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Abstract: Locomotion is a complex motor behavior that may be expressed in different ways using a variety of 
strategies depending upon species and pathological or environmental conditions. Quadrupedal or bipedal walking, 
running, swimming, flying and gliding constitute some of the locomotor modes enabling the body, in all cases, to 
move from one place to another. Despite these apparent differences in modes of locomotion, both vertebrate and 
invertebrate species share, at least in part, comparable neural control mechanisms for locomotor rhythm and pat-
tern generation and modulation. Significant advances have been made in recent years in studies of the genetic 
aspects of these control systems. Findings made specifically using Drosophila (fruit fly) models and preparations 
have contributed to further understanding of the key role of genes in locomotion. This review focuses on some of 
the main findings made in larval fruit flies while briefly summarizing the basic advantages of using this powerful 
animal model for studying the neural locomotor system. 

Keywords: Drosophila, larvae, motor circuits, locomotion, interneurons, connectomics, genetics, optogenetics, behavior, disease model, drug 
discovery. 

1. INTRODUCTION 
 Invertebrate species have enabled several breakthrough findings 
on neural circuit functions to be made in many decades; the genera-
tion of the action potentials in squid [1], molecular mechanisms of 
learning and memory [2], the concept of central pattern generators 
(CPGs) [3,4], identities of neurons composing CPGs [5,6], etc. By 
virtue of their rich resources of genetic tools, the fruit fly Droso-
phila melanogaster (referred to “Drosophila” hereafter) allows us 
to delve into complex processes in neuroscience [7]. These include: 
genetic programs for segmentation along the longitudinal body axis 
[8], neural cell fate determination by Notch signaling [9], specifica-
tion of neural identity [10], axon guidance [11], synaptogenesis 
[12], channel gene identification [13,14], learning and memory 
[15], courtship behavior [16], and circadian rhythm [17].  
 In recent decades, larval fruit flies have generally been consid-
ered a promising model to also examine neural locomotor circuits 
from a genetics standpoint. Especially, based on accumulated 
knowledge of developmental and molecular biology of the neurons 
in this system and accessibility to them with genetic tools, Droso-
phila larval locomotion—essentially characterized by caudal-to-
rostral-propagated peristaltic crawling movements of the body—
offers a valuable opportunity to link genes to behavior, and sensory 
inputs to motor outputs in cellular and molecular resolution. Fur-
thermore, models targeted by larval locomotion have expanded to 
social interaction, neural disease and drug screening. In this review, 
we will introduce recent advance in studies related to Drosophila 
larval locomotion. Since the literature concerning larval locomotion 
has been expanding rapidly, we have not tried here to present a 
comprehensive and complete review of all recent studies. Instead, 
our intention has been to provide an introduction to Drosophila 
larval locomotion for researchers who do not regularly read about 
invertebrate locomotor systems. 
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2. OVERVIEW OF THE STRUCTURE AND DEVELOP-
MENT OF FLY LARVAE 
 The development of Drosophila larvae into adults is bridged by 
a holometabolous pupal stage. Drosophila goes through three larval 
stages (instars). Twenty-two hours after the egg is laid, the 1st in-
star larva hatches. In late stages of the embryonic development, all 
larval neurons are generated and form synaptic connections [18] 
(Neurons for adult flies develop during the late larval stage [19]). 
The 1st instar takes one day, the 2nd instar one day and the 3rd 
instar takes two days. The late 3rd instar larva forms a pupa, and the 
adult fly emerges from the pupa during the following five days. 
Several hours after eclosion, adult flies initiate courtship behavior 
and the female flies lay eggs. This short life-cycle (~ two weeks), 
their small body size (less than 5mm), and their omnivorous diet 
(we rear them with “fly food” containing yeast, sugar and corn-
meal) are among the advantages of Drosophila as a model  
organism. 
 Fly larvae grow in size between every molt. The length of the 
egg is about 0.5 mm, and after two moltings the 3rd instar larva is 
5mm in length (Fig. 1A). The body wall of the larva is segmented, 
with three thoracic segments and eight abdominal segments (T1-3 
and A1-8 in Fig. 1B). Each half (hemi)-segment contains about 30 
muscles. The muscles can be classified, based on their orientation, 
as longitudinal, transverse or oblique. Peristaltic locomotion is gen-
erated by sequential contraction of muscles from the posterior to 
anterior segments (in the case of forward locomotion). During the 
peristaltic wave, contraction of longitudinal muscles precedes that 
of transverse muscles [20]. The position and orientation of muscles 
in each segment are almost the same from A1 to A7, and therefore 
each segment can be regarded as a unit of motor outputs. 
 The central nervous system (CNS) can be exposed experimen-
tally by cutting the body wall and removing the internal tissues 
(intestines, a trachea, fat bodies and Malpighian tubes) (Fig. 1C). 
The CNS consists of two hemispheres (the brain lobes), the ventral 
nerve cord (VNC; thoracic and abdominal ganglia), which is analo-
gous to the vertebrate spinal cord, and subesophageal zone (SEZ) in 
between the brain and VNC (Fig. 1D). There are a number of neu-
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ronal connections between the brain and VNC [21]. The VNC is 
segmented into three thoracic neuromeres and eight abdominal 
neuromeres. Muscles in each body wall segment are innervated by 
motor neurons in the corresponding neuromeres within the VNC 
(Fig. 1E). Motor neurons form neuromuscular junctions on the 
body wall muscle that are visible in the dissected larvae (Fig. 1E). 
Spatiotemporal activity of the motor neurons within the VNC un-
derlies all larval locomotion. Accordingly, motor circuits in the 
VNC can be considered as a chain of segmental units. Based on this 
anatomical property, mathematical models are constructed to de-
scribe the larval crawling locomotion [22,23]. 
 The larval VNC has been an outstanding model system for stud-
ies of neural development (see the review in [24]). We describe 
some of major discoveries briefly. Neurons in the nerve cord are 
formed from the neural ectoderm through multiple steps [25]: step 
1, segmental and columnar patterning; step 2, neuroblast forma-

