
Introduction

Mitochondrial and free radical theories of aging suggest that
there is an imbalance between the activity of free radical genera-
tion and the endogenous radical scavenging system in brain dis-
orders [1, 2] resulting in an impairment of ATP production [3, 4].
In this regard, mitochondria are not only intracellular generators
of the reactive oxygen species (ROS) but also immediate targets
of oxidative damage [5–8]. ROS are generated at sites of inflam-
mation and injury. At low levels, they can function as signalling
intermediates in the regulation of fundamental cell activities such

as growth and adaptation responses. At higher concentrations,
ROS can cause cell injury and death. This occurs during the
aging process, where oxidative stress is incremented due to an
accelerated generation of ROS and a gradual decline in cellular
antioxidant defence mechanisms. Consequently, aging and the
associated increase in oxidative stress are major risk factors for
many neurodegenerative diseases [9]. Compared to other organs
or tissues, the brain is more vulnerable to ROS-induced damage
due to its high rate of oxygen consumption, high polyunsatu-
rated lipid content and relative weariness of classic antioxidant
enzymes [10, 11].

Organisms utilize antioxidant defence, including enzymes
like superoxide dismutase (SOD), which converts O2.� into H2O2,
catalase (CAT), that is responsible for the detoxification of H2O2

and GPx, that breaks down peroxides. The ATP metabolism is
tightly coupled to the PCr metabolism via the enzyme system of
creatine kinase (CK), which plays a central role in energy transfer
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in cells with high energy requirements and which is very suscep-
tible to oxidative stress [12, 13]. Rate constant of CK reaction can
be investigated by the magnetization transfer in vivo 31P magnetic
resonance spectroscopy (MRS) experiment [14, 15]. The investi-
gation of the kinetic parameter kfor using in vivo 31P MR spec-
troscopy magnetization transfer method contributes to better
understanding of the underlying processes in age-dependent brain
disorders. This technique can be used as a non-invasive in vivo
biomarker for age-related neurodegenerative diseases as it can
reveal energy metabolism impaired in brain tissue, which is not
detectable by conventional MRS methods. By means of this tech-
nique we studied reaction kinetics of reversible exchange of the
phosphate group in the reaction catalysed by CK in the brain of
rats [9]. Moreover, mitochondrial oxidative phosphorylations
(OXPHOS) as well as endogenous enzymatic antioxidant activities
in the brain and peripheral blood of young, adult and aged rats
were investigated in this study.

Materials and methods

Animals

Young (3 months old), adult (17 months old) and aged (36 months old),
male Wistar rats supplied by Velaz (Prague, Czech Republic) were housed
at 22 � 2�C, 45% relative humidity, 12-hr light/dark photoperiodicity in air-
conditioned rooms with free access to standard commercial laboratory 
pellets ST1 (Tp Dovo, Slovak Republic) and water ad libitum. All animals
received human care in compliance with the Institutional Animal Ethic
Committee and with the Guidelines of European Convention for the
Protection of Vertebrate Animals Used for Experimental Purposes.

Methods

In vivo 31P magnetic resonance spectroscopy
Phosphorous saturation transfer experiments were performed on a 4.7 T
200 Mhz SISCO imaging spectrometer equipped with a horizontal magnet
at 81 MHz. A three-turn 1.6-cm-diameter surfaře coil was positioned over
the skull of an animal anesthetized by 0.8–1.0% of halothane. First, the
static magnetic field was shimmed using proton signals which showed a
typical line width of 20–35 Hz. Then, the phosphorous flip angle was
adjusted to minimize the broad signal coming from the bone. The time of
irradiation of �-ATP resonance was varied from 0.3 to 1.6 sec., which
resulted in an exponential decay of PCr signal to a steady-state value. The
saturation was accomplished by an on-resonance series of 10 msec. DANTE
pulses with interpulse delays of 400 msec. [16]. Either 96 or 128 transients
were accumulated in the interleave mode with a repetition of 5 sec. [17].

