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ABSTRACT There is growing interest in the kinematic analysis of human functional upper extremity
movement (FUEM) for applications such as health monitoring and rehabilitation. Deconstructing functional
movements into activities, actions, and primitives is a necessary procedure for many of these kinematic
analyses. Advances in machine learning have led to progress in human activity and action recognition.
However, their utility for analyzing the FUEM primitives of reaching and targeting during reach-to-grasp and
reach-to-point tasks remains limited. Domain experts use a variety of methods for segmenting the reaching
and targeting motion primitives, such as kinematic thresholds, with no consensus on what methods are best
to use. Additionally, current studies are small enough that segmentation results can be manually inspected
for correctness. As interest in FUEM kinematic analysis expands, such as in the clinic, the amount of data
needing segmentation will likely exceed the capacity of existing segmentation workflows used in research
laboratories, requiring new methods and workflows for making segmentation less cumbersome. This paper
investigates five reaching and targeting motion primitive segmentation methods in two different domains
(haptics simulation and real world) and how to evaluate these methods. This work finds that most of the
segmentation methods evaluated perform reasonably well given current limitations in our ability to evaluate
segmentation results. Furthermore, we propose a method to automatically identify potentially incorrect
segmentation results for further review by the human evaluator.

INDEX TERMS Time series analysis, movement segmentation, upper extremity, kinematic analysis, reha-
bilitation, motion primitives.
Clinical impact: This work supports efforts to automate aspects of processing upper extremity kinematic
data used to evaluate reaching and grasping, which will be necessary for more widespread usage in clinical
settings.

I. INTRODUCTION
Assessments of functional upper extremity (UE) movement
quality are commonly used in the clinic and provide useful
treatment outcome measures. These assessments typically
require an individual to perform standardized functional
tasks, such as moving small blocks over a partition under

time constraint [1] and writing and drawing [2], [3]. Func-
tional assessment measures also include self-reports, such as
the Quick Disabilities of Arm, Shoulder, and Hand (Quick-
DASH) [4]. As a measure of functional ability, these assess-
ments can capture an individual’s perceived difficulty with
the task [5], an observer’s rating of an individual’s ability
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to perform the task [6], or the time required to complete the
task [1].

While currently validated UE functional assessments
(UEFAs) are essential to clinical practice, self-report
measures can be biased and may not be sensitive [7], [8].
Furthermore, existing measures do not fully capture move-
ment quality and efficiency, which are important for discern-
ing between behavioral restitution and compensation during
stroke rehabilitation [9] and evaluating UE prostheses [10],
[11], [12], among other applications.

Using kinematics (e.g., position trajectory, velocity magni-
tude, acceleration, joint angles, etc.) to assess UE functional
ability provides a more objective assessment of current skill
and functional progression, which is challenging to capture
when a domain expert (i.e., clinicians and biomechanists)
relies solely on qualitative observational data [8]. Therefore,
domain experts have begun using kinematic data to evaluate
functional UE movement quality, such as smoothness [13]
and efficiency [8], during standardized assessments.
Reaching, grasping, touching, pointing, or otherwise

manipulating objects are essential in activities of daily
living that incorporate the UE and are therefore of con-
cern to clinicians and movement scientists. UE functional
motions involving reach-to-point (RTP) [14] and reach-
to-grasp (RTG) [15] are generally characterized by an initial
reaching motion that covers most of the distance to the object
(i.e., point of interest) followed by a deceleration into a
targeted movement period [14]. Our definition of targeting
considers the grasp primitive as a subset in targeting, where
targeting can begin before grasping begins, e.g., when the
grasp aperture increases [16]. Additionally, reaching typically
requires gross UEmotion, while targeting requires finemove-
ments, therefore representing different functional challenges
to the individual and involve potentially different neurome-
chanical pathways. Therefore, recent kinematic analyses have
analyzed the reaching [3], [10], [12], [17] and targeting prim-
itives [10], [17] separately for RTP and RTG motions.

Segmenting the reaching and targeting motion primi-
tives for UEFAs using kinematic data is a relatively recent
development. A variety of segmentation methods have been
used, with relatively little discussion on how best to per-
form the segmentation. Furthermore, existingworkflows used
for segmentation involve applying segmentation algorithms
and then manually reviewing the results [11]. As interest
in FUEM kinematic analysis expands, such as in the clinic,
the amount of data needing segmentation will likely exceed
the capacity of existing segmentation workflows used by
researchers, requiring new methods and workflows for mak-
ing segmentation less cumbersome. A better understanding of
the performance of different segmentation methods and how
to incorporate segmentation automation into the kinematics
analysis workflow [18] will support the translation of kine-
matics analyses to the clinic.

