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Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions

in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin

andmyoglobin, which are crucial for reversible oxygen binding and transport. By contrast,

high levels of free heme, which may occur in various pathophysiological conditions, are

toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays

a major role for the pathogenesis of prototypical hemolytic disorders including sickle

cell disease and malaria. Moreover, there is increasing appreciation that detrimental

effects of heme may also be critically involved in diseases, which usually are not

associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians

homeostasis of heme and its potential toxicity are primarily controlled by two physiological

systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular

free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme

oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant

cytoprotection via enzymatic degradation of intracellular heme. This review summarizes

current knowledge on the pathophysiological role of heme for various diseases as

demonstrated in experimental animal models and in humans. The functional significance

of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the

therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various

clinical settings is discussed.
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INTRODUCTION

Heme is a ubiquitous molecular complex of iron and the tetrapyrrole protoporphyrin IX.
When bound to hemoproteins, heme plays an essential role for numerous biological processes
in aerobic organisms, which range from reversible oxygen binding to electron transport of
the respiratory chain (Wagener et al., 2003; Hamza and Dailey, 2012). However, despite its
well-established physiological functions, heme can be harmful and critically involved in the
pathogenesis of various diseases. In pathological conditions, such as hemolysis and tissue damage,
large amounts of hemoglobin (Hb), myoglobin and other hemoproteins are released into the
circulation (Reeder, 2010; Schaer et al., 2012). Specifically, in hemolytic disorders cell-free Hb
released from damaged red blood cells (RBCs) can rapidly exhaust the binding capacity of the
scavenger protein haptoglobin (Hp) that neutralizes the pro-oxidant effects of extracellular Hb
(Schaer et al., 2012). Heme iron in non Hp-bound cell-free Hb is rapidly oxidized from the
Fe2+ to the Fe3+ state and forms met-Hb (also termed oxy-Hb), which then releases free heme
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(Bunn and Jandl, 1968; Hebbel et al., 1988; Balla et al., 1993;
Figure 1). After exceeding the binding capacity of the heme
scavenger hemopexin (Hx), free heme accumulates in the plasma
(Muller-Eberhard and Cleve, 1963; Muller Eberhard, 1970;
Tolosano and Altruda, 2002). Free heme may also arise from
myoglobin and other hemoproteins released from damaged cells
during tissue injury (Figure 1). High concentrations of free heme
can be cytotoxic via the formation of reactive oxygen species
(ROS) (Kumar and Bandyopadhyay, 2005; Larsen et al., 2012;
Roumenina et al., 2016). Moreover, due to the lipophilic structure
heme can intercalate with cell membranes resulting in lipid and
protein peroxidation or DNA damage (Aft and Mueller, 1983,
1984; Vincent, 1989).

In this review, we will summarize the current understanding
of how heme toxicity is involved in the pathogenesis of
various clinical conditions and diseases, which include not only
classical hemolytic diseases, such as sickle cell disease (SCD) and
malaria, but also non-typical hemolytic diseases, such as severe
sepsis and atherosclerosis. The roles of heme neutralization
via the plasma scavenger protein Hx and heme-degrading
heme oxygenases (HOs) are highlighted. Finally, the therapeutic
potential of Hx and that of HOs is discussed in clinically relevant
conditions.

PHYSIOLOGICAL FUNCTIONS OF HEME

The tetrapyrrole heme (iron protoporphyrin IX) not only
serves key physiological functions in mammalians, but also in
bacteria and plants. Heme is a prosthetic group in numerous
hemoproteins, in which it occurs in its non-covalently or
covalently bound form (Ponka, 1999; Wagener et al., 2003;
Reeder, 2010; Hamza and Dailey, 2012). For example, heme
b, which is the most abundant form of heme, is non-
covalently bound to the hemoproteins Hb and myoglobin. Both
hemoproteins are of major importance for reversible binding
and transport of oxygen (Reeder, 2010). Moreover, covalently-
bound heme c in cytochrome c is critical for electron transfer
in the mitochondrial respiratory chain (Chance, 1967). Similarly,
heme is a functionally important compound in multiple other
hemoproteins, such as cytochrome-P450s, soluble guanylate
cyclase, cyclooxygenase-2, inducible nitric oxide synthase or
NADPH oxidases, all of which are key enzymes for cellular
homeostasis (Mense and Zhang, 2006). In addition to its role in
hemoproteins, a minor portion of intracellular heme is available
as so-called “free” heme, which is considered to be loosely
associated to proteins other than hemoproteins (Ponka, 1997;
Chiabrando et al., 2014; Soares and Bozza, 2016) and is also
known as the labile or non-determined heme pool. As proposed
for hepatocytes more than four decades ago, free heme has
functional regulatory relevance for cellular metabolic events
(Granick et al., 1975). Although available only to a minor extent
under normal conditions, free heme is an important signaling
molecule for cellular sensing of gases (e.g., oxygen, carbon
monoxide or nitric oxide) or regulation of the circadian rhythm
(Granick et al., 1975; Mense and Zhang, 2006; Burris, 2008;
Girvan and Munro, 2013).