tion/specification; step 3, ganglion mother cell (GMC) forma-
tion/specification; and step 4, specification of neuron and glia by 
asymmetric GMC division. In segmental and columnar patterning 
of the neural ectoderm (step 1), a two-dimensional sheet of the 
neural ectoderm is divided by gene expression pattern into two 
orthogonal stripes: segment-polarity genes (runt, wingless and 
gooseberry) and columnar genes (vnd, ind and msh) [26]. This grid-
like expression pattern demarcates compartments to generate spe-
cific neural stem cells called neuroblasts (NBs) in each grid. A 
single cell acquires the NB fate in each compartment through lateral 
inhibition by Notch-Delta interaction (step 2) [27]. The following 
specification of NB, GMC and neurons/glia is guided by temporal 
expression patterns of transcription factors (step 3, 4) [10]. As in 
vertebrates, Drosophila glial cells play essential roles in CNS de-
velopment and function [28-30]. The number of neurons is regu-
lated by the programmed cell death [31]. 

Fig. (1). Anatomy of Drosophila larvae (3rd instar). (A) A lateral image of Drosophila larvae. Scale bar: 1mm. (B) Body wall muscles in larvae visualized by 
GFP expression. T1-T3, A1-A8 indicate thoracic segment 1-3 and abdominal segment 1-8. (C) Image series of exposure of central nervous system by dissec-
tion. Top: the head and tail are pinned down. Middle: The dorsal side of the body wall was cut and body wall was opened to fillet. Bottom: Internal tissues 
except for nervous system were removed. Dotted rectangle denotes the central nervous system (CNS). (D) Magnified image of the CNS in (C) showing the 
brain and the VNC (ventral nerve cord). The VNC corresponds to the vertebrate spinal cord. The SEZ (subesophageal zone) locates behind the brains.  (E) 
Motor neurons visualized by GFP expression. Motor neurons in the VNC elongate axons through nerves (A2, A3, A4 and A8/9 nerves marked with arrow-
heads) to target muscles for forming the neuromuscular junction (NMJ). (A3 NMJ is marked with an arrowhead.) 
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 The identity of individual motor neurons has been characterized 
comprehensively, based on the connectivity with body wall mus-
cles, [32,33]. Since inputs to motor neurons are critical determi-
nants for motor outputs, the geometry of motoneuronal dendrites is 
a key to establishing functional motor circuits. Comprehensive 
single cell analyses revealed that dendrites of motor neurons form a 
“myotopic map” [34], with clear correspondence between innervat-
ing muscle groups and the dendrite position. This topological con-
nectivity is thought to underlie coordinated control of muscles in 
the same group. The topology of the dendrites is regulated by guid-
ance molecules at the midline [35], neural activity [36], and steroid 
hormone [37]. A genetic tool to visualize synaptic contacts [38,39], 
termed GRASP (GFP reconstitution across synaptic partners) re-
vealed the development of single synapses throughout the larval 
stages [40].  

3. TOOLBOX FOR STUDYING LARVAL MOTOR CIR-
CUITS 

3.1. Genetic Tools 
 Drosophila affords a major advantage in the genetic approach 
to neuroscience. The fly genome has been sequenced and found to 
consist of approximately 13600 genes [41]. About 65% of human 
disease-causing genes have functional homologs in the fly genome 
[42], a significant fraction of which is expressed in equivalent tis-
sues in the fly [43]. Several techniques, including chemical 
mutagens, transposons [44] and genome engineering [45]  can be 
used to mutate genes in the fly genome. The genetic accessibility 
and phylogenic conservation of genes make flies an ideal model in 
which to study neural circuits and diseases. 
 Genetic tools enable us to analyze not only the function of indi-
vidual genes but also individual neurons. The Gal4-UAS system is 
a gold standard to express genes in specific cells in Drosophila 
[46]. By combining this with other independent gene expression 
systems such as the LexA-LexAop system [47] or Q-system [48], 
one can control the expression of genes in distinct cells. A large 
arsenal of genetic and molecular probes, including cell membrane 
markers, synapse markers, calcium imaging probes, voltage imag-
ing probes, optogenetic tools, short hairpin RNAs, neural function 
activators/silencers and cell death inducers, have been expressed in 
a variety of cells to study neural networks [49]. In addition, large 
scale collections of Gal4 lines [50-52], RNA interference lines 
[53,54] and transposon insertion lines [55] have been intensively 
generated and made available to researchers. 

3.2. Connectomics 
 In the mid-1980s, the whole nervous system of C. elegans was 
reconstructed based on electron microscopy [56], which has exerted 
enormous impacts on the following neural circuit studies. The re-
cent growth of connectomics provides a powerful tool to disentan-
gle the neural circuits [57]. A stack of thousands of serial electron 
micrographs spanning the entire larval CNS was collected [58,59]; 
using these data, many cells in the larval CNS and the connectivity 
between them have been traced with the aid of computers [60-62]. 
Each neuron is assigned a nomenclature based on the cell lineage, 
namely the origin of a neuroblast the neuron is born from [63]. This 
assignment is done by comparing the morphology of a neuron 
based on the EM-reconstruction with that revealed by light-
microscopic confocal images (obtained by expressing GFP in single 
neurons) [52]. For example, interneuron PMSIs (period-positive 
median segmental interneurons—to be described below) [64] be-
long to lineage 02 in the abdominal neuromere and so are assigned 
as A02 lineage [59]. Each single neuron in the lineage is named 
following the scheme A02a neuron, A02b neuron, and so on. Ac-
cordingly, every single neuron is named by this nomenclature sys-
tem. The advent of this invaluable database has been greatly ad-
vancing circuit-level researches in the larvae [58,59,65-67].  

