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Objectives: Influenza surveillance systems have been established

in many countries in the world, yielding timely information

about the intensity and features of seasonal outbreaks. Such

data have also been used to estimate epidemiological parameters

and to evaluate the effect of factors on infection dynamics.

However, little is known about the extent of under-reporting in

surveillance data, and thus of the true influenza incidence in

the population.

Design: Through mathematical and statistical modelling, we

analysed Italian epidemiological and virological surveillance data

collected together with serological data derived from influenza

vaccine clinical trials performed in Italy.

Results: Depending on the season, the reporting rate estimates

ranged between 20% and 33% of the total incidence with higher

reporting rates in seasons dominated by A ⁄ H3N2 virus. Despite a

generally higher number of individuals immune against A ⁄ H3N2

viruses, effective reproduction ratios were quite similar in all

seasons varying between 1Æ2 and 1Æ4. We observed an age-

dependent transmissibility for different subtypes: susceptible

children were more likely than susceptible adults and elderly to

get infected when A ⁄ H1N1 or B strains were circulating, while no

clear age-dependence was found for A ⁄ H3N2. We also perform

sensitivity analysis under different assumptions for vaccine

effectiveness, generation time (GT) and model variants; we found

that the overall results in predicted patterns were extremely

similar, with a slightly better fit obtained with shorter GTs.

Conclusions: Our results provide relevant information on the

influenza dynamics to fine-tune intervention strategies and for

data collection improvement.

Keywords Mathematical modelling, parameter estimation,

seasonal influenza, sentinel surveillance system, virological and

serological data.
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Introduction

Owing to the substantial morbidity and mortality impact1

of influenza epidemics and also to their economic bur-

den,2 their containment has become a major public health

goal. Surveillance programs have been established in many

countries in the world,3 and data are regularly collected

during seasonal outbreaks. Such data have been used to

estimate crucial epidemiological parameters,2,4 to forecast

or simulate the dynamics of these epidemics,5,6 to evaluate

the effect of specific factors or interventions on the disease

dynamics.7–9 However, it is generally believed that the sur-

veillance systems underestimate the true number of

cases,10 and little is known about the extent of under-

reporting.

During the 2009 ⁄ 2010 pandemic season, the importance

of monitoring influenza activity has been emphasized

because the existing surveillance system in Italy was not

sufficient to describe the pandemic. In fact, a number of

additional surveillance systems were developed in Italy to

provide a more complete picture of influenza.11

For this reason, we have analysed the dynamics of seasonal

influenza in Italy before the pandemic spread, using data

derived from the national sentinel surveillance system (epi-

demiological and virological), coupled with data on suscepti-

bility derived from influenza vaccine clinical trials conducted

at the national level. By a joint analysis of these two data sets,

we have estimated age-specific transmission rates, levels of

immunity in different age groups and reporting rates, and

derived an estimate for the basic reproductive ratio.
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Materials and methods

The National Influenza Sentinel Surveillance
System
In Italy, the Influenza Sentinel Surveillance System

(INFLUNET) was implemented nationwide in season

1999–2000 by the INFLUNET working group.12 INFLU-

NET is based on voluntary participation of an average of

830 (range, 648–902) general practitioners (including pae-

diatricians) per year, covering about 1Æ5–2% of the national

population distributed in all Italian regions. The system

aims to monitor the incidence of influenza-like illness

(ILI), defining the extent and the timing of seasonal epi-

demics. In our analysis, we excluded the first season of IN-

FLUNET surveillance system activity (1999 ⁄ 2000) because

data collected could be affected by bias related to the fact

that was the first season of implementation of the system

[e.g. ILI case definition used by general practicioners (GPs)

for the first time].

GPs are asked to report ILI cases (defined as acute onset

of fever >38�C, + respiratory symptoms + one of these

symptoms: headache, general discomfort, asthenia) weekly

(from week 42 to week 17) using standardized forms. Spe-

cific information regarding age (0–14, 15–64, >64 years)

and influenza vaccine status are also collected. We excluded

the first year of data collection and focus the analysis on

INFLUNET data collected from the 2000 ⁄ 2001 to

2008 ⁄ 2009 seasons.