Due to the multiple functions of heme, regulation of intra-
and extracellular heme homeostasis is of major physiological
significance and is tightly controlled at various levels. First of
all, enzymatic synthesis and degradation of heme is mediated
via a complex system that is controlled by feedback mechanisms
in a cell type-specific manner (Abraham et al., 1983; Ponka,
1997; Ryter and Tyrrell, 2000; Wijayanti et al., 2004). Moreover,
heme transporters, such as the heme exporters Feline leukemia
virus subgroup C receptor 1a (FLVCR1a) or ATP-binding
cassette subfamily G member2 (ABCG2) and the heme importer
FLVCR2, mediate shuttling of heme across cellular membranes.
Finally, a number of heme binding proteins (HBPs), which
are discussed in more detail below, can reversibly bind and
release heme to control its intra- and extracellular homeostasis
(Muller Eberhard and Nikkilä, 1989; Chiabrando et al.,
2014). Comprehensive overviews on the multiple physiological
functions of heme have been previously given by other authors
(Chance, 1967; Ponka, 1999; Wagener et al., 2003; Mense and
Zhang, 2006; Hamza and Dailey, 2012; Girvan andMunro, 2013).

HEME TOXICITY IN VARIOUS CELL TYPES

Although, heme toxicity applies to all cells and tissues, distinct
cell types can be differentially affected by its harmful effects.
In RBCs as the major population of heme-containing cells,
heme critically affects aging via long-term intercalation and
destabilization of membranes (Solar et al., 1991; Rifkind and
Nagababu, 2013). Activation of neutrophils by heme leads to
oxygen radical production, chemotaxis and the formation of
neutrophil extracellular traps (Chen et al., 2014). Importantly,
various cell types exhibit different sensitivities to the toxicity
of heme. For example, heme causes cell death in cultures of
endothelial cells at markedly lower concentrations as compared
to macrophages or epithelial cells (Vijayan and Immenschuh,
unpublished observations) suggesting that various modes of
auto-protection against heme toxicity are operative in divergent
types of cells. Moreover, in distinct pathophysiological settings,
cells may exhibit context-specific spatial and temporal regulatory
patterns of adaptation. Herein, we focus on heme toxicity in
endothelial cell and monocyte/macrophage models (Figure 1).

Endothelial Cells
The endothelium, in particular the vascular endothelium,
has important homeostatic functions and is involved in
the pathogenesis of various diseases including inflammatory
cardiovascular disorders (Pober et al., 2009). In hemolysis the
vascular endothelium may encounter increased concentrations
of heme, which can be as high as 100 µM (Muller-Eberhard
et al., 1968; Balla et al., 1993; Wagener et al., 2003).
Autoprotection of the endothelium against heme toxicity is of
critical importance under hemolytic conditions, because heme
can sensitize cell cultures of endothelial cells to prooxidant
damage by granulocytes or toxic ROS (Balla et al., 1991).
Moreover, heme induces inflammatory activation of endothelial
cells in vitro and in vivo as indicated by the up-regulation of
inducible adhesion molecules including vascular cell adhesion
molecule (VCAM)-1 or intercellular cell adhesion molecule
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FIGURE 1 | Schematic on cell-type specific effects of heme toxicity and its role in the pathogenesis of diseases. Free heme can arise in hemolysis from

cell-free hemoglobin (Hb) oxidized to Met-Hb and in tissue damage and injury from intracellular hemoproteins that are released from cells such as myoglobin. Heme

has pro-oxidant, pro-inflammatory and cytotoxic effects and can cause cell type-specific effects in endothelial cells and monocytes/macrophages. Heme is involved in

the pathogenesis of various hemolytic diseases including sickle cell disease (SCD) and malaria, but also in disorders that are not typically associated with hemolysis.

CNS, central nervous system; NLRP3, nucleotide-binding domain and leucine-rich repeat pyrin 3 containing; TLR, toll-like receptor.

(ICAM)-1 (Wagener et al., 1997, 2001) as well as release
of von Willebrand factor and P-selectin from Weibel-Palade
bodies (Belcher et al., 2014; Figure 1). It is also important
to note that auto-protection of endothelial cells against heme
toxicity is markedly impaired in murine and human genetic
deficiency of HO-1, which is the inducible isoform of the
heme-degrading enzyme HO (discussed in more detail below)
(Tenhunen et al., 1968; Abraham et al., 1988; Maines, 1997).
In murine and human HO-1 deficiency the endothelium is
afflicted by major pro-oxidant damage and detachment from
glomerular basal membranes (Poss and Tonegawa, 1997a; Yachie
et al., 1999; True et al., 2007). Remarkably, endothelial HO-
1 gene expression is inversely linked with platelet endothelial
cell adhesion molecule (PECAM)-1, a key endothelial surface
receptor, suggesting a specific interrelation between these two
proteins in the endothelium (Saragih et al., 2014).

Macrophages/Monocytes
Macrophages are key cells of the immune system controlling
homeostasis of immunological regulation, host defense and
wound healing (Mosser and Edwards, 2008). Macrophages
are resistant to relatively high concentrations of heme in

comparison to endothelial cells. A major function of spleen
and liver tissue macrophages is the elimination of circulating
senescent RBCs. Thus, it is not surprising that these cells exhibit
constitutive high expression of HO-1 in vivo to protect against
heme toxicity (Bissell et al., 1972; Immenschuh et al., 1999,
2003). Interestingly, differentiation of liver and spleen tissue
macrophages is modulated via a heme-dependent pathway that
involves the nuclear heme-regulated protein BTB domain and
CNC homolog 1 (Bach1) (Haldar et al., 2014). Major relevance
of macrophages for heme recycling and iron homeostasis
has also been demonstrated in HO-1 knockout mice, that
exhibit reduced numbers and function of erythrophagocytosing
macrophages (Kovtunovych et al., 2010). It is important to note
that heme, but not its analogs or precursors, activates murine
macrophages via toll-like receptor (TLR)-4 (Figueiredo et al.,
2007). Moreover, cell-free Hb and its derivative heme, which
can arise from damaged RBCs, synergistically up-regulated TLR-
dependent pro-inflammatory responses in primary mouse bone-
marrow derived macrophages (Lin et al., 2010). The underlying
mechanistic details on the interactions of heme with TLRs and
the potential intracellular signaling cascades that may mediate
these functional interactions are under investigation (Dutra and