4. NEURAL CIRCUITS FOR LARVAL BEHAVIOR 

4.1. Drosophila Larvae in Nature and in the Laboratory 
 As may be surmised by the name “vinegar fly” or “common 
fruit fly,” Drosophila has a clear preference for fermenting fruits 
[68]. In nature, fly larvae live in rotting fruits, burrowing inside 
them [68], but in the laboratory, flies are reared in culture bottles 
containing foods typically consisting of yeast (amino acid source), 
sugar and corn meal (hydrocarbon source). To observe behavior, 
larvae are usually placed on an agar plate [69]. Fly larvae show 
several stereotyped behaviors on the flat agar plate: forward and 
backward crawling, bending, turning, retreating, rearing [70], 
hunching [71] and rolling [72]. By combining these behavior com-
ponents, larvae exhibit more complex behaviors [73], several types 
of cue-directed locomotion (taxis) [74] and memory-guided  
behavior [75]. 

4.2. Basic Locomotion 
4.2.1. Intrasegmental Coordination 
 A major larval behavior is forward locomotion, which is 
achieved by sequential segmental contractions propagating from the 
posterior end to the anterior [20]. High-resolution imaging of mus-
cles in freely moving larvae revealed a stereotypic temporal order 
in muscular contraction within a segment: contraction of longitudi-
nal muscles (whose fiber axis is in the anteroposterior direction) is 
followed by that of transverse muscles (whose fiber axis is in the 
dorsoventral direction and perpendicular to the longitudinal muscle 
fibers). In soft-bodied animals like fly larvae, contraction of longi-
tudinal or transverse muscles leads to shortening or elongation of 
segments, respectively [20]. The intrasegmental delay in the an-
tagonistic muscles may serve to realize efficient propulsion in larval 
locomotion. The use of a connectomics approach showed that the 
intrasegmental phase delay is generated neither by the difference in 
intrinsic properties of motor neurons nor by time delay in excitatory 
pre-motor interneurons. Instead, an inhibitory GABAergic neuron 
iIN1 acts as a delay line to generate the intrasegmental phase differ-
ence in the motor neuronal activation (Fig. 2) [67]. 
 An isolated or semi-intact larval CNS shows neural activity that 
resembles the pattern of neural activity during larval behavior such 
as forward locomotion (called “fictive locomotion”) [76-78], and 
enables researchers to study in detail the neural circuit activity un-
derlying locomotion. Surgical ablation experiments in isolated CNS 
preparations showed that the brain and sensory feedback are dis-
pensable for forward crawling. Thus, the ventral nerve cord is ca-
pable of generating forward locomotion autonomously [79]. A com-
prehensive ablation study showed that even a single neuromere 
possesses the ability to generate an oscillatory activity pattern [80], 
and thus likely contains local pattern generating networks. 
4.2.2. Intersegmental Activity Propagation 
 Improvements in genetic tools to drive gene expression in a 
small number of cells have allowed dissection of premotor neural 
circuits at a cellular resolution. PMSIs (period-positive median 
segmental interneurons) are identified as period-Gal4 positive neu-
rons and shown to be premotor inhibitory glutamatergic interneu-
rons (Fig. 2) [64]. Twenty PMSIs reside in each neuromere and 
most of them form synaptic contacts with motor neurons. Dual 
color calcium imaging of PMSIs and motor neurons showed that 
activation of PMSIs is preceded by that of motor neurons. Optoge-
netic silencing of PMSIs elongated the motor burst duration. These 
results indicate a circuit function of PMSIs in shortening the burst 
duration of motor neurons. Silencing PMSIs slowed down larval 
crawling, suggesting that PMSIs control the speed of activity 
propagation within the VNC by shortening the motor burst duration 
in each segment [64]. Intriguingly, there are similar interneurons in 
the vertebrate spinal cord. PMSIs share several properties with aIN 
neurons in the Xenopus tadpole [81] and V1 neurons in mice [82]. 
These neurons are inhibitory, premotor, ipsilateral projection and 
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rhythmically active during locomotion. In addition, blocking these 
neurons induces slower motor output. This resemblance may reflect 
a general principle for motor circuit architecture. GVLIs (Glutama-
tergic Ventro-Lateral Interneurons) are another class of glutamater-
gic interneurons that is rhythmically active during crawling (Fig. 2). 
GVLIs are activated later than PMSIs in the same segment [83], 
implying the existence of multiple temporally distinct inputs for the 
termination of motor activity. Another class of interneurons, LLNs 
(Lateral Locomotor Neurons), located in each segment, shows 
propagative activity and is required for crawling behavior [84]. 
Similar wave-like activity was observed in another class of excita-
tory premotor interneurons CLI1 and CLI2 (Fig. 2) (Cholinergic 
Lateral Interneuron 1 and 2) [85]. 
 Genetic dissection of distinct classes of interneurons combined 
with connectome is also revealing circuit motifs involved in the 
regulation of crawling. One such motif is composed of A27h neu-
rons, premotor excitatory neurons, and the upstream GDLs 
(GABAergic Dorso-Lateral interneurons) [65]. A27h appears to 
excite GDL in the next anterior segment, and GDL in turn appears 
to inhibit A27h in the same segment. Thus, these neurons form a 
longitudinal intersegmental feed-forward chain that likely mediates 
signal propagation during the forward locomotion (Fig. 2). 
 Similar to most of the other motor systems, sensory feedback 
has a great impact on the speed of larval locomotion. Silencing 
body wall sensory neurons slows down the crawling speed [86-88], 
indicating sensory feedback acts to increase crawling speed. A pu-
tative mechanosensitive TRP (Transient receptor potential) channel, 
NompC and the TMC (transmembrane channel-like) protein are 
expressed in the body wall sensory neurons responsible for locomo-
tion and required for normal-speed crawling [89,90]. Pickpocket1 
(ppk1), a Drosophila subunit of the epithelial sodium channel fam-
ily, is also expressed in the sensory neurons. ppk1 mutants show 
faster wave propagation and shorter pausing time and thus faster 