This paper provides insight into the performance of five
different segmentation methods, including how to evalu-
ate these methods and automatically identify questionable

segmentation results that require further review. To our
knowledge, this paper is the first to address the specific prob-
lem of segmenting reaching and targeting motion primitives
for UEFAs. Our contributions are as follows:

• Comparing methods for segmenting the reaching and
targeting motion primitives on data sets from two dif-
ferent domains (i.e., haptics simulation and real world),
where we find most of the segmentation methods do
similarly well.

• Proposing the novel use of the minimum jerk trajectory
velocity profile as an indicator of potentially poor seg-
mentation results, which can be used to direct a human
reviewer’s attention for further evaluation.

• Identification of challenges and opportunities associ-
ated with evaluating segmentation performance, which
provides insight into the future development of segmen-
tation methods.

• Modifications are made to the segmentation method
from Jackson et al. [17] to adjust for edge cases.

Implementations of the methods discussed in this paper are
available onGitHub.1 The data used in this study are available
at [19].

TABLE 1. Functional motion hierarchy modified from Schambra et al. [23].

II. BACKGROUND
A. MOTION PRIMITIVE SEGMENTATION
Methods for segmenting human functional movement are
typically developed and evaluated for specific layers in the
functional motion hierarchy described in Table 1. The reason-
ing for this is twofold. First, domain experts must be able to
consistently extract the relevant subsections of an individual’s
movement to ensure they are performing controlled com-
parisons (e.g., when evaluating patient progress at various
points during the rehabilitation process). Second, the devel-
oped segmentation algorithms are designed specifically for
different components of the hierarchy (i.e., an action recog-
nition algorithm will not do primitive segmentation). The
definition of a movement segment varies across algorithms
and applications but is generally considered to be a subse-
quence of the original time series sequence [20]. A potentially

1https://github.com/kjacks21/UE-reach-grasp-seg
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confusing aspect of the literature is inconsistent references
to the layers in the functional UE movement hierarchy in
Table 1. For example, Lin [21]’s stated focus is on segmenting
primitives for rehabilitation, however the labeled movement
classes across the reviewed data sets include a mix of actions
and primitives, and do not include functional motions used
during RTP and RTG. Similarly, Kadu and Kuo [22] discuss
action recognition, when instead activities are considered. To
avoid confusion, this work follows Schambra et al. [23]’s UE
functional motion hierarchy (see Table 1).
Activity [22], [27] and action [20], [28] recognition meth-

ods currently do not identify specific functional UE motion
primitives, such as reaching and targeting, which are needed
for some kinematics analyses. Additionally, UEFAs often
have the activities and actions clearly defined. An exam-
ple where the action is defined is the Southampton Hand
Assessment Procedure’s (SHAP) door handle task, where
the participant must rotate the door handle until it is open
and then release the handle [29]. An example of a defined
activity is the SHAP food cutting task which consists of
actions involved in cutting food (e.g., pick up knife, cut food),
which would require a method for segmenting the actions
before doing primitive segmentation. Activity and action
recognition methods also often require templates, training
data sets, or sufficient data for pattern mining [20], which are
challenging to curate given the diversity in tasks, individual
strategies for performing those tasks, and movement patholo-
gies. Therefore, the methods used in this study are relatively
simple and drawn from research papers performing kinematic
analyses on functional UE motion.

Algorithms have been proposed for motion primitive seg-
mentation by identifying points where the trajectory changes
direction (i.e., strokes) [24], [25] and by using fixed kinematic
thresholds [10], [12] (see Lin et al. [20] for expanded review).
However, discrete strokes and directional changes do not nec-
essarily indicate the end of the reaching motion primitive in
UERTP andRTGmovements, and fixed kinematic thresholds
can result in over-segmentation [20]. Another approach is to
segment trajectories based on a percentage of total movement.
For example, Li et al. [26] accounted for differences in partic-
ipant kinematics while transporting objects by selecting 50%
of movement time as when the hand reached a target position.

More complex methods, relative to simple kinematic
and percent-of-movement thresholds, have been proposed
recently [3], [17]. Jackson et al. [17] propose a segmentation
point identification algorithm that does not rely on kinematic
thresholds, and instead uses the shape of the velocity profile
to identify the segmentation point. Sakai et al. [3] propose
a multi-step segmentation method that combines kinematic
thresholding with the segmentation method from Jackson
et al. [17].

B. EVALUATING PRIMITIVE SEGMENTATION
PERFORMANCE
The unavailability of motion primitive ground truth labels
from RTP and RTG tasks makes algorithm evaluation

difficult. While activities and actions (i.e., gross movements)
are easier to visually identify, no method for definitively
differentiating the reaching and targeting motion primitives
currently exist. Variations in neuromuscular coordination
used for RTP and RTG movements across different object
configurations or movement pathologies are challenges in
understanding where the true segmentation point is, assuming
one exists. Therefore, all existing approaches to segmentation
and validation are approximations, including the common
approach of visually inspecting segmentation results or com-
paring with recorded video [12], [17].

