to connect fuel oxidation with the antioxidant potential
also needs to be unfolded.
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Abbreviations Used
SHB = f-hydroxybutyrate
CPT1 = carnitine palmitoyltransferase 1
DCM = diabetic cardiomyopathy
DM = diabetes mellitus
ETC =electron transport chain (mitochondrial)
FA =fatty acids
FOXO = forkhead box O
GAPDH = glyceraldehyde-3-phosphate dehydrogenase
GCNS5 = general control of amino acid synthesis 5
GSH = glutathione
GSSG = glutathione disulfide
GPx = glutathione peroxidase
H,0;, = hydrogen peroxide
HF = heart failure
HFD =high fat diet
LCAD =long chain acylCoA dehydrogenase
LV =left ventricle
MCD = malonylCoA decarboxylase
MnSOD = manganese Superoxide dismutase
mPTP = mitochondrial permeability transition pore
NAM = nicotinamide
NAMPT = nicotinamide phosphoribosyltransferase
NMN = nicotinamide mononucleotide
NMNAT = NMN adenylyltransferase
NNT = nicotinamide nucleotide transhydrogenase
NR = nicotinamide riboside
NRF = nuclear respiratory factor
PARP = poly(ADP ribose) polymerase
PDH = pyruvate dehydrogenase
PGC-1a = Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha
PPARw = Peroxisome proliferator-activated
receptor o
Prx = peroxiredoxin
ROS =reactive oxygen species
SIRT = Sirtuin
STZ = streptozotocin
T1D =type 1 DM
T2D =type 2 DM
TCA = tricarboxylic Acid Cycle
TFAM = mitochondrial transcription factor A
TG = triglycerides
UPR™ = mitochondrial unfolded protein response