The national virological surveillance system
The influenza virological surveillance in Italy is routinely

carried out, between week 46 and week 17 of the following

year, by the National World Health Organization (WHO)

Influenza Centre at Istituto Superiore di Sanita’ (NIC-ISS),

in collaboration with a network of 15 peripheral laborato-

ries distributed in 14 of the 21 Italian regions. Main objec-

tive of these activities is to rapidly characterize the influenza

viruses circulating in the country and to identify antigenic

variants emerging in human populations during the winter

season, to update the vaccine composition, in collaboration

with WHO and European Centre for Disease Prevention

and Control (ECDC). During the virological surveillance

period, sampling kits are sent out to a random sample of

GPs participating in the INFLUNET surveillance system, to

collect throat swabs of the first patients with ILI seen each

week. Collected swabs are then sent to the regional reference

laboratories for influenza diagnosis, and the isolated strains

are characterized at the regional laboratory or directly sent

to NIC-ISS for further molecular and antigenic analyses.

Overall results obtained throughout the country are weekly

reported to NIC-ISS using web-based electronic forms.

Every year, approximately 2000 samples are collected,

with a proportion of positive specimens of about 34%.

Serology data
Each year, to test immunogenicity of the seasonal vaccines

available, serological tests are performed in September and

October on a sample (approximately 100 for each season)

of voluntary patients older than 18 years. The amount of a

specific antigen and the concentration of antibodies to a

specific virus in a blood serum sample are measured using

the hemagglutination inhibition (HI) and single radial

haemolysis (SRH) assays. The HI and SRH tests are per-

formed in accordance with standard procedures.13,14 Serol-

ogy assays for immunogenicity of seasonal vaccines are

performed at the Department of Physiopathology, Experi-

mental Medicine and Public Health of the University of

Siena.

When the tested strains are included those that have cir-

culated in the incoming season, the results of the tests yield

an estimate of the level of immunity in the adult and

elderly population at the start of the influenza season.

Moreover, when the tested strain coincides with the one

circulating in the previous season, an estimate of the pro-

portion of immune individuals at the end of the previous

season is obtained, given that during the summer influenza

activity is negligible.

As in Italy, seasonal influenza vaccination is recom-

mended for individuals older than 64 years, and in our

estimation procedure, the observed level of immunity in

the elderly class has been corrected to account for vaccina-

tion coverage, which increased from 51 to 68% in the last

decade.15 For vaccine effectiveness (VE), we made two dif-

ferent assumptions: (i) VE of 70% for al1 categories and

(ii) VE of 50% for al1 categories; for both assumptions, we

assumed that the VE would be reached starting 15 days

after the second dose.16

The model
We have used an susceptible–exposed–infectious–removed

(SEIR) deterministic model with age structure, employing

the same age groups used for surveillance: 0–14, 15–64 and

older than 64. We did not consider spatial heterogeneity in

the model because no clear pattern in data collected was

found (Figure 1), and the model would have been more

complex. In each age class, the individuals are classified as

susceptible (S), exposed (E), infectious (I) or removed (R).

Individuals progress through these four groups following

the course of the infection. We used the SEIR model to

analyse the epidemic seasons for which we could derive

estimates of the proportion of susceptible individuals at the

beginning and ⁄ or at the end of the season.

The model is defined by a set of differential equations

reported in the Supporting Information. We have used a

mean incubation period of 1 day17 and a mean infectious

period of 3 days.4–6,17–19 Transmission between and within

age classes is proportional to the number of contacts
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between individuals, derived from the results of the popu-

lation-based survey conducted by Mossong et al.20 Given

a contact between two individuals, we have distinguished

between the probability of transmission to children (hC)

and to adults and elderly (hAE), allowing for a higher

probability of children to be infected. However, in our

analysis, we have tested also the hypothesis hC = hAE.