Consequently, it is difficult to objectively compare algo-
rithms for segmenting the reaching and targeting motion
primitives. We propose a method (see Section III-D.2)
for indicating when segmentation results may need further
review by comparing the segmented reach motion primitive
velocity profile to the minimum jerk trajectory (MJT) veloc-
ity profile [30]. We also visualize trajectories based on the
distribution of errors computed using the MJT. While the
error computed from comparing the two velocity profiles
have been used in the robotics literature [30], its usage for
evaluating reaching and targeting motion primitive segmen-
tation performance is novel.

III. METHODS AND PROCEDURES
A. SEGMENTATION METHODS
1) 50% OF MOVEMENT
Percent-of-movement thresholds have been used to roughly
indicate when a hand reaches a target during a functional UE
task [26]. Although this approach may work well for small
data sets and clean data where different thresholds can be
visually inspected, it is used in this paper to demonstrate that
it does not generalize well on more challenging data.

2) KINEMATIC THRESHOLDING
Variations of the kinematic threshold exist for segmenting the
reaching motion primitive [3], [11]. We use the kinematic
threshold described in Sakai et al. [3] (II.A.ii.a and b), which
is a component of the segmentation method proposed in [3].
Restated here, the segmentation point is after the peak veloc-
ity magnitude when either of the following are first satisfied:

• The velocity magnitude reaches 5% of the peak velocity
magnitude.

• The velocity magnitude is less than 20% of the peak
velocity magnitude, and the acceleration is non-negative
for the first time.

3) JACKSON ET AL. [17] (UPDATED)
The segmentation method from Jackson et al. [17] exploits
the well-established property that RTP and RTG motions
often have an initial, higher speed movement that covers a
large distance followed by slower, finer movement to interact
with the point of interest [14], [31]. The updated method does
the following:
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1) Identify the part of the trajectory that is close to the
target and contains the reaching and targeting motion
primitives.

2) Using this trajectory subset, identify the segmentation
location, which we refer to as the ‘‘shoulder’’ of the
velocity profile. The term ‘‘shoulder’’ in this context
refers to the curved portion of the velocity profile
between the reaching deceleration and targeting period.

First, a relative displacement threshold is found for position
trajectory Tr = [r⃗0, . . . , r⃗g]. This threshold is used due to
potential re-adjustments in the trajectory that could result in
multiple local maxima and minima. This calculation differs
from that proposed in [17] to address an edge case where
the trajectory between r0 and rg are not approximately linear
(e.g., due to an individual adjusting the endpoint). Addition-
ally, the displacement threshold works well if the start and
end points are relatively distant from each other, which is not
always the case.

Given the start r⃗0 and end r⃗g coordinates of the trajectory
Tr , at every index i along Tr , the displacement di is:

di = ||(r⃗i − r⃗g)|| (1)

With di computed for all points i on Tr , identify the earliest
point ds along Tr where ds ≥ dg(1−α) and where 1 ≥ α > 0.
In other words, if α = 0.2, then ds will be at least 80% of the
distance between r⃗g and r⃗0 away from r⃗0.
The velocity along the curve is obtained by the differenti-

ation of the position vectors. We use the velocity magnitudes
vi = ∥˙⃗ri∥ to segment the curve Tr . First, we find p =

argmax{vs, . . . , vg}, the index of the maximal velocity in Tr .
We then compute orthogonal distances dn,i of points (i, vi)
from the line connecting (p, vp) and (g, vg) using the equation
for the shortest distance from a point to a line [32],

dn,i =
−((i− p)(vg − vp)-(vi − vp)(g− p))√

(vg − vp)2 + (g− p)2
. (2)

The point (f , vf ) satisfying f = argmax i{dn,i} is the segmen-
tation point for the velocity profile. A consequence of this
formulation is that local maxima cannot be flagged as the
segmentation point, which could happen with the version of
the method described in [17].

4) JACKSON ET AL. [17] (UPDATED), NO DISPLACEMENT
THRESHOLD
To evaluate the utility of the displacement threshold described
in the previous subsection, we evaluate the segmentation
performance of the Jackson et al. [17] method without the
displacement threshold. This method finds the ‘‘shoulder’’ in
the velocity profile after the point indicating the peak velocity
magnitude, regardless of distance to the grasp location.

5) SAKAI ET AL. [3]
The method proposed by Sakai et al. [3] was used for seg-
menting the targeting and reaching primitives in pen-point
trajectories as part of an assessment that required participants

to connect multiple dots on the surface of a digital tablet.
It is unknown whether this method generalizes beyond pen-
point trajectories, which is partially why it is included in
this evaluation. This method combines kinematic threshold-
ing (section III-A.2) and the Jackson et al. [17] method
(section III-A.3), in addition to checks to verify whether the
length of the trajectory is sufficiently long for applying the
method from Jackson et al. [17]. The implementation of Sakai
et al. [3] evaluated in this paper uses the updated version of
the Jackson et al. [17] method, as described in section III-A.3.