Frontiers in Pharmacology | www.frontiersin.org 3 April 2017 | Volume 8 | Article 146

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Immenschuh et al. Heme as a Therapeutic Target

FIGURE 2 | Therapeutic interventions for the neutralization of heme. The antioxidant scavenger proteins haptoglobin (Hp) and hemopexin (Hx) bind and

neutralize extracellular Hb and free heme in plasma, respectively. HO-1 is the inducible isoform of HOs, which enzymatically degrade intracellular heme to produce

iron, carbon monoxide and biliverdin, which is converted into bilirubin by biliverdin reductase. Hx and Hp may be applied as a potential heme-neutralizing therapy via

systemic intravenous administration. Potential therapies of HO-1 may be performed via targeted pharmacological induction. LRP1, low density lipoprotein

receptor-related protein 1.

Bozza, 2014; Soares and Bozza, 2016). More recently, heme has
also been shown to activate the nucleotide-binding domain and
leucine-rich repeat pyrin 3 containing (NLRP3) inflammasome
in murine macrophages in vivo and in vitro (Dutra et al., 2014;
Figure 1).

In conclusion, various cell types are differentially affected
by the toxicity of heme and play distinct roles for the control
of local and systemic heme homeostasis in physiological and
pathophysiological conditions.

ROLE OF HEME IN THE PATHOGENESIS
OF DISEASES

A growing number of reports has demonstrated a critical role
of heme toxicity in the pathogenesis of various diseases (Muller
Eberhard and Nikkilä, 1989; Ryter and Tyrrell, 2000; Wijayanti
et al., 2004; Kumar and Bandyopadhyay, 2005). In severe
hemolysis or tissue injury excess amounts of extracellular Hb,
myoglobin and free heme overwhelm the binding capacity of the
plasma scavengers Hp and Hx and cause systemic or local heme-
dependent pathologies (Figures 1, 2). Besides, heme can have
indirect toxic effects in the pathogenesis of atherosclerosis (Nagy
et al., 2010) or irritant gas-induced acute lung injury (Aggarwal
et al., 2016). Heme may also act as a secondary hit that causes
disease manifestation of a preexisting clinical risk constellation

(Frimat et al., 2013). In this section, different roles of heme for
the pathophysiology of experimental animal models and human
disorders are discussed.

Animal Models of Human Diseases
Hemolytic Diseases: SCD and Malaria
Important findings on the pathogenic potential of heme have
been reported in experimental mouse models of SCD and
malaria. Although of different origin, pathologies in both
disorders are primarily linked to large amounts of hemoproteins
released from damaged RBCs. SCD is a genetic disorder
caused by an amino acid exchange in the Hb β-chain, which
leads to the production of abnormally shaped sickle cells
prone to intravascular hemolysis (Ingram, 1957). Experimental
SCD mouse models seem to exhibit typical signs of vascular
inflammation (Belcher et al., 2003). Furthermore, as indicated
by leukocyte infiltration and thrombosis, heme toxicity is
likely associated with phenotypical alterations of the vascular
endothelium (Belcher et al., 2014; Keleku-Lukwete et al., 2015).
Independently, heme was responsible for pro-inflammatory M1
polarization of macrophages (Vinchi et al., 2016), formation of
neutrophil extracellular traps (Chen et al., 2014), and triggering
of acute chest syndrome (Ghosh et al., 2013) in SCD mice. In
malaria, which is a protozoan disease, hemolysis is caused by
infection with and replication of Plasmodium in RBCs (Miller
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et al., 2002). In mouse models of experimental malaria release
of extracellular Hb and heme from damaged RBCs also had
major pro-oxidant and pro-inflammatory effects. Hemolysis-
derived heme was directly involved in inflammatory pathologies
of experimental murine cerebral and non-cerebral malaria
(Pamplona et al., 2007; Seixas et al., 2009).

Central Nervous System (CNS) Hemorrhage
CNS hemorrhage occurring spontaneously, like in subarachnoid
hemorrhage and stroke or because of traumatic injuries, can be
closely associated with the toxicity of cell-free Hb and heme.
In a feline model exposure to cell-free Hb caused marked pro-
oxidant damage of nerve cells in vivo, which was primarily due
to lipid peroxidation (Sadrzadeh et al., 1987). Similar findings
have been reported in an experimental rabbit model of preterm
pup intraventricular hemorrhage, in which Hb and heme led to
inflammatory changes and cell death in affected tissues (Gram
et al., 2014). Furthermore, heme toxicity played an important
role in the pathogenesis of brain injury in a mouse model of
intracerebral injection of cell-free Hb (Ma et al., 2016).