The basic reproductive ratio R0, corresponding to the

average number of individuals infected by an infectious in

a wholly susceptible population, is defined as the dominant

eigenvalue of the next generation matrix, as proposed by

Diekmann and Heesterbeek.21

Parameter inference
While many authors5,6,22–25 provide reliable estimates of

the average length of the latent and infectious periods,

there exist no direct measures of the transmission rate, and

very few estimates of the fraction of individuals initially

susceptible in the population.9

In this study, we have estimated from the data the prob-

abilities per contact of acquiring the infection for children

and adults ⁄ elderly respectively, the initial fraction of sus-

ceptible individuals in each age class, the reporting rate

q(assumed constant over the course of the season and by

age) plus some other technical parameters, among which

the average number of ILI cases because of causes other

than influenza viruses. From the values of these parameters,

we have derived an estimate for the reproductive ratio.

Parameter inference has been performed using maximum

likelihood techniques, where the likelihood is the product of

two terms, one denoting the probability of the reported

weekly incidence given the model predictions, the other one

denoting the probability of the observed serological tests,

given the estimate of the immune fractions; the exact likeli-

hood function is presented in the Supporting Information.

Confidence intervals for each parameter have been based

on a limiting distribution of the empirical likelihood

ratio.26
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Figure 1. Observed epidemic curves (weekly incidence data) in Italy. (A) Entire population, all seasons. (B) Three age groups and entire population,

season 2004–2005. (C) Distribution by geographic area, season 2000–2001.
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To test the hypothesis of equal transmissibility in all age

groups, we have compared, using the Akaike and Bayesian

information criterion (AIC and BIC),27 the baseline model

(where the probability of acquiring the infection differs

between children, on one hand, and adults and elderly, on

the other one) with a model with constant probability of

acquiring the infection and with the one where this proba-

bility differs in all age groups. We have also considered a

variant where the probability of acquiring the infection is

age independent, but the reporting rate differs between all

age groups.

Results

Epidemiological surveillance
INFLUNET data were processed to estimate the incidence

of ILI cases in the three age classes considered (Figure 1).

We exclude from the analysis the data collected during the

1999 ⁄ 2000 season as this was the first season of implemen-

tation of INFLUNET in Italy. From 2000 ⁄ 2001 to

2007 ⁄ 2008, the attack rate of epidemics varies from a mini-

mum of 4% to a maximum of 11% during the study per-

iod. Age-structured data show a much higher incidence in

children than in adults and elderly. Overall, each year, the

epidemic curves in different age groups were well synchro-

nized, and they all peaked approximately at the same time

(Figure 1B), while in different seasons, the peak was

reached in different weeks. No clear pattern by geographic

area in Italy was found in data collected (Figure 1C).

Virological surveillance
The proportions of cases ascribed to the three influenza

viruses subtypes, derived from the analysis of virological

data, are reported in Table 1. We consider a virus predomi-

nant when the proportion of the circulating virus was ‡70%.

During the 2000 ⁄ 2001 season, the predominant virus

was the subtype A ⁄ H1N1 (A ⁄ New Caledonia ⁄ 20 ⁄ 99) circu-

lating virus (93%). The same subtype virus was isolated at

the beginning of season 2001 ⁄ 02, but after the first isola-

tion, the predominant subtype (81%) was a B virus

(B ⁄ HongKong ⁄ 330 ⁄ 01). Viruses of subtype A ⁄ H3N2 were

predominant in seasons 2002 ⁄ 03 (88%), 2003 ⁄ 04 (92%)

and 2008 ⁄ 09 (90%), while in other seasons, two or three

(sub)types co-circulated, without a clear predominance.

Serological results
Results regarding the proportion of susceptible individuals

estimated at the beginning and at the end of each season

using serological data, in the last nine epidemic seasons,

are reported in Table 2, including the correction to account

for vaccination in elderly. Seasons for which serological

data were available were 2000–2001, 2001–2002, 2002–

2003, 2003–2004, 2007–2008, because relevant immunity

data are available for B-type virus (48% of the cases), and

2008–2009. For 2001–2002, 2003–2004, 2007–2008 seasons,

serological results were available at the end of the seasons

while for season 2008–2009 at the start. For both seasons

(i.e. 2000–2001 and 2002–2003) in which serological data

were available at the start and at the end of the season, we

observed a reduction in the susceptible population.