locomotion speed [91]. It has been suggested [92] that ppk1 may 
form a channel complex with ppk26 for mechanosensation. Connec-
tomics analysis has clarified a part of neural connectivity from pro-
prioceptive sensory neurons to motor neurons (Fig. 2) [59], and this 
information serves as a strong platform for understanding how lar-
vae adjust their locomotion to adapt to a varying environment. 
4.2.3. Bilateral Balance 
 To guide larvae along a straight line, balanced muscular con-
traction between the left and right side of the body is critical. EL 
(Eve-positive lateral) neurons are responsible for the balanced acti-
vation of bilateral muscle contraction (Fig. 2) [66], and when they 
are silenced, the temporal coordination between left and right re-
mains normal, but the contraction power becomes imbalanced. EL 
neurons (even-skipped-positive contralateral innervating neurons) 
are conserved in vertebrates. Connectomic analysis identified the 
neural circuit related to the EL neurons (A08c, s, e1, e2 and e3 by 
lineage-based nomenclature): EL neurons directly innervate motor 
neurons and indirectly innervate motor neurons through premotor 
interneurons SA1, 3 (A06l, e). On the upstream side, EL neurons 
are directly innervated by proprioceptive sensory neurons dbd and 
vbd (dorsal and ventral bipolar dendritic multidendritic [md] neu-
rons) and indirectly innervated by these sensory neurons through 
Jaam1,3 (A12p, A12c3). The connectivity may serve to interpret 
sensory feedback of muscle contraction amplitudes and balance 
bilateral muscular contraction. Another frequent behavior compo-
nent is bending, which occurs during forward crawling or upon 
pausing. The former is called turning because the combination of 
bending and forward crawling leads to a change in locomotion di-
rection [70]. Controlling crawling and bending (or “runs” and 
“turns” respectively) is critical for larval navigation (see the “sense-
guided behavior” section, 4-3, below). Turning behavior confers 
larvae with a chance to change crawling direction and expand their 
area of exploration. Bilateral asymmetric muscular contraction is 

Fig. (2). Motor circuits in Drosophila larvae. Neural connectivity in a hemi-neuromere based on [58,59,64-67,83,85]. See text for details. Md: multidendritic 
neuron, dbd: dorsal bipolar dendritic md neuron, vbd: ventral bipolar dendritic md neuron. For simplicity, motor neurons are shown in a single group, though 
at least two distinct subsets are important for motor coordination [67]. 
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required for turning. The asymmetric neural activity pattern can be 
observed in isolated larval CNS [93], and genetic analysis of axon 
guidance molecules showed that commissural connections in tho-
racic segments are critical for this asymmetric activity. Several 
neurons in the SEZ region have also been shown to be critical for 
the control of turning behavior [94]. 
4.2.4. Head Rearing 
 Rearing behavior, in which larvae raise their anterior end verti-
cally, is rarely observed in larvae crawling on a flat surface [70], 
but it can be induced by light stimulus or rough surface stimulus 
[95]. Genetic analysis showed that this behavior is suppressed by 
5HT and the 5HT-IB receptor in normal conditions [95]. 5HT-IB 
positive neurons in the ventral nerve cord express the leucokinin 
peptide. A receptor for leucokinin is also involved in the regulation 
of rearing behavior. These data suggest excessive rearing behavior 
is suppressed by functions of the neural pathway including 5HT, 
5HT-IB receptor, leucokinin, and leucokinin receptors. Interest-
ingly, the 5-HT1B receptor, which is well-conserved in mammalian 
species, has also been found in adult spinal-transected mice to be 
associated with a different form of rhythmic hindlimb movement—
activation of spinal 5-HT1B receptors using agonists induced 
rhythmic non-forward locomotor movements, unlike 5-HT2A or 5-
HT1A receptor activation, which can elicit basic forward stepping 
[96,97]. 

4.3. Sensory-Guided Behavior and Neural Circuits 
4.3.1. Photon-Guided Behavior 
 Drosophila show negative phototaxis in most of their larval 
stages [98], a behavior that is thought to prompt larvae to burrow 
into fruits, their major nutrition source [98]. Two sets of photosen-
sors are involved in phototaxis of the larvae [99]. The first is the 
Bolwig’s Organ, a set of rhodopsin-expressing single eyes at either 
side of the head. Each eye is composed of 12 photoreceptor neurons 
(PRs), which are further divided into two subclasses based on the 
rhodopsin gene they express: four photoreceptors express the blue-
sensitive rhodopsin5 (rh5-PRs) and eight photoreceptors express 
green-sensitive rhodopsin6 (rh6-PRs) [100]. The second set of pho-
tosensors is the non-rhodopsin-expressing class IV multidendritic 
(md) neurons tiling the larval body wall [101]. Photosensing of 
class IV neurons depends on Gustatory receptor 28b (Gr28b) and 
Transient Receptor Potential A1 (TrpA1) cation channel [101] 
rather than rhodopsins. The two sets of photosensors show distinct 
light sensitivities: the Bolwig’s organ mediates a photophobic re-
sponse at low light intensity, while class IV md neurons detect 
stronger light such as direct sunlight [101]. The distinct sensitivities 
of the two photosensors imply their different function in photo-
response behavior: the Bolwig’s organ guides phototactic (and cir-
cadian, see below) behavior under moderate intensity light, whereas 
the class IV md neurons sense noxiously strong light to elicit quick 
escape behavior [99]. Two pairs of neurons in the brain were identi-
fied to be involved in phototactic behavior [102]. The neurons ex-
press a neuropeptide PTTH (prothoracicotropic hormone), which 
promotes the light sensitivity of the two photosensors (the Bolwig’s 
organ and class IV md neurons) by its endocrine function [103]. It 
has been suggested that PTTH enhances negative phototaxis at the 
end of the larval stage to guide larvae toward a darker site for pu-
pariation [103]. 
 As mentioned in the previous section, larval locomotion in-
volves two basic movements: runs and turns. During runs, the larva 
locomotes by a series of forward peristalses forming a straight 
track, and in turns the larva pauses, sweeps its head laterally, then 
orients the body in a new direction by combining bending and 
crawling [104]. A spatial change in ambient light intensity affects 
the frequency of turns [105]. Larvae use head-sweeping to probe 
the spatial gradient of local luminosity based on temporal process-
ing of sensory inputs, and then pick a darker side for the next run 
[105]. 