Sepsis
Sepsis and its more complicated manifestations, severe sepsis
and septic shock, are characterized by an excessive systemic
inflammatory response to various acute injuries (Bone, 1991;
Gotts and Matthay, 2016). The pathophysiology of this complex
disorder is not understood in detail (Angus and van der Poll,
2013). Recently, cell-free Hb and heme have been shown to be
involved in the pathogenesis of severe sepsis in a mouse model of
cecal ligation and puncture polymicrobial sepsis in vivo (Larsen
et al., 2010). Similarly, pro-inflammatory effects of extracellular
Hb and heme from degraded erythrocytes worsened the survival
rate in an experimental rat model of E. coli-mediated sepsis
(Griffiths et al., 1995).

Transfusion of RBCs
Numerous reports have associated transfusions of packed RBCs
after prolonged storage with increased morbidity and mortality
in trauma-induced hemorrhage among other conditions.
Detrimental effects of stored RBCs have been associated with
the so-called “storage lesion,” which is characterized by RBC
alterations including loss of metabolites, decreased cell volume
with accompanying formation of echinocytes and release of free
Hb due to hemolysis (Lelubre et al., 2009). The storage lesion has
been directly linked to the toxicity of cell-free Hb and heme in
a model of guinea pigs, in which transfusion of senescent RBCs
was more harmful if compared with fresh RBC preparations
(Baek et al., 2012). Similarly, others have demonstrated that
heme toxicity due to RBC storage lesion markedly aggravated the
outcome in two independent mouse models of trauma-induced
hemorrhage (Stapley et al., 2015; Graw et al., 2016). Finally,
transfusion of senescent RBCs aggravated inflammation and
worsened outcome in a canine model of infectious pneumonia
(Wang et al., 2012a).

Disorders in Kidney, Heart, and Lung
Heme toxicity is also involved in the pathogenesis of diseases
in solid organs such as kidney. For example, experimental

rhabdomyolysis, in which large amounts of intracellular
hemoproteins such as myoglobin are released, cause heme-
dependent acute kidney injury (AKI) (Nath et al., 1992).
Moreover, the detrimental pro-oxidant effects of hemoproteins
were shown to be directly involved in kidney cell damage
in vitro and in vivo (Nath et al., 1995). More recent studies
in mouse models have extended these earlier findings by
demonstrating that the heme degradation product iron and
the iron-sequestering protein ferritin are critically associated
with heme-dependent renal injury (Zarjou et al., 2013; Bolisetty
et al., 2015). Comprehensive overviews on the pathophysiology
of heme toxicity in kidney diseases have been previously given
(Tracz et al., 2007; Lever et al., 2016). As to cardiac disorders
increased levels of heme seem to aggravate ischemia-reperfusion
injury in experimental murine heart disease. This novel finding
suggests an important role for heme in the pathogenesis of
ischemic cardiomyopathy (Sawicki et al., 2015). Remarkably,
heme toxicity was also critically involved in acute lung injury due
to bromine inhalation in a mouse model (Aggarwal et al., 2016).

Human Diseases
Mouse models are useful to explore basic pathophysiological
disease mechanisms and to investigate novel therapeutic
interventions. However, species-specific differences in
fundamental regulatory systems between mouse and human
have been pointed out, e.g., for the immune system (Mestas and
Hughes, 2004), indicating that experimental findings in animal
models may not always be translatable into clinical applications.
It is also important to note that human disorders are in general
more complex in comparison to mouse disease models, which
are frequently caused by single mechanisms (Warren et al.,
2015). Major discrepancies in various inflammatory conditions
of mouse and human have been reported for genomic responses
and are controversially discussed (Seok et al., 2013).

SCD and Malaria
Patients with hemolytic disorders such as SCD exhibit increased
serum levels of heme (Muller-Eberhard et al., 1968) and develop
acute and/or chronic manifestations of heme toxicity (Nath and
Katusic, 2012). Remarkably, in SCD patients heme-carrying RBC
membrane microparticles were responsible for endothelial cell
damage (Camus et al., 2015) and heme specifically affected T
cell polarization via interaction with CD16+ monocytes (Zhong
et al., 2014). A direct pathogenic role for heme toxicity has
also been demonstrated in human malaria. Heme markedly
down-regulated prostaglandin and transforming growth factor-β
production inmalaria (Andrade et al., 2010).Moreover, increased
concentrations of hemewere associated with higher susceptibility
to malaria (Mendonca et al., 2012) and disease outcome was
linked with systemic levels of extracellular heme in these patients
(Elphinstone et al., 2016).

Sepsis
Similar to findings in mouse models, heme appears to play a role
in the pathogenesis of severe sepsis in humans as indicated by
lower serum levels of Hx, which decrease due to increased levels
of heme (Larsen et al., 2010). Accordingly, poor outcome in sepsis
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patients has been associated with decreased serum levels of Hp
and Hx (Janz et al., 2013; Lin et al., 2015). In the context of
sepsis it is important to note that mice exhibit markedly higher
tolerance to endotoxin relative to humans (Schaedler and Dubos,
1961).

Transfusion of Packed RBCs
Transfusion of packed RBCs after prolonged storage has been
associated with an increased risk of death in critically ill patients
(Wang et al., 2012b). Therefore, the potential risk of transfusing
senescent RBCs needs to be addressed by prospective controlled
studies to clarify this issue in more detail.