Estimates of model parameters
Using the SEIR model, we have analysed the epidemic sea-

sons for which we could derive the estimates of the pro-

Table 1. Proportion of cases ascribed to the three predominant

circulating (sub)types, predominant types and strains, proportion of

susceptible individuals estimated from serological data in the last

nine epidemic seasons

Season

Proportion of (%)
Predominant

(sub)type and strainA ⁄ H1N1 A ⁄ H3N2 B

2000–2001 93 1 6 A ⁄ H1N1 ⁄ NewCaledonia ⁄ 20 ⁄ 99

2001–2002 1 19 81 B ⁄ Hong Kong ⁄ 330 ⁄ 01

2002–2003 6 88 6 A ⁄ H3N2 ⁄ Moscow ⁄ 10 ⁄ 99

2003–2004 2 92 6 A ⁄ H3N2 ⁄ Fujian ⁄ 411 ⁄ 02

2004–2005 9 65 26 Multiple strains

2005–2006 56 21 23 Multiple strains

2006–2007 30 65 6 Multiple strains

2007–2008 45 7 48 A: Multiple strains

B: B ⁄ Florida ⁄ 4 ⁄ 06

2008–2009 4 90 6 A ⁄ H3N2 ⁄ Brisbane ⁄ 10 ⁄ 07

Table 2. Proportion of susceptible individuals estimated at the start

and at the end of the season using serological data in the last nine

epidemic seasons, including the correction to account for

vaccination in elderly

Season

Predominant

(sub)type and strain

Suscepti-

ble adults

(%)

Suscepti-

ble

elderly

(%)

Start End Start End

2000–2001 A ⁄ H1N1 ⁄ NewCaledonia ⁄ 20 ⁄ 99 80 64 41 27

2001–2002 B ⁄ Hong Kong ⁄ 330 ⁄ 01 N.A. 59 N.A. 29

2002–2003 A ⁄ H3N2 ⁄ Moscow ⁄ 10 ⁄ 99 64 19 39 3

2003–2004 A ⁄ H3N2 ⁄ Fujian ⁄ 411 ⁄ 02 N.A. 27 N.A. 11

2004–2005 Multiple strains N.A. N.A. N.A. N.A.

2005–2006 Multiple strains N.A. N.A. N.A. N.A.

2006–2007 Multiple strains N.A. N.A. N.A. N.A.

2007–2008 A: Multiple strains

B: B ⁄ Florida ⁄ 4 ⁄ 06

N.A.

N.A.

N.A.

68

N.A.

N.A.

N.A.

21

2008–2009 A ⁄ H3N2 ⁄ Brisbane ⁄ 10 ⁄ 07 83 N.A. 42 N.A.

N.A., not available (tested and circulated strains did not coincide).
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portion of susceptible individuals at the beginning and ⁄ or

at the end of the season (i.e. 2000–2001, 2001–2002, 2002–

2003, 2003–2004, 2007–2008 and 2008–2009).

Estimated parameter values for the analysed seasons are

given in Table 3, together with 95% confidence intervals.

Incidences observed and predicted are shown in Figure 2.

The fit to the ILI data is very good for all seasons, except

for the elderly, for which the discrepancy between the

model prediction and the data is sometimes remarkable, if

measured by R2. However, in the elderly class, we have few

cases, with incidences as low as one or two cases per 1000

individuals during the peak week; thus, a high relative error

corresponds to a very small absolute error.

Our estimates for the reporting rate vary between 19Æ7
and 33Æ4% (below 26% for all but one season

2003 ⁄ 2004), depending on the circulating virus, and tend

to be higher for A ⁄ H3N2. This means that the actual inci-

dence would be three to six times higher than the incidence

reported by the surveillance system. Note that our model

does not allow for changes in reporting rate during an

epidemic season.