The Sakai et al. [3] method follows multiple stages for
segmentation, which we briefly describe. First, the method
checks whether the velocity profile has a sufficiently long
targeting period before using the Jackson et al. [17] segmen-
tation method. This is done because the Jackson et al. [17]
method can return improper results if the velocity profile
does not have a sufficiently long tail after reaching. If the
velocity profile is too short, where the length depends on a
parameter c1 (i.e., higher values for c1 increase the targeting
primitive length requirement), then the segmentation point
is the earliest point after the peak velocity point at which
either (1) the velocity magnitude reaches 5% of the peak
velocity or (2) the velocity magnitude is less than q% of
the peak velocity and the acceleration becomes non-negative
for the first time [3]. The latter option (2) is a zero crossing
method, where the crossing from negative to positive acceler-
ation values indicates a local minimum in the velocity profile.
If the velocity profile is determined to be sufficiently long
for segmentation using the Jackson et al. [17] method, then
segmentation is done using a portion of the trajectory that
is within the length set by a parameter c2, where the length
found by using c1 is less than c2. A result of this is that the
velocity profile could be shortened before the Jackson et al.
[17] method is used, which the Jackson et al. [17] method
does not do itself. Following Sakai et al. [3], q = 20%,
c1 = 2, and c2 = 3.

B. SEGMENTATION METHODOLOGICAL ASSUMPTIONS
Motion primitive segmentation methods make some assump-
tions about the kinematics being analyzed. The implemen-
tation of the methods considered in this paper assume the
following criteria to be met or that the input data demonstrate
these characteristics:

1) The trajectory must represent reaching towards one
point of interest and must terminate once the point is
touched for RTP and grasped for RTG tasks.

2) The trajectory has a reachingmotion primitive followed
by a targeting primitive.

For Condition 1, if there are multiple targets then the
trajectories between each target must be pre-segmented.

Regarding Condition 2, depending on the assessment and
movement quality, some trajectories may have no obvious
targeting period (e.g., Fig. 7.D). These cases likely have
overlapping reaching and targeting primitives. The methods
considered in this paper identify a single point and do not cap-
ture this overlap, although some kinematic analysesmaywant
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to capture this overlap and will therefore require different
segmentation method implementations. No method currently
exists for automatically detecting where reaching transitions
to targeting across a variety of functional tasks, although
visual inspection of the kinematic data will help indicate
when the targeting period begins. Additionally, a trajectory
could include more than one reaching and targeting motion
primitive (e.g., when the endpoint is adjusted while attempt-
ing to grasp an item).

C. EVALUATION DATA
The segmentation algorithms are evaluated on two data sets
which involve RTP and RTGmovements. The trajectories are
preprocessed to includemovement towards one point of inter-
est at a time. Although the two data sets include transporting
an object after grasp, our analysis focuses specifically on the
reaching and targeting primitives before grasp.

1) HAPTIC VIRTUAL ENVIRONMENT
This George Mason University IRB-approved experiment
(#477548, approved Jan. 29, 2014, informed consent obtained
from participants) required participants to perform a simu-
lated workbench clearing task within a haptic virtual envi-
ronment (HVE) [17] (see Fig. 1), which involved grasping
and mounting six tools on a pegboard. A convenience sample
was used, with an invitation to participate by word of mouth,
resulting in twenty-one non-disabled participants, aged 18 to
30, and comprising fourteen males and seven females. This
task combines RTP and RTG movements because the manip-
ulator is a single point in three-dimensional virtual space.
The participant-manipulated stylus position, acceleration,
and rotation were captured at 30 Hz and in three dimensions
by the haptic device. Velocity magnitude was filtered using
the fifth-order low-pass Butterworth filter with a cutoff fre-
quency of 10 Hz. Trajectories were segmented into actions
representing reaching to a tool and mounting a tool based
on events recorded by the HVE software (i.e., the system
tracks when objects are grasped and released). The mounting
action is excluded from our analysis. The reaching actions,
which contain reaching and targeting primitives, were used
as input to the segmentation algorithms evaluated in this
paper. Each participant performed three trials and a total of
305 trajectories were analyzed. α = 0.4 for segmentation
methods (3) and (5). The choice of α does not appear to
drastically impact segmentation results if α ≤ 0.5, although
it could be useful to test a few values for one’s particular
application.

2) THE TARGETED BOX AND BLOCKS TEST
For this George Mason University IRB-approved experi-
ment (#492701, approved Oct. 24, 2013, informed consent
obtained from participants), optical motion capture data were
collected from three female participants, aged 22 to 29, per-
forming the targeted Box and Blocks Test (tBBT) [1]. Two of
the participants were non-disabled and the third participant
performed the task using clinically-prescribed below-elbow

myoelectric prostheses (see Fig. 2). The tBBT requires the
individual to move wooden blocks over a partition in a pre-
defined order and at predefined locations (see Fig. 2) and
represents a RTG task when reaching to grasp a block. This
assessment and variations of it are commonly used to assess
functional UE movement quality for rehabilitation.