Cardiac Diseases (Atherosclerosis, Ischemic

Cardiomyopathy, and Heart Failure)
Hemolysis-derived heme may be indirectly involved in the
pathogenesis of atherosclerosis. The oxidation of lipoproteins
and other plasma proteins by pro-oxidant iron from cell-free
Hb and heme plays an important pathophysiological role for the
complex sequence of vascular events that cause atherosclerosis
(Jeney et al., 2002, 2014; Nagy et al., 2010). In clinical studies
on chronic ischemic cardiomyopathy increased levels of heme
have been observed in cardiac biopsies from patients with
failing hearts (Sawicki et al., 2015). Independently, up-regulation
of heme levels have been associated with a worse clinical
outcome in patients with heart failure (Khechaduri et al., 2013).
Interestingly, heme toxicity has recently been implicated in the
pathogenesis of heart failure via affecting the contractile function
of cardiomyocytes (Alvarado et al., 2015).

Atypical Hemolytic Uremic Syndrome
A recent clinical study of patients with atypical hemolytic
uremic syndrome (a rare thrombotic microangiopathy primarily
observed in the kidney) identified heme as a critical secondary
hit that triggers the clinical manifestation of this disorder.
Specifically, heme in plasma from patients with atypical
hemolytic uremic syndrome activated the alternative pathway of
the complement cascade, which in turn caused endothelial cell
activation (Frimat et al., 2013). These findings suggest that heme
may have similar effects in the pathophysiology of other vascular
inflammatory diseases.

Diagnostic Tests for Determining Free
Heme Levels in Plasma and Tissues
A major hurdle for a better understanding of heme toxicity
in clinical practice is the lack of a reliable diagnostic test for
determining levels of free heme in plasma and tissue biopsies.
Currently, the severity of hemolysis and the potential toxicity of
heme can only be indirectly estimated via determining plasma
concentrations of Hp and Hx, both of which inversely correlate
with increased levels of cell-free Hb and free heme in severe
hemolysis (Muller-Eberhard et al., 1968). Thus, a diagnostic test
for determining heme concentrations in biological fluids and
tissues is urgently needed.

In conclusion, experimental animal models of human
disease and studies in human disorders confirm the pertinent
pathophysiological role of heme toxicity; however, the

appropriate test systems for detection of free heme are still
missing.

PROTECTION AGAINST HEME TOXICITY
VIA HEMOPEXIN AND THE HEME
OXYGENASE SYSTEM - ITS THERAPEUTIC
POTENTIAL

Regulation of Physiological Heme
Homeostasis by Hemopexin (Hx) and
Heme Oxygenases (HOs)
In mammalians heme homeostasis is primarily controlled by
two regulatory systems. Firstly, the plasma scavenger protein Hx
neutralizes and eliminates excess free heme from the circulation.
Secondly, intracellular heme is primarily enzymatically degraded
via the heme-catabolizing HOs, in particular by its inducible
isoform HO-1.

Hemopexin (Hx)
The plasma protein Hx binds non-covalently heme with the
highest affinity of any known protein (KD 10−14) (Muller-
Eberhard and Cleve, 1963; Muller Eberhard, 1970; Tolosano
and Altruda, 2002) via its characteristic heme-binding pocket
(Paoli et al., 1999). The major function of Hx appears to be
neutralization and scavenging of excess free heme from the
circulation. Up-take of heme-Hx complexes in the liver (Potter
et al., 1993) is mediated via the scavenger receptor low-density
lipoprotein receptor-related protein-1 (LRP1, synonymous with
CD91) (Hvidberg et al., 2005; Vercellotti et al., 2016). Hx belongs
to the acute-phase reactants, which include a number of plasma
proteins such as C-reactive protein, α2-macroglobulin and α1-
antitrypsin that are up-regulated in the liver as part of a systemic
inflammatory response (Heinrich et al., 1990; Baumann and
Gauldie, 1994). Hx is induced during the acute-phase response in
rodents, but not in human, which might be due to evolutionary
differences in rodent and human Hx gene promoters (Heinrich
et al., 1990; Poli et al., 1990; Immenschuh et al., 1994). This
species-specific difference of Hx gene regulation in rodents and
humans correlates with the recently reported findings that Hx
is up-regulated during sepsis in mice, but down-regulated in
humans (Lin et al., 2015). Hx knockout mice exhibit a normal
phenotype in non-challenged conditions, but are afflicted with
heme-mediated renal and hepatic damage in conditions of
experimental hemolysis (Tolosano et al., 1999; Vinchi et al.,
2008). Remarkably, heme-mediated pathologies are aggravated in
Hx/Hp double knockout mice (Tolosano et al., 2002) suggesting
that these two plasma proteins represent a sequential protection
system against the detrimental effects of hemolysis (Deuel et al.,
2015; Smith and McCulloh, 2015; Figure 2).

Other Heme Binding Proteins (HBPs)
In addition to Hx, other HBPs are likely to be involved in
the regulation of systemic extracellular and also intracellular
homeostasis of heme and may counteract its pro-oxidant
effects. The functional significance of most known HBPs for
neutralization and transport of heme is only incompletely
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understood. However, it has been pointed out that the specific
heme-protein interactions of a given HBP determine its
protective potential against the pro-oxidant effects of heme,
respectively (Vincent et al., 1988; Vincent, 1989). Another
extracellular HBP with major physiological significance is
albumin, which binds heme with markedly lower affinity than
Hx (KD 1.2 × 10−8) (Little and Neilands, 1960), but exhibits
markedly higher plasma concentrations relative to Hx (Adams
and Berman, 1980) (Table 1). Other known extracellular plasma
HBPs are α1-microglobulin (Allhorn et al., 2002) and α1-
antitrypsin (Karnaukhova et al., 2012) (Table 1). Intracellular
binding of heme by HBPs may not only protect against
its potential pro-oxidant toxicity, but may be also involved
in trafficking of heme between different cell compartments
(Muller Eberhard and Nikkilä, 1989; Liem et al., 1994;
Yuan et al., 2016). Thus, the specific functional roles of
intracellular candidate HBPs inmammalians such as glutathione-
S-transferases, heme-binding protein/ liver fatty-acid binding
protein, heme-binding protein 23/peroxiredoxin 1, p22 heme
binding protein and glyceraldehyde-3-phosphate dehydrogenase
(Harvey and Beutler, 1982; Vincent and Muller Eberhard, 1985;
Iwahara et al., 1995; Taketani et al., 1998; Chakravarti et al., 2010)
need to be investigated in more detail (Table 1).