Regarding the probability of acquiring the infection (h),

the estimated values show that for seasonal viruses

A ⁄ H1N1 and B transmissibility is approximately twice

higher in children than in other age groups. Results for the

two B seasons are very similar. Results for virus A ⁄ H3N2

are less clear: in two of the seasons, transmissibility is

higher in adults and elderly, but in season 2008–2009, the

estimates are similar to those observed for viruses A ⁄ H1N1

and B.

Table 3. Parameter estimations obtained for the three predominant influenza (sub)types A ⁄ H1N1. A ⁄ H3N2 and B in seasons where the

calculations where possible

Parameters Description

A ⁄ H1N1 A ⁄ H3N2 B

2000–2001 2002–2003 2003–2004 2008–2009 2001–2002 2007–2008

hC Children transmissibility 0Æ375

(0Æ374–0Æ501)

0Æ339

(0Æ329–0Æ356)

0Æ275

(0Æ268–0Æ332)

0Æ334

(0Æ323–1Æ804)

0Æ352

(0Æ344–1Æ536)

0Æ314

(0Æ309–0Æ442)

hAE Adults and elderly

transmissibility

0Æ179

(0Æ164–0Æ194)

0Æ429

(0Æ379–0Æ487)

0Æ600

(0Æ481–0Æ750)

0Æ198

(0Æ174–0Æ218)

0Æ214

(0Æ192–0Æ254)

0Æ207

(0Æ187–0Æ232)

q Reporting rate 19Æ7%

(18Æ6–26Æ2)

24Æ1%

(21Æ9–26Æ3)

33Æ4%

(28Æ3–40Æ1)

22Æ4%

(19Æ1–98Æ2)

26Æ5%

(25Æ2–99Æ3)

20Æ1%

(18Æ2–27Æ5)

S0 C Fraction of susceptible

children at the start of

the epidemic

1Æ0
(0Æ752–1Æ0)

1Æ0
(0Æ944–1Æ0)

1Æ0
(0Æ838–1Æ0)

1Æ0
(0Æ256–1Æ0)

1Æ0
(0Æ256–1Æ0)

1Æ0
(0Æ713–1Æ0)

S0 A Fraction of susceptible

adults at the start of

the epidemic

0Æ775

(0Æ730–0Æ819)

0Æ446

(0Æ400–0Æ493)

0Æ304

(0Æ245–0Æ372)

0Æ821

(0Æ765–0Æ837)

0Æ703

(0Æ554–0Æ775)

0Æ771

(0Æ697–0Æ842)

S0 E Fraction of susceptible

elderly at the start of

the epidemic

0Æ275

(0Æ207–0Æ352)

0Æ349

(0Æ288–0Æ411)

0Æ203

(0Æ153–0Æ262)

0Æ469

(0Æ359–0Æ583)

0Æ342

(0Æ230–0Æ450)

0Æ375

(0Æ265–0Æ486)

S¥ C Fraction of susceptible

children at the end of

the epidemic

0Æ465 0Æ485 0Æ758 0Æ522 0Æ504 0Æ609

S¥ A Fraction of susceptible

adults at the end of

the epidemic

0Æ668 0Æ274 0Æ218 0Æ676 0Æ584 0Æ655

S¥ E Fraction of susceptible

elderly at the end of

the epidemic

0Æ251 0Æ257 0Æ166 0Æ416 0Æ304 0Æ340

Re Effective reproductive

ratio

1Æ36 1Æ35 1Æ17 1Æ28 1Æ31 1Æ21

l Average number of

cases because of other

respiratory infections

0Æ71 · 10)3

(0Æ58–0Æ84)

0Æ91 · 10)3

(0Æ68–1Æ15)

0Æ36 · 10)3

(0Æ19–0Æ51)

0Æ86 · 10)3

(0Æ53–1Æ06)

0Æ74 · 10)3

(0Æ50–0Æ96)

0Æ31 · 10)3

(0Æ15–0Æ47)

R2 C Children 0Æ99 0Æ98 0Æ95 0Æ94 0Æ97 0Æ98

R2 A Adults 0Æ90 0Æ94 0Æ97 0Æ82 0Æ91 0Æ75

R2 E Elderly 0Æ26 0Æ89 0Æ88 0Æ72 0Æ78 0Æ73

R2 tot Total 0Æ97 0Æ97 0Æ98 0Æ92 0Æ97 0Æ91

Numbers in parenthesis represent 95% confidence intervals.
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The estimated initial fraction of susceptible individuals

strongly decreases with age, from around 100% in children

to values between 30 and 82% in adults and from 20 to

46% in elderly.