 Neural pathways underlying larval phototaxis have been dis-
sected. The Bolwig’s organ consists of two subclasses of photore-
ceptor neurons, Rh5-PRs and Rh6-PRs [99]. Genetic analysis using 
rhodopsin mutants showed that only the Rh5-PRs are essential for 
the negative phototaxis [106]. The Rh5-PRs project their axons to 
three classes of downstream neurons: optic lobe pioneer neurons, 
serotonergic neurons and five lateral neurons (LNs) [107]. Of the 
three targets, the LNs are critical for phototaxis. The five LNs are 
further subdivided into four PDF (pigment-dispersing factor)-
positive cells and one PDF-negative cell (the 5th LN). The PDF-
negative cell is suggested to be the major relay neuron for the pho-
totactic response [105]. While blue light induces strong negative 
phototaxis, green light elicits weaker but significant photo-
avoidance [101]. Green-light avoidance is mediated by Rh6-PR and 
inhibited by GABA [108]. Intriguingly, the concentration of GABA 
in the brain is regulated by the amount of glutamate in the hemo-
lymph, and the glutamate concentration is in turn regulated by Mal-
pighian tubules, organs analogous to the kidneys in mammals [108]. 
4.3.2. Temperature-Guided Behavior 
 The molecular mechanisms of temperature sensing, and neural 
circuits for temperature-guided behavior have been extensively 
studied [109,110]. Within a moderate range of temperatures, larvae 
exhibit thermotaxis behavior [111]. The 1st instar larvae prefer tem-
peratures between 25 and 30 degrees [112,113]. When exposed to 
temperatures out of this range, larvae show positive (from a lower 
temperature toward the optimal) or negative (from a higher tem-
perature to the optimal) thermotaxis [111]. As in the case of photo-
taxis, the thermotaxis behavior includes regulation of running and 
turning. Quantitative analyses showed that the components of the 
regulation may be shared between positive and negative thermo-
taxis [111]. While neural mechanisms for negative thermotaxis 
remain unclear, recent studies reveal the molecular and cellular 
underpinnings of positive thermotaxis. One of the three ganglia in 
the head, known as the dorsal organs, have been shown to be criti-
cal for cooler-temperature sensing and positive thermotaxis [114]. 
The ionotropic channels Ir21a and Ir25a are keys to sensing cooling 
to enable navigation toward a preferred temperature [115]. 
 Upon sensing an extremely high temperature (>39�), larvae 
exhibit a stereotyped escape behavior called rolling, rather than 
thermotaxis. A TRP channel Painless is critical for this behavior as 
a heat-sensor [72]. Another TRP channel, TrpA1 is also required 
for the rolling behavior, although the exact role of the channel re-
mains unclear [116]. Class IV md neurons (see “basic locomotion” 
section, 4-2, above) are the major sensory neurons involved in the 
rolling behavior [117]. Class IV md neurons are polymodal noci-
ceptors sensitive to excessive thermal, mechanical or light stimuli. 
Intriguingly, temporal patterns of calcium influx in class IV neu-
rons possess the information of distinct sensory modality [118]. 
Recent connectomics and genetic analysis identified downstream 
neural circuits of the class IV md neuron that mediate the rolling 
behavior (Fig. 2). The Goro (Japanese for “rolling”) neuron is iden-
tified as a command neuron for rolling behavior [58]. There are two 
major neural pathways from class IV sensory neurons to Goro neu-
rons: one contained within the ventral nerve cord and the other 
passing through the brain. The direct targets of class IV sensory 
neurons are the four Basin neurons (Basin1-Basin4), and from these 
neurons the pathway diverges. Within the ventral nerve cord, some 
Basins project to the A05q and A23g neurons, which in turn project 
to the command neuron Goro. On the other path, Basins project to 
the A00c ascending neurons. The A00c neuron then targets ipsilat-
eral or contralateral neurons in the brain, which in turn project to 
descending neurons innervating the command neuron Goro. Basin 
neurons integrate the information conveyed by the nociceptive neu-
rons (class IV md neurons) and the chordotonal neurons, which 
sense vibration in the air such as that evoked by the wing beating of 
the fly’s natural enemies, the wasps. The vibration sensing en-
hances the class IV neuron-triggered rolling behavior. Thus, the two 
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lines of distinct modality information are integrated at the 1st order 
Basin interneurons, and then are conveyed through multiple path-
ways to finally converge in the command neuron Goro [58]. 
4.3.3. Chemotaxis: Chemical-Guided Behavior 
 Larvae exhibit clear chemotaxis behaviors [119,120]. Neural 
circuits for larval olfaction have been dissected [75]. The larval 
olfactory sensing apparatus is the dorsal organ located at the tip of 
head [121]. A “dome” structure of the dorsal organ is innervated by 
dendrites of 21 olfactory receptor neurons (ORNs). Each ORN 
expresses one conventional ligand-binding OR (olfactory receptor) 
gene and a coreceptor Or83b, which is required for targeting of 
ORs to sensory cilia, where odor is detected [122]. A comprehen-
sive study of responses for OR-odorant pairs showed that olfactory 
receptors are functionally diverse [123]. Each ORN targets projec-
tion neurons (PNs) forming a single glomerulus in the larval anten-
nal lobe (LAL). Accordingly, the connectivity from ORNs to 1st 
order projection neurons is largely 1: 1. The projection neurons 
innervate two targets, the mushroom body and the lateral horn [75]. 
Inhibitory local interneurons within the glomerulus support concen-
tration-invariant odor perception [124]. 
 While the dorsal organs are present at both sides of the animals, 
a single dorsal organ, or even a single ORN is capable of mediating 
the chemotaxis behavior [125]. Bilateral sensing has a role in en-
hancing the accuracy of the chemotaxis [125]. Quantitative studies 
of animal locomotion during chemotaxis behavior require well-
controlled odor administration and high-resolution animal move-
ment detection. Sophisticated methods for the analyses of chemo-
taxis [74,125-127] have been developed to show that larvae detect 
spatial odor gradients by sensing via head casting the odor concen-
tration difference between the left and right side of the animal. As is 
the case with the phototaxis behavior, chemotaxis behavior basi-
cally consists of runs and turns. Prior to turns, larvae exhibit head 
casting, swinging the head sideways to monitor odorant around the 
head and search the gradient. Based on the gradient, larvae make a 
decision on the direction to go [126,128,129]. Optogenetic analyses 
with designed temporal light stimulation have been used to reveal 
the computation underlying chemotaxis: OSNs function as a slope 
detector for a positive gradient and as an OFF detector for a nega-
tive gradient [130]. Furthermore, the relationship between the sen-
sory inputs and motor outputs can be mathematically described by a 
linear-nonlinear-Poisson model [131,132]. 
4.3.4. Mechanical Stimulus-Guided Behavior 
 Several classes of sensory neurons are present in the body wall 
including the multidendritic (md) neurons, external sensory neurons 
and chordotonal neurons [133]. Sensory feedback from these neu-
rons is critical for the regulation of normal peristaltic motion [86-
89]. The sensory neurons on the body wall are classified as type I 
sensilla, including chordotonal organs and external organs, and type 
II md neurons. The md neurons are divided into the bipolar dendrite 
neurons, the tracheal dendrite neurons and the dendritic arbor (da) 
neurons [133]. The 15 da neurons in each abdominal hemisegment 
are further grouped into four classes based on the complexity of 
dendritic arbors, from class I with simple arborization to class IV 
with complex branching [134,135]. Class I neurons are thought to 
be proprioceptors and their activity is required for normal locomo-
tion [87]. Activation of class II neurons elicits accordion-like body 
shrinkage [117]. Class II neurons likely function as touch receptors 
[136]. Class III neurons sense a gentle touch [136] through the 
nompC receptor [137]. Class IV neurons sense multiple nociceptive 
stimuli, and activation of class IV neurons induces stereotyped 
rolling behavior [72,117]. Mechanical nociception is mediated by 
class IV (and/or class III) neurons expressing a DEG/ENaC protein 
Ppk1 [138]. The chordotonal organ senses vibration [139]. As de-
scribed above, integration of nociceptive and vibration inputs en-
hances the rolling escape behavior [58]. This is reminiscent of find-
ings made in cats, where noxious tail or sexual organ stimulation 