Trajectories were segmented into actions representing
reaching for a block and transporting a block, although the
transportation action is excluded from our analysis. Action
segmentation was performed using heuristics and visual
inspection of the data. This step is not the primary focus
of this work, although an automated action segmentation
method for tBBT could be future work. Specifically, our
approach was to identify the velocity profile peaks using
thresholds, followed by identifying local minima indicating
a grasp or release, comparing the kinematics to the recorded
video for context, and ensuring the correct number of actions
were found. The segmented RTG actions are then used as
input to the segmentation algorithms evaluated in this paper.
Raw position information, captured from a marker on the
wrist, is processed by removing spikes along each dimension
(i.e., x, y, z), interpolating gaps due to marker occlusion via
cubic spine interpolation, and applying the fifth-order low-
pass Butterworth filter. We used α = 0.4 for segmentation
methods (3) and (5).

FIGURE 1. (left) participant interfacing with a Touch™haptic device used
in our study and (right) the workbench clearing task.

D. EVALUATION APPROACH
Ground truth labels for the segment location between the
reaching and targetingmotion primitives are not available due
to there being no method currently for identifying the true
segmentation point between reaching and targeting. While
it would have been easier to simply label all trajectories
where an acceptable label location would be, the segmen-
tation workflow movement scientists use is to first apply a
segmentation algorithm (e.g., a kinematic threshold) followed
by visual inspection [11]. This is a result of difficulty in
visually identifying from a graph the point at which, for
example, the velocity magnitude reaches 5% of the peak
velocity, necessitating some method to at least cue the rater’s
attention. Therefore, a few approaches are used to evaluate
the segmentation results.

1) EXPERT EVALUATION OF SEGMENTATION RESULTS
Segmentation results for all methods were assessed and
assigned one of the following labels as part of this analysis:
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FIGURE 2. A participant performing the targeted Box and Blocks Test [1],
outfitted with wired active optical motion capture markers.

• Acceptable: Segmentation result is acceptable; a human
evaluator would likely not modify this result.

• Questionable: Segmentation result is questionable;
a human evaluator would likely modify this result.

• Ambiguous: The trajectory and associated kinematics
are sufficiently unclear that a human evaluator likely
would not be able to segment or use the data for anal-
ysis. A trajectory labeled as ambiguous maintains that
ambiguous label across all methods.

Note that these labels allow for variation in interpretations.
This is intentional, as there is no method currently to identify
the true point which separates reaching from targeting. For
example, an acceptable segmentation result can take a range
of points along the trajectory.

Two domain experts (S. Engdahl and A. Santago) labeled
all segmentation results for the HVE data set on the kinematic
thresholding method (n = 305) to establish labeling criteria
and to better understand the challenges associated with eval-
uating segmentation results. To minimize bias, the domain
experts did not know which method was used to perform
the segmentation. For each trajectory, three plots indicat-
ing position, displacement, and the velocity profile overlaid
with the segmentation result were used for evaluation, as is
shown in the first column of Fig. 5. The raters had an initial
percent agreement of 66.8% and a Cohen’s kappa statistic
of 0.18, indicating that it is challenging to have consistent
evaluations across raters for segmentation results. Due to the
inherent subjectivity in segmenting RTP and RTG motions,
a follow-on meeting was held to further establish agreement
on labeling criteria, resulting in an agreement on all except

one segmentation result. These labeling criteria and labeled
segmentation results were then used by a non-domain expert
(K. Jackson) to label the remaining segmentation results for
the HVE and tBBT data sets.

2) INDICATOR OF QUESTIONABLE SEGMENTATION RESULTS
Motion primitive segmentation results for the HVE and tBBT
data sets are additionally evaluated by computing the mean
absolute error (MAE) for each segmented trajectory’s reach-
ing primitive compared to the straight-path MJT velocity
profile, referred to as MJT MAE. This is one of this work’s
novel contributions, where MJT MAE can be used as an
indicator of potentially questionable segmentation issues that
may need review by a domain expert.

The MJT velocity profile is smooth and has a unimodal
bell-shape, which the segmented reaching velocity profile is
expected to approximately follow. Higher MJT MAE values
indicate a reaching velocity profile that deviates from a uni-
modal shape (see examples in Fig. 3), which could be due to
an incorrect segmentation result or a complex reach that has
multiple peaks and troughs.

FIGURE 3. Two segmented reaching subsequences normalized velocity
profiles from the HVE data set corresponding to the highest and lowest
minimum jerk trajectory (MJT) mean absolute errors (MAE). The reaching
segments are plotted with the normalized MJT velocity profile used to
compute the MJT MAE. These two examples correspond to trajectories A
and D in Fig. 5, respectively.