These estimates allow us to compute the effective repro-

ductive ratio for each season and for each circulating

(sub)type. According to our results, Re varies between 1Æ2

and 1Æ4. This estimate is actually quite robust and similar

to what can be estimated by a simple fit to the exponential

part of the incidence curves.28 The estimates available in

the literature for R0 vary widely, mainly within a range of

3–10,29,30 while those for Re, which takes into account the

pre-existing immunity, are similar (Re = 1–2Æ4) to those

observed with our data.2,6
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Figure 2. Graphical comparison between the observed influenza epidemics in Italy (dashed lines) during the analysed seasons and the epidemic

curves predicted by model (1) (solid lines). Figure shows the curves for each age class (colour, coded as in the key) and for the entire population (in

black).
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Another interesting result of our analysis is the estimate

of the average number of misnotifications l, that is, cases

that are notified as influenza but are attributed to other

respiratory viruses with similar symptoms. The estimates

vary between 0Æ4 and 1 cases per 1000 individuals per week,

meaning that on average around 40Æ000 cases are notified

each week as influenza cases but are actually attributed to

other causes. This value is slightly higher than the value of

0Æ3 found10 for England, Wales and the Netherlands.

Sensitivity analysis and model variants
As mentioned above, we examined the effect of assuming

that vaccination efficacy (VE) was 50% instead of 70%

taken as baseline. We also considered the effect of shorter

or longer infectious periods, with generation time (GT) of

2Æ6 or 4 days, instead of the baseline of 3 days. The results

for the season 2000–2001 are shown in Table 4, together

with the analysis of model variants. Analogous ones, with

few differences, can be obtained for all other seasons.

It can be seen that a different VE has a very limited

effect: parameter estimates changed by at most one digit in

the last reported decimal, except for the estimated suscepti-

bility of elderly that consistently increased: because serolog-

ical data concern a pre-vaccination moment, assuming a

lower VE results in more elderly being susceptible to infec-

tion. Assuming a different GT has the well-known effect28

of changing the estimate reproduction number R0, given

that the growth rate is yielded by data; still, the overall

results in predicted patterns are extremely similar, with a

slightly better fit obtained with shorter GTs.

As for model variants, it clearly emerges that the model

without age differences either in transmissibility or in

reporting rate fits the data significantly worse. The models

with two or three different transmission coefficients are

statistically equivalent according to Akaike’s criterion,27 so

that we preferred the simpler model as baseline. Finally,

an important observation from Table 4 is that, with all

model variants statistically acceptable, we obtained extre-

mely similar estimates of all quantities, such as susceptible

fractions or reproduction number (with the caveat of its

relation with the assumed GT) that are in common across

models.

Table 4. Parameter estimates obtained for season 2000–2001 under different assumptions for vaccine efficacy (VE) or generation time (GT), or

under model variants

Model variant AIC R2 Transmissibility h Susceptible fraction S0 Reporting rate q (%) RE