(phasic pinching) can trigger per se rhythmic stepping-like move-
ments in the hindlimbs of spinal-transected cats [140,141]. 
4.3.5. Oxygen-Guided Behavior 
 Larvae show exploratory behavior by crawling away from food 
with fewer turns under hyperoxia and hypoxia conditions. In hyper-
oxia, excess oxygen is monitored by an increase in the level of 
H2O2, the endogenous reactive oxygen species (ROS) metabolized 
from oxygen. H2O2 is detected by DEG/ENaC channel Ppk1 ex-
pressed in class IV multidendritic neurons [142]. The level of H2O2 
is controlled by catalase, which breaks it down into a non-toxic 
substance in nearby epithelial cells [142]. Hypoxia-induced ex-
ploratory behavior is mediated by nitric oxide and the cyclic GMP 
pathway [143]. A pioneer study reported that there are two variants 
in larval foraging behavior among the wild-type population: Sitters 
prefer to stay on food, while Rovers explore around the food [144]. 
The gene responsible for this difference was identified to code 
PKG, a cGMP protein-dependent kinase [145]. Since oxygen con-
centration is low around the food (due to oxygen consumption by 
yeast), the variation in larval foraging behavior can be explained by 
a difference in sensitivity to hypoxia caused by the PKG gene varia-
tion [143]. Two atypical soluble guanylyl cyclases, which catalyze 
the synthesis of the intracellular cGMP, are reported to be the oxy-
gen detectors [146]. In addition, H2O2 mediates a nociceptive re-
sponse to harmful ultraviolet radiation [147]. 

4.4. Memory-Guided Behavior 
 Larvae are capable of forming associative memory [148]. In a 
widely-studied association learning paradigm between gustatory 
inputs (unconditional stimuli) and olfactory inputs (conditional 
stimuli), 2M fructose is used as a reward and 4M sodium chloride 
or quinine (0.2% w/w) is used as punishment [75,149]. In the re-
ward association test, odor A is first presented along with the re-
ward. Then, another odor, B, is presented without the reward. After 
repeating the training sets, larvae are allowed to choose between 
odor A and odor B on an agar plate (A+/B test) as a test set. To 
cancel out non-memory factors including innate preference to some 
odors and adaptation of olfactory sensing, the reciprocal test (A/B+ 
test) is employed by another group of larvae. By assembling the 
reciprocal associative data, the memory-related component is ex-
tracted [75]. 
 Neural connectivity of chemosensory circuits has been identi-
fied [121] (see the “chemotaxis” section above). The 21 olfactory 
receptor neurons in each of the dorsal organs target the larval an-
tenna lobe (LAL). Projection neurons in LAL target the mushroom 
body (MB), which possesses up to 34 stereotypic calyx glomeruli 
[150]. The cell number of the MB neurons is estimated to be about 
600, outnumbering 34 projections from LAL, suggesting this is a 
site of network divergence [150,151]. Gustatory sensory neurons 
locate at two distinct sites: external organs including the terminal 
organ, the ventral organ and the dorsal organ, and internal che-
mosensory organs comprising the dorsal, ventral and posterior pha-
ryngeal sense organs [152]. The number of gustatory neurons in 
these organs is about 80 [153]. Four major target regions for the 
gustatory sensory neurons are located in the larval SEG (Sube-
sophageal ganglion) [152]. Potential target neurons in the SEG are 
Hugin peptide positive neurons, which are responsible for feeding 
behavior [154]. 
 As in the case of adult flies [155], the mushroom body is criti-
cal for learning in Drosophila larvae [156]. Octopamine neurons 
are reported to transmit the reward signal [156,157], and a subset of 
dopamine neurons sends punishment signals [158]. Recently, an-
other subset of dopamine neurons was shown to transmit a reward 
signal [159]. These evaluating (valence) signals, initially driven by 
the gustatory stimuli and conveyed to the mushroom body by the 
octopamine/dopamine neurons, are thought to mediate associative 
learning. PNs (projection neurons) in LAL target not only the 
mushroom body but also the lateral horn. Premotor circuits con-
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ducting the odor-triggered behavior may receive the sensory infor-
mation through the lateral horn during innate behavior and through 
the mushroom body for learned behavior [148].  
 Other learning paradigms have been developed. Larvae show an 
innate preference to darkness, and by harnessing this property, vis-
ual inputs can be used as unconditional stimuli [160]. Electric shock 
can also be used as punishment [161]. Using electric shock, relief-
associated learning can be established [162]. 