Heme Oxygenases (HOs)
Enzymatic degradation of intracellular heme is primarily
mediated via the HO system independent of P450s (Tenhunen
et al., 1968; Maines and Kappas, 1974; Maines, 1997). The HO
reaction has three major products: the signaling gas carbon
monoxide (CO), iron and biliverdin, which is subsequently
converted into bilirubin by biliverdin reductase (Kutty and
Maines, 1981; Figure 2). Two genetically distinct isoforms of
HO are known. HO-2 represents the constitutive non-inducible
isoform and is primarily expressed in brain and testes (Trakshel
et al., 1986). By contrast, the inducible HO isoform, HO-1,
is expressed in almost all cells and tissues, and is highly up-
regulated by heme or other stress stimuli to provide protection
against oxidative damage and apoptosis (Maines, 1997; Ryter
et al., 2006). The cytoprotective functions of HO-1 are directly
linked with that of the iron-sequestering protein ferritin, which
is co-ordinately up-regulated with HO-1 and neutralizes the
pro-oxidant effects of the HO product iron (Balla et al., 1992;
Figure 2). Importantly, genetic deficiency in mouse models
and/or genetic deficiency and functional defects of HO-1
in humans are associated with major pro-oxidant and pro-
inflammatory pathologies and with disturbed iron metabolism
(Poss and Tonegawa, 1997a,b; Yachie et al., 1999; Kapturczak
et al., 2004; Greil et al., 2016). In contrast, deficiency of the
HO-2 gene in mice does not cause major heme-dependent
pathologies (Poss et al., 1995) suggesting that HO-1 might
be the more critical HO isozyme for counter-acting heme
toxicity (Wagener et al., 2003; Kumar and Bandyopadhyay,
2005; Gozzelino et al., 2010). Studies in a conditional HO-1
knockout mouse model with targeted deletion in myeloid cells
revealed a critical role of HO-1 for the regulation of innate
immunity (Tzima et al., 2009). It is also interesting to point
out that patterns of mouse and human HO-1 gene expression

are differentially regulated in a species-specific manner (Sikorski
et al., 2004). For example, HO-1 gene expression is up-
regulated by lipopolysaccharide in mouse macrophages, but
down-regulated in human macrophages (Miyazaki et al., 2010;
Dorresteijn et al., 2015). Notably, the proximal promoter region
of the human HO-1 gene, but not that of the mouse, contains a
GT-microsatellite polymorphism, which may be responsible for
interspecies-specific regulatory differences (Yamada et al., 2000).
Finally, higher inducibility of the human HO-1 gene by oxidative
stress has been associated with protection against cardiovascular
disorders (Exner et al., 2004; Pechlaner et al., 2015) and against
acute chest syndrome in SCD (Bean et al., 2012). Comprehensive
overviews on the multiple roles of the HO system in health and
disease have previously been given (Maines, 1997; Immenschuh
and Ramadori, 2000; Abraham and Kappas, 2005; Ryter et al.,
2006).

Applications of Hemopexin and Heme
Oxygenases for Potential Therapeutic
Interventions
Various therapeutic strategies that may apply specific
neutralization of heme toxicity via either Hx or HOs are
conceivable in clinical settings and will be discussed in the
following.

Hemopexin
Hx protects against heme toxicity not only in animal models of
hemolytic disorders such as SCD and malaria (Ghosh et al., 2013;
Belcher et al., 2014), but also in other diseases, which are not
typically associated with hemolysis such as sepsis (Larsen et al.,
2010), cardiac disease (Vinchi et al., 2013) and bromine-induced
acute lung injury (Aggarwal et al., 2016) (Table 2). It is plausible
that the salutary effects of Hx described in animal disease models
are translatable into the clinic. Hx might also have a prophylactic
potential in clinical risk constellations, in which heme triggers
overt disease manifestation. For example, pretreatment with Hx
before transfusion of senescent RBCs improved the outcome
in different mouse models of trauma-induced hemorrhage via
neutralization of heme (Stapley et al., 2015; Graw et al., 2016).
The role of Hx administration as a preventive intervention is also
supported by findings of others (Tolosano et al., 2010). Hence, it
is conceivable that patients that might benefit from prophylactic
Hx treatment are those with comorbidities (i.e., diabetes mellitus,
hypertension and older age) and an increased risk for AKI, with
a high likelihood for the need of RBC transfusion during major
surgery. Notably, in Japan Hp has been approved for medical
indications, in which renal protection is required such as in
massive transfusion or thermal injury (Schaer et al., 2012). Due
to the known protective effects of Hx and Hp in hemolysis it is
reasonable to assume that combined treatment with these two
proteins may provide a synergistic protection in clinical settings
of severe hemolysis (Schaer et al., 2014; Deuel et al., 2015; Graw
et al., 2016).