The straight-path MJT velocity magnitude time series is
defined as:

Vjerk = ẋ(t) = xf (30τ 4 − 60τ 3 + 30τ 2) (3)

where τ is normalized time equal to t/tf and 0 ≤ τ ≤

1, tf represents the total duration of the reaching motion
primitive, and xf is the final position of the reaching motion
primitive [30].

The segmented and MJT velocity magnitude values are
normalized to be within the interval [0, 1] to evaluate the
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FIGURE 4. Rain cloud plots [33] depicting MJT MAE values for the five segmentation methods described in section III-A. The ‘‘clouds’’ to the left of the
notch plots indicate the density of points for each label group, in the order of: acceptable, questionable, and ambiguous. The points represent each
segmentation result’s MJT MAE value based on a particular segmentation method.

shape of the profiles. The MAE for each segmented reaching
motion primitive is calculated between all indices of the
segmented normalized velocity profile [v0, . . . , vf ] and the
normalized MJT velocity profile:

(
∑tf

i=1 |
ẋ(i)

Vjerk,peak
−

vi
vp

|)

tf
(4)

where the denominator tf is used because the numerator alone
will generally result in higher values as tf increases.

The MJT MAE for each trajectory in the HVE data set
are reported as rain cloud plots [33] across all segmentation
methods considered in this paper. Segmentation results for the
trajectory with the highest, 75th percentile, 25th percentile,
and lowest errors are visualized (see Figs. 5 and 7).

IV. RESULTS
A. HVE WORKBENCH CLEARING
The distribution of labels and MJT MAE values for all
305 trajectories analyzed are reported in Fig. 4. Example seg-
mentation results for the Sakai et al. [3] method are visualized
in Fig. 5 for different percentiles based on the distribution of
MJT MAE values for the Sakai et al. [3] method depicted in
Fig. 4.

The (1) 50% of movement and (3) Jackson et al. [17]
(without the displacement threshold) methods did not per-
form as well as the other three methods. Methods (2), (4), and
(5) performed similarly, although each method was able to
acceptably segment some trajectories that were questionably
segmented by the other two methods (i.e., no one method was
able to handle all cases). One pattern observed in twenty-nine

instances was that the (2) kinematic thresholding method had
a tendency to segment slightly earlier compared to methods
(3) and (5). However, these were still considered within the
acceptable range given uncertainty about what point along
the trajectory truly represents the transition from reaching to
targeting.

With regards to the distribution of MJT MAE values,
a general pattern is apparent in Fig. 4 that ambiguous and
questionable segmentation results have a tendency to have
higher MJT MAE values.

B. THE TARGETED BOX AND BLOCKS TEST
The tBBT segmentation performance results are in Fig. 6.
Example trajectories from tBBT based on the distribution
of MJT MAE values using the Sakai et al. [3] segmentation
method are in Fig. 7. The results in Fig. 6 suggest that, like
the HVE data, methods (2), (4), and (5) performed similarly
on the tBBT data.While the segmentation results for methods
(2), (4), and (5) were mostly labeled as acceptable, methods
(2) and (5) tended to segment near the end of the trajectory
(see Fig. 7 for examples). On the other hand, method (2)
tended to segment earlier, usually at the ‘‘shoulder’’ of the
velocity profile (e.g., approximately frame 65 of trajectory B
in Fig. 7; additional examples are available at [19]).

V. DISCUSSION
A. WHICH SEGMENTATION METHOD IS BEST?
The (2) kinematic thresholding, (3) Jackson et al. [17], and
(5) Sakai et al. [3] segmentation methods all performed simi-
larly well. The HVE data presented complex trajectories and
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FIGURE 5. Workbench Clearing in Haptic Virtual Environment Visualized trajectories selected based on the distribution of MJT
MAEs shown in Fig. 4’s ‘‘Sakai et al.‘‘ column. Each column corresponds to a trajectory from the HVE workbench clearing data
set, with the second and third rows displaying results from the segmentation algorithm proposed by Sakai et al. [3]. The top
row displays raw position trajectories, where the red diamond indicates the starting position, the blue circle indicates the
location where the reaching and targeting primitives were segmented, and the red ‘‘X’’ indicates where the object was
grasped. The second row shows where segmentation occurs along the displacement time series from the grasp location. The
bottom row shows where segmentation occurs along the velocity profile.

FIGURE 6. Targeted Box and Blocks Test MJT MAE values displayed for tBBT data across segmentation methods, as is done in Fig. 4. The notch plot
order, from left to right, for each method are acceptable and questionable.

kinematics, which would be difficult for even a human eval-
uator to segment. These methods also performed similarly
well on the tBBT data, which were generally less complex

than the HVE data. The (5) Sakai et al. [3] method incorpo-
rates methods (2) and (3) into their method, and is therefore
likely the most robust out of those considered in this work.
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FIGURE 7. Targeted Box and Blocks Test Four trajectories from the tBBT data visualized based on the distribution of MJT MAE values,
as was done in Fig. 5.