In vitro mitochondrial respiration
The rats were euthanized with i.p. injection of Thiopental (Spofa, Czech
Republic, 150 mg/kg b.w.). Removed brain tissue was placed on ice-cold
isolation solution containing (in mmol/l) 225 manitol, 75 sucrose, 0.2 eth-

ylenediaminetetraacetic acid (EDTA); pH 7.4. Tissue sample was minced
and homogenized in the solution using a glass-teflon homogenizer. Brain
mitochondria were isolated at 4�C by differential centrifugation [18].
Mitochondrial protein concentration was estimated by the method of
Lowry [19] using bovine serum albumin as a standard. Respiratory chain
function was measured in a respiratory buffer containing (in mmol/l) 12.5
HEPES, 3 KH2PO4, 122 KCl, 0.5 EDTA and 2% dextran; pH 7.2 at 30�C, by
means of Oxygraph Gilson 5/6H (Madison, WI, USA) using Clark-type
 oxygen electrode. Sodium glutamate/malic acid (2.5 mmol/2.5 mmol) were
used as a nicotinamide adenine dinucleotide (NAD) substrate for complex I
and succinate (5 mmol) as a FAD substrate for complex II. To initiate state 3
 respiratory activity, 500 nmol of ADP were added to the cuvette. When all the
ADP was converted to ATP, state 4 respiration was measured. Parameters of
OXPHOS, such as QO2(S3) [nAtO mg/prot/min.], i.e. oxygen consumption
rate in presence of ADP (state S3); QO2S4 [nAtO mg/prot/min.], oxygen
 consumption rate without ADP (S4); RCR [S3/S4], respiratory control ratio;
ADP:O (nmol ADP/nAtO], coefficient of OXPHOS and OPR [nmol ATP mg
prot/min], OXPHOS rate, were determined, respectively.

Endogenous antioxidants
The enzymatic activity of SOD was determined using a RANSOD kit
(Randox Labs, San Diego, CA, USA). CAT activity was determined as
described by Aebi [20], glutathione peroxidase (GPx) activity according to
Wendel [21], the ferric reducing ability of plasma (FRAP) according to
Benzie [22] and ceruloplasmin (CPL) according to Schosinsky [23].

Statistical methods

The results were evaluated using ANOVA and Student’s t-test for unpaired
data; the Sudent’s t-test was used to compare differences between groups.
Calculated values were expressed as means � S.E.M.. P-values were con-
sidered as a significant (*P � 0.05, **P � 0.01, ***P � 0.001).

Results

Brain bioenergetic parameters were evaluated on young 
(3 months old), adult (17 months old) and aged (36 months old)
male Wistar rats using in vivo 31P MRS and in vitro polarographic
analysis of mitochondrial OXPHOS, respectively.

In vivo 31P magnetic resonance spectroscopy
Relative concentrations of phosphate metabolism were deter-
mined from integrals of their signal in 31P MR spectra using
 program MESTREC-C 1.5.1 (Table 1 and Fig. 1). Time-dependent
31P MRS saturation transfer was applied to determine the pseudo-
first-order rate constant of forward CK reaction (kfor). While the
analysis of steady-state 31P MR spectra revealed significant
increase in the ratio of PCr/ATP (P � 0.001), PCr/Pi (P � 0.01)
and PME/ATP (P � 0.05), we found significant (P � 0.001)
decrease of forward kfor in aged rats as compared to the young
group.
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In vitro mitochondrial oxidative phosphorylation (Table 2 
and Fig. 2)
2 days after 31P MR spectroscopy, the rats were killed and brains
were removed for biochemical investigations. Polarographic
analysis of OXPHOS was performed on mitochondria isolated
from the forebrain of young (3 months old), adult (17 months
old) and aged (36 months old) rats. State 3 respiration (QO2S3)
was started by the addition of ADP to mitochondria respiring
with substrates. When measured in complex I and in complex II,
the ADP-stimulated state 3 respiration significantly decreased by
23% and by 22% in adult (P � 0.01), and by 37% and 42% 
(P � 0.001) in aged rats as compared with young rats, respec-
tively. Respiratory control index (RCI), as indicator of mitochon-
drial membrane integrity was found to be significantly decreased
by 21% (P � 0.05) only in the complex I of aged rats. There
were no significant differences in state 4 respiration in complex
I, however, in complex II state 4 respiration was decreased sig-
nificantly by 21% in adult (P � 0.05) and by 41% (P � 0.001)
in aged rats. Coefficient of OXPHOS (ADP:O) as an indicator of
coupling oxidation and phosphorylation showed some changes
in complex I, but not in complex II. Significant decrease in rates
of OXPHOS and ATP production (OPR) by 20% and 23% (P �

0.01) in adult and by 38% and 37% (P � 0.001) in aged rats is
suggested to be the consequence of age-related decrease in
state 3 respiration.