Baseline 549Æ4 C 0Æ99

A 0Æ90

E 0Æ26

Tot 0Æ97

C 0Æ375

A–E 0Æ179

C 1Æ0
A 0Æ775

E 0Æ275

19Æ7 1Æ36

VE = 50% 556Æ9 C 0Æ99

A 0Æ90

E 0Æ21

Tot 0Æ97

C 0Æ375

A–E 0Æ178

C 1Æ0
A 0Æ777

E 0Æ304

19Æ8 1Æ36

GT = 2Æ6 days 546Æ7 C 0Æ99

A 0Æ92

E 0Æ28

Tot 0Æ97

C 0Æ449

A–E 0Æ223

C 1Æ0
A 0Æ772

E 0Æ272

21Æ7 1Æ31

GT = 4 days 558Æ2 C 0Æ99

A 0Æ85

E 0

Tot 0Æ96

C 0Æ277

A–E 0Æ118

C 1Æ0
A 0Æ786

E 0Æ282

16Æ7 1Æ50

hC = hA = hE 722Æ9 C 0Æ98

A 0Æ58

E 0

Tot 0Æ89

0Æ335 C 1Æ0
A 0Æ545

E 0Æ243

22Æ0 1Æ32

hC „ hA „ hE 548Æ2 C 0Æ99

A 0Æ90

E 0Æ33

Tot 0Æ97

C 0Æ376

A 0Æ181

E 0Æ089

C 1Æ0
A 0Æ772

E 0Æ309

19Æ6 1Æ37

hC = hA = hE

qC „ qA „ qE

556Æ3 C 0Æ99

A 0Æ96

E 0Æ41

Tot 0Æ99

0Æ284 C 1Æ0
A 0Æ837

E 0Æ351

C 20Æ3
A 5Æ9
E 2Æ9

1Æ35
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Discussion

We have analysed the spread of influenza in Italy during

the last decade, integrating the data coming from the IN-

FLUNET system, from the virological surveillance system

coupled with the results of serological tests conducted at

the national level. The estimated parameter values obtained

from our analysis may help to gain a deeper insight into

the dynamics of the seasonal influenza infections.

One key factor in determining these dynamics is cer-

tainly population susceptibility. Estimates of the fraction of

susceptible individuals, varying between 25 and 100%, are

available in the literature,6,9,31,32 but, up to our knowledge,

there are no estimates based on a joint analysis of incidence

and serological data as performed in this study. Our model

assumes that individuals are either immune or not, even if

in reality they could be partially immune to a subtype after

a contact with a similar virus. Moreover, our model does

not account for any possible decay in antibody levels over

the summer period. However, widespread evidence suggests

that the decay is limited in a few months span

(3–6 months),33 and for this reason, we decide not to

include a new parameter basically unidentifiable through

the available data. With this caveats, the estimated initial

fraction of susceptible is very high (about 100%) in chil-

dren (0–14), and lower for the other age groups, ranging

between 30 and 82%, in adults (15–64) and from 20 to

46% in elderly (64 and over). This is in agreement with the

results of the previous studies4,34 and with the epidemiol-

ogy of influenza: in fact, adults, and especially elderly, are

more likely to have a partial immunity to the circulating

strain, because of the previous contacts with similar

viruses.35,36 Moreover, these estimates include the effect of

vaccination, with about 60% of people older than 65 being

vaccinated at the beginning of each season.15

An estimate of 100% susceptibility in children may be

considered implausible, as a reasonable proportion of them

will have had multiple influenza exposures. First of all, one

may note that often the same strains had not circulated for

several years before the season under study, so that exposure

to the same antigen may had been rare. Still, the extreme

estimate of 100% appears unlikely biologically and presum-

ably is selected by the model to account for the much higher

reported incidence in children than in adults, because the

lack of serological tests in children does not set any con-

straints to susceptibility levels. Possibly, this could be

corrected by allowing for a higher reporting rate in children

than in adults (while our model assumes, as stated above,

constant reporting rate) and ⁄ or for the possibility that sero-

logical tests underestimate the actual degree of protection

existing in the population. However, we had no independent

data to verify these hypotheses; adding more unknown

parameters would have made the models unidentifiable.

A comparison with the susceptible fractions estimated

from serological data (when available) shows that, except

for few values, there is a very good correspondence between

the data and the estimates. A relevant discrepancy between

observed and predicted values is found only in season

2002–2003, when the observed changes in seroprevalences

differ from what could be gathered from the reported flu

incidences. In this case, we could say that the dynamical

model corrects the serological measures into the epidemio-

logical relevant quantities.