However, it is not clear what method is best for all appli-
cations given challenges with evaluating segmentation per-
formance. Additionally, we use two data sets consisting of
data from healthy, skilled individuals, where the tasks are
relatively simple. Our HVE and tBBT also had an unbalanced
number of participants (twenty-one and three, respectively),
so the results could be biased towards motions in simulated
environments. These data are not representative of all pop-
ulations and tasks that clinicians work with, where tasks
requiring greater precision may change the kinematic charac-
teristics even in healthy populations. Therefore, future work
would include evaluating the segmentation approaches on
data from additional UEFAs and from persons with move-
ment pathologies or disabilities.

The specific analysis being done will influence which
methods and thresholds to use. For example, the Sakai et al.
[3] and kinematic thresholding methods used a 5% of peak
velocity threshold, which worked well for the HVE data but
resulted in possibly late segmentation results for the tBBT
data (see Fig. 5 and Fig. 7). A higher threshold, such as 10%,
may provide better results on the tBBT datawe used, although
this may not be the case for all data collected from tBBT.

Nearly all our tBBT data had short or non-obvious target-
ing periods. Skilled RTG movements in non-disabled popu-
lations have been shown to adhere to stereotyped kinematic
patterns, including tight coupling or overlap between the
reaching and targeting primitives [16], [31], [34], which is

relevant to the second segmentation methodological assump-
tion listed in section III-B stating targeting must follow
reaching. Similarly, the tBBT trajectories from the participant
with the below-elbow myoelectric prostheses resembled the
non-disabled trajectories due to a high level of prosthesis
experience (26 years), but the trajectories may look differ-
ent in other participants with disabilities (e.g., reaching and
grasping are typically decoupled in UE prosthesis users [34]).
Future work includes developing and evaluating segmenta-
tion methods that allow for overlapping motion primitives
(i.e., where more than one segmentation point is provided
between two primitives, which is in contrast with the methods
considered in this study that provide only a single segmenta-
tion point), as there may be kinematic analyses that would
benefit from more precise motion primitive segmentations.

B. SEGMENTATION PERFORMANCE EVALUATION
The most challenging part of our analysis was determining
how to evaluate the segmentation methods. In the activity and
action recognition literature, data sets typically come with
labels that researchers can use to evaluate their methods. We
did not have these for our data, nor does there exist a method
currently for identifying the true location where reaching
transitions to targeting, assuming it does exist. Our approach
to evaluating segmentation results via domain expert review
raised issues that could be addressed in future works.
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As indicated in section III-D.1, initial agreement between
our expert raters was not high for the HVE data. Additionally,
the initial low agreement amongst our raters is partially due to
the three label classes (i.e., acceptable, questionable, ambigu-
ous) being vague, which was intentional. The consensus
meeting resulted in agreement on all except one segmentation
result, primarily due to one rater being more strict than the
other on what was considered acceptable; however, other
raters will likely have different opinions on the criteria for the
evaluation labels. For this reason, the labels and segmentation
results are available at [19]. We omit a statistical analysis
comparing the varied segmentation methods and the MJT
MAE distributions across the three labels due to the chal-
lenges associated with evaluation.

As kinematic analyses that require segmentation of the
reaching and targeting motion primitives are used more fre-
quently, researchers will need a method to more objectively
evaluate segmentation methods. Specifically, more concrete
labeling criteria and a better understanding of intra- and
inter-rater variability associated with evaluating segmenta-
tion results will be needed. Improved evaluation approaches
will support segmentation algorithm development and the
potential usage of template and learning algorithms. While
the targeting period may be difficult to segment using only
the kinematics of an endpoint (e.g., wrist), additional data
sources may help. For example, muscle activity measured
by electromyography (EMG) [35] or sonomyography (SMG)
[36] may assist with identifying the segmentation point
between reaching and targeting when combined with kine-
matics. While these modalities have been used in other
contexts such as detecting grasp intention (e.g., [38]) or
movement onset [37], it is unclear if they could be used to
identify the targeting primitive. If so, this approach could be
used to help create ground truth data for developing and eval-
uating segmentation approaches that use kinematics alone.
Similarly, detecting muscle activity in the hand or tracking
finger aperture via motion capture could be useful for better
delineating when grasping begins [16], [31], [34], [38].

C. MIN. JERK TRAJECTORY MEAN ABSOLUTE ERROR
The results suggest MJT MAE is a useful method for evalu-
ating segmentation performance. In Fig. 5, higher MJT MAE
values are associated with segmented reaching primitives
that do not follow a clean bell-curve shape. For example,
trajectory A in Fig. 5 has the highest MJT MAE score in the
data set, indicating a questionable segmentation result that
may need to be corrected. Note that MJT MAE should not be
considered a definitive measure of segmentation performance
given that reaching motions may have non-bell-shaped veloc-
ity profiles, which the MJT MAE penalizes.