Endogenous antioxidants (Table 3 and Fig. 3)
The aim of the present study was to investigate the FRAP along
with antioxidant enzyme activities and CPL. This analysis has
revealed an significant (P � 0.05) increase of GPX and GST activ-
ity and significant (P � 0.001) decrease of CPL level in the brain
as well as significant increase of CAT (P � 0.001) and GST (P �

0.01) activity and decrease of GPX (P � 0.001) activity in plasma
of aged rats. As a result, antioxidant power (FRAP) of the brain
and plasma was not disturbed in aged rats.

Discussion

It is well documented that age-related neurogenic dementia is a
major risk factor in the lifespan of human beings and animals
[24–27]. In aerobic cells, 90–95% of the total amount of ATP pro-
duction comes from aerobic metabolism. The synthesis of ATP via
the mitochondrial respiratory chain is the result of the electron
transport coupled to OXPHOS [28]. During normal aging and due
to the emergence of some neurodegenerative diseases like AD,
damaged mitochondria are unable to maintain the energy
demands of the cell [29–31]. This can lead to an increased pro-
duction of free radicals, which induces the interruption of
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Fig. 1 Changes of brain bioener-
getics measured in vivo by 
31P MRS in aged (36 months old)
compared to young (3 months old)
male Wistar rats. MRS, magnetic
resonance spectroscopy; PCr/ATP,
phosphocreatine to adenosine
three phosphate ratio; PCr/Pi, PCr
to inorganic phosphate ratio;
PME/ATP, phosphate monoester to
ATP ratio; kfor, forward rate con-
stant of CK and pHi, intracellular
pH. ***P � 0.001, **P � 0.01,
*P � 0.05.

Age PCr/ATP PCr/Pi PME/ATP kfor pHi

3 months 1.94 � 0.06 4.14 � 0.42 0.77 � 0.09 0.35 � 0.02 7.18 � 0.01

36 months 2.12 � 0.04*** 5.64 � 1.44** 0.84 � 0.07* 0.30 � 0.01*** 7.16 � 0.01*

Table 1 Brain bioenergetic measurements in young (3 months old) and aged (36 months old) rats by using 31P NMR spectroscopy

Data are presented as mean � S.E.M., ***P � 0.001, **P � 0.01, *P � 0.05 versus 3 months.
Note: Adult (17 months old) rats were not measured due to disruptions in SISCO spectrometer.
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Fig. 2 Percentual changes
of in vitro measured
OXPHOS parameters in
brain mitochondria from
young (3 months old), adult
(17 months old) and aged
(36 months old) male
Wistar rats. (A) Complex
I–sodium glutamate / malic
acid NAD substrate, (B)
Complex II–succinate FAD
substrate (respectively, 
A and B). ***P � 0.001,
**P � 0.01, *P � 0.05
versus 3 months old rats.
��P � 0.01, �P � 0.05
versus 17 months old rats.

Table 2 Age-dependent mitochondrial OXPHOS activities in young (3 months), adult (17 months) and aged (36 months) male Wistar rats

Data are presented as mean � S.E.M.
***P � 0.001, **P � 0.01, *P � 0.05 versus 3 month, ��P � 0.01, �P � 0.05 versus 17 month.