Pharmacological applications of Hx
Intravenous administration of Hx appears to be a straightforward
approach to neutralize free heme toxicity in hemolytic
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TABLE 1 | Heme binding proteins (HBPs) in mammalians.

Heme binding protein Concentration KD References

EXTRACELLULAR

Hemopexin 0.6–1.2 g/L 1 × 10−14 Muller-Eberhard and Cleve, 1963; Muller Eberhard, 1970

Albumin (human) 35–53 g/L 1.2 × 10−8 Little and Neilands, 1960; Adams and Berman, 1980

α1-Microglobulin 0.03 g/L 1 × 10−6 Allhorn et al., 2002

α1-Antitrypsin 1.3–2.5 g/L 2 × 10−8 Karnaukhova et al., 2012

INTRACELLULAR

Glutathione-S transferases 3–5% of total protein (liver) 1 × 10−7 Harvey and Beutler, 1982

Heme binding protein/Liver fatty acid binding protein 3–5% of total protein (liver) 2 × 10−7 Vincent and Muller Eberhard, 1985

Heme binding protein 23/peroxiredoxin 1 0.1% of total protein (liver) 5.5 × 10−8 Iwahara et al., 1995

p22 heme-binding protein n. d. 2.5 × 10−8 Taketani et al., 1998

Glyceraldehyde-3-phosphate dehydrogenase 10% of total protein (skeletal muscle) n. d. Chakravarti et al., 2010

TABLE 2 | Hemopexin (Hx) as a therapy against heme toxicity in experimental disease models.

Experimental disease model Therapeutic strategy Protective effect References

Heme-induced acute chest syndrome in

SCD mouse (C57BL/6)

Injection of single dose of recombinant human

Hx (1 mg/mouse)

Heme clearance from plasma

Prevention of acute lung injury

Reduced mortality

Hx treatment at the time of haemolytic crisis

onset prevents respiratory failure

Ghosh et al., 2013

Cecal-ligation puncture induced severe

sepsis in mouse (BALB/c)

Injection of multiple doses of rabbit Hx (50

mg/kg)

Reduced tissue damage.

Reduced mortality

Larsen et al., 2010

SCD mouse (C57BL/6)/β-thalassemia

mouse (C57BL/6)

Injection of multiple doses of Hx (0.7

mg/mouse)

Attenuation of endothelial cell activation

Decreased iron accumulation in the heart

Normalized blood pressure and improved

cardiac function

Vinchi et al., 2013

SCD mouse (NY1DD (C57BL/6)) Liver-targeted mouse Hx gene delivery by

Sleeping Beauty transposase system

Increased expression of Nrf2 and HO-1

Reduced heme induced microvascular stasis

Vercellotti et al., 2016

Resuscitation after hemorrhagic shock in

mouse (C57BL/6)

Injection of single dose of Hx (7.5 mg/mouse) Reduced circulating free heme levels

Reduced expression of pro-inflammatory

cytokine IL-6

Reduced mortality

Graw et al., 2016

Resuscitation after trauma-induced

hemorrhage in mouse (C57BL/6)

Injection of single dose of Hx (0.5 mg/mouse) Decreased BAL protein levels

Reduced mortality

Stapley et al., 2015

BAL, bronchoalveolar lavage; SCD, sickle cell disease.

conditions. Thus, Hx may be applied as a human blood-derived
product, similar to other plasma proteins, such as albumin,
α1-antitrypsin or immunoglobulins, which are well-established
therapies. Alternatively, it is also feasible that Hx might become
available as a recombinant protein (Satoh et al., 1994; Hada
et al., 2014). Potential side effects of Hx treatment may be caused
by its known protease activity, which has been associated with
inhibition of leukocyte chemotaxis and increased mortality in
a mouse model (Cheung et al., 1999; Bakker et al., 2005; Spiller
et al., 2011). A more recent study, however, indicated that the
protease activity of Hx might not be of major clinical relevance
(Lin et al., 2016).

In conclusion, the plasma protein Hx has major therapeutic
potential for the neutralization of heme toxicity in various
clinically relevant conditions.

Heme Oxygenase-1
HO-1 has been shown to provide specific protection against heme
toxicity in different animal models including mouse models of

SCD (Belcher et al., 2006, 2010), malaria (Pamplona et al., 2007;
Seixas et al., 2009) and rhabdomyolysis (Wei et al., 2011). In
particular, the beneficial effects of HO-1 have been demonstrated
in mouse models, in which HO-1 has been either genetically
deleted or overexpressed (Table 3). However, when HO-1 is
targeted for therapeutic purposes, a major challenge is that HO-1
appears to be only protective when up-regulated before onset of
an experimental injury. The latter has been confirmed in rodent
models of experimental pancreatitis and colitis suggesting that
HO-1 might be a primary option for prophylactic interventions
(Nakamichi et al., 2005; Paul et al., 2005). Comprehensive
overviews on challenges with potential translational applications
of HO-1 in the clinic have recently been given for renal diseases
(Lever et al., 2016).

Pharmacological approaches that target HO-1
In contrast to the straightforward therapeutic application of
Hx as systemically administered intravenous drug, potential
interventions with HO-1 appear to be more complex. Multiple
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TABLE 3 | Heme oxygenase (HO)-1 as a therapy against heme toxicity in experimental disease models.