4.5. Circadian Behavior 
 Whereas the 3rd instar stage lasts for only two days, larvae pos-
sess a circadian rhythm, and larval photophobic behavior shows a 
circadian rhythm [163]. The circadian rhythm requires clock neu-
rons (LNs, lateral neurons) and so-called clock genes: mutations in 
the cycle or clock gene enhance photophobic behavior, whereas 
mutations in period or timeless weaken photophobic behavior 
[163]. The photophobic response requires the visual system (the 
Bolwig’s organ) and the clock neurons. Activation of the Bolwig’s 
organ increases neuronal activity of the PDF (Pigment Dispersing 
Factor peptide)-expressing ventral lateral neurons (LNv) [164]. 
LNv neurons promote larval light avoidance, whereas other clock 
neurons DN1s (dorsal clock neurons) inhibit the behavior [165]. 
The PDF receptor and mGluRA (metabotropic glutamate receptor 
A) cooperate to maintain LNv synchrony and promote strong oscil-
lation of the clock protein Timeless, which suggests that the master 
pacemaker LNv neurons require extracellular inputs to generate 
normal oscillation [166]. Inward rectifier K channel is expressed at 
dusk, which is crucial for larval light avoidance [167]. 

4.6. Feeding Behavior 
 As in vertebrates, insulin signaling is critical for feeding behav-
ior. Hyperactivation of insulin signaling reduces feeding behavior 
[168]. In starved conditions, larvae feed even on noxious foods. 
Upregulation of insulin signaling in NPF (neuropeptide F) receptor 
(a homolog of the mammalian neuropeptide Y) positive neurons 
suppresses this risky feeding behavior [169]. Insulin signaling in 
the mushroom body is critical for feeding behavior [170] and moti-
vation to feed on preferred foods is regulated by octopamine neu-
rons [171]. 
Feeding behavior requires coordinated muscle contractions in the 
mouth. Motor neurons regulating feeding behavior have been char-
acterized [172]. The hugin neuropeptide is reported as a key in 
regulating feeding behavior [173]. Hugin neurons are innervated by 
gustatory sensory organs and target their axons to the pharyngeal 
motor apparatus, to the protocerebrum and to the neuroendocrine 
system [154]. 

4.7. Social Behavior 
 Larvae tend to group on a substrate. They are attracted to a 
patch of food previously occupied by other larvae, suggesting some 
substance produced by other larvae induces the aggregation behav-
ior [174], which may be conspecific [175]. One benefit of larval 
aggregation is predicted to be the improvement of digging and bur-
rowing ability into hard food substrate [176], and it can also affect 
the density of palatable yeast on fruits [177]. However, overcrowd-
ing leads to overproduction of toxic wastes such as ammonia [178]. 
Two long-chain fatty acid cuticular hydrocarbons were identified as 
signals mediating social interaction [179]. These signals are re-
ceived by a single chemosensory neuron expressing DEG/ENaC 
channel subunits, Ppk23 and Ppk29 [179]. Social attraction is also 
regulated by the larval microbiome [180]. Larvae show cooperative 
digging through agar to search for food-free sites suitable for pupa-
tion [181], a behavior controlled during development by neuropep-
tide F, the homolog of mammalian neuropeptide Y [181]. 
 Visual cues are also critical for social interaction in fly larvae. 
Larvae can identify other larvae by using visual information [182], 
and can discriminate the morphology of other larvae, including the 

difference between wild-type and tubby mutant (which have altered 
morphology) larvae [183]. Interestingly, this recognition is estab-
lished in a specific critical period, L2 to early L3 [183]. However, 
in the context of olfactory learning, larvae are not affected by the 
presence of other larvae [184]. 