Parameters OXPHOS Age

3 months 17 months 36 months

Complex I

RCI (S3.S4–1) 3.63 � 0.19 3.25 � 0.12 2.86 � 0.08* �

ADP:O (nmol ADP.nAtO-1) 2.67 � 0.02 2.76 � 0.02* 2.63 � 0.04�

QO2S3 (nAtO.mg prot-1.min-1) 76.73 � 2.80 58.74 � 2.89** 48.68 � 1.76*** �

QO2S4 (nAtO.mg prot-1.min-1) 21.98 � 1.52 18.16 � 0.75 17.14 � 0.80

OPR (nmol ATP.mg prot-1.min-1) 205.23 � 6.08 163.97 � 9.35** 127.27 � 5.26***��

Complex II

RCI (S3.S4–1) 1.66 � 0.33 1.65 � 0.06 1.64 � 0.04

ADP:O (nmol ADP.nAtO-1) 1.69 � 0.03 1.63 � 0.04 1.72 � 0.03

QO2S3 (nAtO.mg prot-1.min-1) 87.87 � 4.36 68.20 � 3.97** 51.04 � 2.72***��

QO2S4 (nAtO.mg prot-1.min-1) 53.02 � 2.93 41.66 � 2.75* 31.33 � 1.99***�

OPR (nmol ATP.mg prot-1.min-1) 205.23 � 6.08 163.97 � 9.35** 127.27 � 5.26***��
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OXPHOS and results in decreased levels of ATP [32].
Excitotoxicity, advanced age, oxidative stress, hypertension, mito-
chondrial dysfunction, free radical-induced oxidative damage have
all been implicated in the pathogenesis of several different neu-
rodegenerative diseases in addition to AD, and include
Huntington’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis and Schizophrenia [33]. The main radical produced by
mitochondria is the superoxide anion; intra mitochondrial antioxi-
dant systems scavenge this radical to avoid oxidative damage,
which can lead to impaired ATP production [4, 24, 30, 32, 34, 35].

Neurons are very sensible to oxidative stress due to their 
high demand for energy. Most of the energy is derived from the
metabolism of glucose to carbon dioxide and water through the
glycolysis and mitochondrial OXPHOS [36]. The ATP production
and utilization is fundamental in cerebral bioenergetics [37–39].
The brain ATP metabolism is mainly controlled by ATPase and 
CK reactions of PCR� � 	ATP� � 	Pi chemical exchange 
systems [40, 41]. In our 31P MRS study, performed on young 
(3 months) and aged (36 months) rats, we found significantly
increased ratios of PCr to ATP (P � 0.001), PCr to Pi (P � 0.01)
and PME to ATP (P � 0.05).

The kinetics of ATP metabolism and the associated chemical
exchange rates should be more sensitive to brain energy states
than the steady-state ATP concentration [42, 43]. CK plays a fun-
damental role in cellular energetics of the brain. The forward rate

constant (kfor) of the CK can be used as an indicator of brain
metabolic changes. In our study, kfor was found to be signifi-
cantly (P � 0.001) diminished in the brain of aged rats compared
to young rats. We assume that kfor of CK in the brain could serve
as a sensitive early in vivo MRS biomarker of brain disorders. The
results of 31P MRS correspond with the results of in vitro mito-
chondrial OXPHOS assessed polarographically in the brain of
rats. These results support the hypothesis that impairment of
mitochondrial respiration may be a causal factor of the aging
process, and that such impairment may be result from increased
H2O2 production in vivo [18]. Our findings suggest that the CK
reaction could play a key role in the energetic system of young
and aged rat brains.

Progressive age-related significant decrease of oxygen uptake
(QO2S3) and ATP synthesis (OPR) describe the condition of mito-
chondrial dysfunction. Age-related cerebral disorders are usually
accompanied by oxidative stress [44] and perturbation of the cel-
lular oxidant/antioxidant balance [45, 46]. The brain has relatively
low levels of antioxidants [47, 48]. SOD-2 is a highly inducible
mitochondrial protein synthesized within the cytosol [49, 50].
These consequences have been strongly implicated in the patho-
genesis of human as well as animal models of neurodegenerative
diseases [51–54], particularly AD [4, 24, 29, 30, 34, 35]. In our
study, no significant differences in SOD expression were
detectable between old (10 months) and aged (36 months) in rat
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Fig. 3 Percentual changes
of endogenous antioxidants
activity in brain tissue 
(A) and in peripheral blood
(B) of aged (36 months 
old) compared to adult 
(10 months old) male
Wistar rats. (A) (brain)
***P � 0.001, *P � 0.05,
(B) (blood) ***P � 0.001,
**P � 0.01.
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