In our model, we did not couple outbreaks in different

years, only one season at a time is considered. However,

seasonality is a driving force that has a major effect on the

spatio-temporal dynamics of influenza transmission.37

Recently, a forced SIR epidemic model has been recognized

to be able to identify a new threshold effect, taking into

account the population’s susceptibility measured after the

last outbreak and the rate at which new susceptible individ-

uals are recruited into the population to give clear analyti-

cal conditions for predicting the occurrence of either a

future epidemic outbreak or a ‘skip’ a year in which an

epidemic fails to initiate.38 This is something that should

be better investigated in the future.

In our model, we allowed for a difference in ‘susceptibil-

ity’ (i.e. probability of acquiring the infection if exposed)

among the individuals of different ages. According to our

hypothesis, a strain to which individuals are more suscepti-

ble can be considered more transmissible. Our analysis sug-

gests that A ⁄ H3N2 is generally more transmissible than

A ⁄ H1N1 and B viruses, especially to adults and elderly. In

fact, while for A ⁄ H1N1 and B transmissibility to children is

about twice as large as in other age groups, for A ⁄ H3N2

transmissibility to adults and elderly is as high as to children

in two of the three analysed seasons. Our results are in over-

all agreement with the previous studies.9,31,39–41 A study by

Pérez-Trallero et al.42 shows that all age classes get infected

more often with A ⁄ H3N2 than with A ⁄ H1N1, possibly due

to less frequent antigenic mutation in the latter, but this is

especially true for elderly, possibly because of old antigenic

memory. Moreover, recent studies on 2009 pandemic have

shown that even the large diffusion of the pandemic virus in

youngest individuals, many, of all ages, remained susceptible

after the main 2009 wave in Hong Kong and Italy.43,44

The issue of reporting is one of the limits of the

influenza surveillance system, because of the impossibility

to monitor the occurrence of influenza in those individu-

als who do not seek medical assistance. The risk associ-

ated with this limit is an underestimation of influenza

incidence rates in the community. The subtype-specific

reporting rate estimated in our analysis is higher for

A ⁄ H3N2 (varying between 18 and 30% for the three

selected seasons) and slightly lower for B (between 16

and 22%) and A ⁄ H1N1 (around 17%). In general, avail-
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able estimates vary between 12Æ5%45 and 50%9 and are

consistent with our values. Our estimates provide a first

measure of evaluation of the surveillance system, which

is commonly believed to underestimate the true number

of cases.10

We have assumed that reporting rates do not vary with

age, which could represent an alternative explanation to

the observed differences in population susceptibility.

Indeed, Xia et al.46 had pointed out that elderly are more

likely to visit their GP when infected. To have model pre-

dictions with equal ‘susceptibilities’ compatible with actual

notifications, one would have to assume that A ⁄ H1N1 and

B cases are notified more often among children than

among adults and elderly, while A ⁄ H3N2 are notified

equally among all classes. The present data do not allow us

to exclude this hypothesis; more extensive serological data,

including also children, would be needed for that.

An interesting result of our analysis that is not affected

by these uncertainties is the estimation of strain-dependent

effective reproductive ratios, with values ranging from 1Æ2
to 1Æ4. Earlier studies9,31 proposed similar estimates. As

mentioned above, these estimates depend on the assumed

length of GT; clearly, allowing for uncertainty in this would

result in wider confidence intervals for R0.

The same type of analysis could be extended to all other

seasons, but the lack of relevant immunological data pre-

vents the use of the same methods. To perform the analysis

without serological data, one could assume that reporting

rate and transmissibility are intrinsic property of a (sub)-

type and do not change with antigenic drift, but our analy-

sis suggests that this is not the case, especially for (sub)type

A ⁄ H3N2. Another problem concerns those seasons in

which two or more strains co-circulated, for which further

results on the potential role of short-term cross-protec-

tion46,47 would be of great value.

Our model reproduces the observed dynamics of influ-

enza remarkably well; a possible extension of our analysis

could include spatial heterogeneities or, given the impor-

tance of transmission in children,9 school holidays. A statis-

tical analysis of the potential influence of school holidays

and temperature patterns on transmission is underway.

Despite the model limitations, our results provide impor-

tant information on the dynamics of influenza and estimates

of subtype-specific parameters that may be useful to cali-

brate intervention strategies or to improve data collection.
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