5. DISEASE MODELS AND DRUG DISCOVERY 

5.1. Fly Larvae as Disease Models 
 Genetic accessibility to motor circuits enables us to tackle mo-
lecular mechanisms in neural disease. Spinal muscular atrophy 
(SMA) is a lethal human disease characterized by motor neuron 
functional alterations and muscle deterioration, and caused by low 
expression levels of the survival motor neuron (smn) gene [185]. 
Drosophila smn mutant larvae show phenotypes similar to the SMA 
patient: muscle, motorneuron (glutamatergic neurotransmission in 
Drosophila) and locomotion defects [186]. Surprisingly, these phe-
notypes are not rescued by restoration of smn expression in either 
muscles or motor neurons. Instead, smn expression in cholinergic 
interneurons and proprioceptive neurons is required to rescue the 
neuromuscular junction (NMJ) and locomotion phenotypes, show-
ing that deficits in sensory-motor circuits should affect the function 
of NMJ non-autonomously. This discovery suggests that activation 
of the motor neural network could ameliorate SMA disease [186] 
(but see also [187]). The smn protein is a component of the RNA 
splicing machinery. A transmembrane gene stasimon was identified 
as the target of smn and loss of stasimon induces similar phenotypes 
to smn mutant larvae in motor circuits [188]. 
 As the studies above show, Drosophila larval motor circuits, 
especially the larval neuromuscular junction, serve as a powerful 
system to gain insight into the molecular mechanisms of neural 
disease and to help in the search for therapeutic tools. In the follow-
ing part, we briefly introduce several recent studies on neural dis-
eases using Drosophila motor system. 
 Charcot-Marie-Tooth disease type 4J is an inherited human 
genetic disorder affecting the peripheral nervous system (PNS) and 
in which FIG 4 is mutated. The Drosophila genome possesses a 
FIG homolog, dFIG4. Knockdown of dFIG in motor neurons short-
ens the size of NMJ synapses, indicating a requirement of FIG for 
formation and/or maintenance of the presynaptic terminals [189]. 
Charcot-Marie-Tooth disease type 2B (CMT2B) is caused by muta-
tions of a small GTPase, Rab7. Expression of a mutated form of 
Rab7 is established as a Drosophila CMT2B model. The studies of 
this model showed that deficits in vesicle transport might be re-
sponsible for the pathology of CMT2B [190].  
 Alpha-Synuclein (alpha-Syn) is one of the key factors for Lewy 
bodies, which are proteinaceous depositions appearing in Parkin-
son’s disease (PD). Genetic analysis using larval neuromuscular 
junctions showed Rab11 is capable of ameliorating defects in larval 
locomotion induced by alpha-Syn [191]. Expression of a mutated 
form of alpha-Syn in dopaminergic neurons in the larvae showed 
stage-dependent motor defects accompanied by loss of DA neurons. 
Chronically exposed to a pesticide rotenone, these larvae showed 
more severe defects, suggesting that this model can be used to ex-
plore potential therapies for PD treatment [192].  
 In amyotrophic lateral sclerosis, TDP-43 shows cytoplasmic 
accumulation and nuclear clearance. Loss of function of Drosophila 
TDP-43, TAR DNA Binding Protein Homolog (TBPH), affects 
larval locomotion [193]. Both loss and gain of function of TDP-43 
affect excitatory amino acid transporters 1 and 2 (EAAT1 and 
EAAT2). Muscle-specific loss of function of TDP-43 affected lo-
comotion [194].  
 App, an amyloid precursor protein, is involved in Alzheimer’s 
disease (AD). Loss of function of App is associated with axonal 
transport defects. Increasing histone acetyltranferase Tip60 (HAT) 
rescued the App-induced axonal transport defects and locomotion 
deficits, suggesting HAT modulators can be used for treatment of 
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cognitive disorders, including AD [195]. A disease model of AD in 
Drosophila was established by expressing the human amyloid pre-
cursor protein and beta-site App-cleaving enzyme (BACE) in fly 
neurons [196]. Over-expression of these two genes in neurons 
causes alterations in NMJ morphology in decreases in presynaptic 
terminal size and postsynaptic protein levels. These phenotypes are 
suppressed by gamma-secretase inhibitor, suggesting the larval 
model can be used to test AD therapeutics [197].  
 The abnormal expansion of the polyglutamine tract in the hu-
man Huntingtin protein (polyQ-hHtt) leads to Huntington’s disease. 
It is known that wild-type Huntingtin provides a protective role for 
the polyQ-hHtt induced defects, and by using larval motor neurons 
as a model, a 23 amino acid-long hHtt peptide was shown to play a 
protective role for the polyQ-hHtt aggregation and the accompany-
ing locomotor dysfunction [198]. 
 Misfolding of the Prion protein, leading to a neurotoxic PrP-
scrapie form, induces the development of neurodegenerative condi-
tions but the physiological roles of wild-type PrP remain elusive. 
Expression of wild-type PrP in larval motor neurons showed that 
PrP enhances synaptic release probability and increases the locomo-
tor activities, which raise the possibility that prion pathogenesis is 
caused not only by a gain of the neurotoxic PrP-scrapie form but 
also by a lack of functional wild-type PrP [199].  
 Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is 
modeled by a loss-of-function mutation of spastin, the gene encod-
ing microtubule-severing AAA ATPase. Rearing larvae at low tem-
perature (18 ) ameliorates larval synaptic defects caused by the 
spastin mutation, which suggests mild hypothermia can be used as a 
therapeutic approach for AD-HSP [200].  
 Cognitive impairments in Williams syndrome are caused by 
LIMK1 hemizygosity. Loss of function mutation of the agnostic 
gene encoding Drosophila limk1 affected the larval locomotion, 
which suggests the usefulness of this mutant for studying molecular 
mechanisms for Williams syndrome [201]. 

5.2. Fly Larvae for Drug Discovery 
 Drosophila larvae have also been a useful model for drug dis-
covery. Calcium imaging of an isolated nervous system of epilepsy 
model larvae provides a rapid method to screen antiepileptic drugs 
[202]. Since a wide range of nanoparticles has been developed, 
efficient testing of their safety and risks for the human health and 
environment is required, and fly larvae are one of the promising 
model systems for toxicology [203]. Psychostimulant amphetamine 
increases extracellular dopamine by eliciting dopamine efflux me-
diated by dopamine transporter. Amphetamine-induced hyper-
locomotion of larvae was used to identify molecular mechanisms 
for dopamine efflux by amphetamine [204]. 
 The interaction between the nervous systems and other tissues 
can be examined using fly larvae. Obesity, cardiovascular disease 
and type 2 diabetes have all been demonstrated to be associated 
with the prenatal nutritional environment. Excess maternal calories 
alters the body composition of the larval offspring for at least two 
generations, which indicates larvae can be used to model transgen-
erational metabolic processes, to study the underlying molecular 
mechanisms, and to search for therapeutic drugs [205]. Deletion of 
the tumor suppressor gene, lethal(2) giant larvae causes brain tu-
mor in larvae. Treatment of potential antitumor drugs rescued the 
brain tumor phenotype and larval locomotion, suggesting larvae can 
be used to screen antitumor drugs [206]. 

6. CONCLUDING REMARKS 
 The Drosophila larvae genome is composed of about the order 
of 104 genes, and around 104 neurons form neural circuits in the 
central nervous system of fly larvae. As of today, despite significant 
advances made possible using fruit flies as a research model, we 
have to conclude that most of these genes and neurons have roles in 

locomotor rhythm and pattern generation that remain incompletely 
understood. However, as summarized briefly in this review, clear 
breakthrough findings have been made in recent years using the 
many powerful genetic tools applicable to research in Drosophila. 
The wide variety of locomotor behaviors, accessibility to single 
genes and neurons, highly conserved neural circuits and gene path-
ways, are only some of the unique advantages of this animal model, 
that can still be considered as a promising tool for many additional 
studies aimed at further dissecting genetically the basic central cir-
cuits involved in the control of locomotion. 
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