Wider usage and automation of kinematic analyses that
require segmentation of the reaching and targeting motion
primitives would benefit from using theMJTMAE to identify
segmentation results that need closer review. This approach
is aligned with the segmentation workflow already used by

domain experts (e.g., apply segmentation algorithms and then
manually review [11]). However, the MJT MAE has limita-
tions. Based on the results in Fig. 4, there is sufficient overlap
over theMJTMAE distributions of the three evaluation labels
that improvements to this approach are needed for identifying
segmentation results that actually need additional review by a
human evaluator (i.e., true positives). Establishing the range
of acceptable MJT MAE values, or from a similar method,
for specific UEFAs and populations is an area of future work.

D. CHALLENGING SEGMENTATION CASES
Our analysis of the HVE and tBBT data sets identified mul-
tiple kinematic profiles that the segmentation methods did
not do well on. Examples of each are in the supplemental
materials [19], which are briefly described below.

1) SLOW REACHING
Although the segmentation methods considered in this paper
assume that velocity profiles exhibit the characteristic uni-
modal bell-shape, slow reaching motions did not demonstrate
this. Segmentation results for these trajectories were therefore
varied. Developing methods that can address this edge case
are likely necessary, as slow reaching can be a viable strategy
used by individuals for RTG and RTP motions.

2) RE-ADJUSTMENTS DURING REACH AND TARGETING
Particularly in the HVE data, participants would some-
times adjust the endpoint during reaching or targeting.
If re-adjustments occurred during reaching, our evaluation
approach was to consider that part of reaching. However,
it was difficult to determine the segmentation point between
reaching and targeting when re-adjustments occurred dur-
ing targeting, where the endpoint was briefly moved away
from the object and a small reach was used to move back
to the object. Whether to include the re-adjustments during
targeting as part of the segmented targeting time series will
likely depend on the kinematic analysis being performed
(e.g., it may be useful to include if assessing how much
difficulty an individual is having in targeting an object for
grasp or pointing).

3) MORE THAN ONE OBJECT TARGETED
There were some instances in the HVE data where a partic-
ipant would reach and target for one object, then move to
another object. As the HVE workbench clearing task does
not specify an order of tools, this was valid for the test but
made segmentation more challenging. Reaching and target-
ing more than one object is a violation of the assumption
of the segmentation methods considered in this work, and
would require additional processing. This issue may not be
prevalent in some UEFAs where the order of objects to be
grasped or pointed to is pre-defined (e.g., in tBBT). However,
someUEFAs do not specify order (e.g., Box and Blocks Test).
Careful observation of the participant and video recordings
help provide context when evaluating segmentation results.
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E. ENSEMBLE SEGMENTATION METHODS
Of the three best performing segmentation methods consid-
ered in this paper, each method acceptably segmented some
trajectories where the other two failed. While it may be
possible to develop one segmentation method that is robust to
all applications, a promising direction is to use an ensemble of
segmentation methods. Inspired by ensemble methods from
the data mining and machine learning literature [39], ensem-
bling segmentation outputs to all ‘‘vote’’ on a segmentation
point would leverage the best of each segmentation method.
Ensembles have demonstrated state-of-the-art performance
on multiple problems in machine learning [39]. For example,
ensemble learning has been used for activity recognition
from wearable sensors [40]. One possible implementation of
ensembling segmentation methods could be to have the final
segmentation location be the average of all the segmentation
locations from the multiple segmentation methods used in
the ensemble, which is an approach used for fusing outputs
of regression models [39]. Furthermore, high disagreement
amongst the ensembled methods could signal a challenging
trajectory that requires further review by a human evaluator,
similar to what has been proposed for quantifying the uncer-
tainty of deep learning models [41], providing an alternative
or complement to the proposed MJT MAE.

VI. CONCLUSION
This paper provides an analysis of segmenting reaching and
targeting motion primitives for RTP and RTG motions. The
results suggest that recently proposed methods for segmen-
tation do reasonably well, having been tested on HVE and
tBBT data. However, our understanding of what indicates
the precise point between reaching and targeting motion
primitives from kinematics alone remains limited. A better
understanding of where reaching transitions to targeting will
help create ground truth data sets for more objective evalua-
tion, along with enabling the development of learning-based
methods that require training data. This work also proposes
the MJT MAE to evaluate segmentation performance and
indicate potentially questionable segmentation results, which
could be incorporated into a segmentation workflow used by
researchers and, eventually, clinicians. Mechanisms like the
MJT MAE which flag questionable results may also help
mitigate risks associatedwith domain experts using erroneous
results in their decision making.
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