Experimental disease model Therapeutic strategy Specific protective effect References

Glycerol-induced acute kidney injury in rat

(Sprague Dawley)

Preconditioning of HO-1 using

hemoglobin (30 mg/100 g body

weight) 20 h prior to injection with

glycerol

Protection from kidney failure

Reduced mortality

Nath et al., 1992

Glycerol-induced acute kidney injury in mouse

(C57BL/6)

Preconditioning of HO-1 using

GM-CSF (200 mg/kg body weight) for

5 consecutive days prior to injection

with glycerol

Reduced blood urea nitrogen levels

Reduced tissue damage

Reduced mortality

Wei et al., 2011

Exposure to bromine gas in mouse (C57BL/6) Genetic overexpression of human

HO-1 using (BAC)

Attenuated bromine-induced heme levels

in plasma and lung

Reduced bromine-induced

cytokine/chemokine levels

Reduced mortality

Nagy et al., 2010

Malaria PCC-infected mouse (DBA/2) Liver-specific overexpression of HO-1

using recombinant adenovirus

Blocked hepatic failure indicated by the

decrease in AST and reduced tissue

necrosis

Prevented mortality

Seixas et al., 2009

S+S-Antilles SCD mouse (C57BL/6) Liver targeted rat HO-1 gene delivery

by Sleeping Beauty transposase

system

Reduced hypoxia-induced stasis in dorsal

skin fold chambers

Belcher et al., 2006

AST, aspartate amino transferase; BAC, bacterial artificial chromosome.

in vitro and in vivo studies have revealed that specific up-
regulation of HO-1 via heme or low doses of Hb provide
beneficial effects in various preclinical models of experimental
pathological conditions such as endotoxin-mediated lung injury
in rats (Otterbein et al., 1995), human immunodeficiency
syndrome (Levere et al., 1991; Devadas and Dhawan, 2006) or
diabetes (Ndisang et al., 2009) (for reviews see Ryter et al.,
2006; Abraham and Kappas, 2008). Although, heme has been
established in the clinic for treatment of acute attacks in hepatic
porphyrias (Bonkowsky et al., 1971), it is important to note
that administration of heme for other indications in clinical
practice may be critical for two reasons. First, due to its
detrimental effects, which have been discussed above, heme may
aggravate inflammatory disorders. Second, heme preparations
can be unstable and cause considerable side effects such as
coagulopathies and vasculitis (Glueck et al., 1983; Goetsch and
Bissell, 1986; Simionatto et al., 1988). Hence, the feasibility
of heme as a therapy for broad medical indications appears
to be questionable and needs further evaluation in clinical
practice. A compound with better potential for translation
into the clinic might be heme arginate, which appears to be
less toxic than heme (Jeney et al., 2002) and is an approved
therapy for treatment of hepatic porphyrias in various European
countries (Mustajoki et al., 1986; Kordac et al., 1989). Notably,
heme arginate was found to up-regulate HO-1 not only in
healthy individuals (Doberer et al., 2010), but also in patients
receiving deceased donor renal transplants in a recent phase
IIB trial (Thomas et al., 2016). Nevertheless, further studies are
required to establish the feasibility of heme arginate for clinical
applications.

Further potential therapeutic applications of HO-1 may
involve its cell type-specific modulation via pharmacological
interventions. To this end we and others have identified

regulatory pathways of HO-1 induction such as the protein
kinase A and G signaling cascades in hepatocytes or
the phosphatidyl-inositol-3 kinase (PI3K)/Akt cascade in
mononuclear cells as putative drug targets (Immenschuh et al.,
1998a,b; Wijayanti et al., 2005; Paine et al., 2010; Motterlini
and Foresti, 2014). Independently, HO-1 may be regulated
via established pharmaceutical compounds that have already
been approved for clinical indications. For example, approved
pharmacological compounds that are known to up-regulate
HO-1 are statins (Grosser et al., 2004; Lee et al., 2004) and
5-aminosalicylic acid (Horvath et al., 2008). Novel candidates for
targeted HO-1 up-regulation may be identified among members
of the rapidly growing number of HO-1 inducing dietary and
phytochemical compounds such as curcumin, quercetin or
carnosol (Balogun et al., 2003; Martin et al., 2004; Peterson et al.,
2009; Shen et al., 2013; Son et al., 2013) (for reviews see Ryter
et al., 2006; Li et al., 2007; Abraham et al., 2009; Paine et al.,
2010; Lundvig et al., 2012; Calay and Mason, 2014; Motterlini
and Foresti, 2014). Finally, it is remarkable that pharmacological
up-regulation of nuclear factor E2 related-factor 2 (Nrf2), which
is a key nuclear regulator of HO-1, provides specific protection
against heme toxicity in mouse models of SCD (Keleku-Lukwete
et al., 2015; Belcher et al., 2016).

The therapeutic potential of genetic strategies that apply
targeted overexpression of HO-1 for the clinic is currently
not clear. Specific overexpression of HO-1 via vector-based
genetic approaches in endothelial cells and adipocytes have been
demonstrated to have beneficial effects in transplantation and
hypertension (Chauveau et al., 2002; Cao et al., 2011, 2012;
Petersen et al., 2011).

In conclusion, further studies are required before therapeutic
strategies that specifically target HO-1 may become applicable in
clinical practice.

Frontiers in Pharmacology | www.frontiersin.org 9 April 2017 | Volume 8 | Article 146

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Immenschuh et al. Heme as a Therapeutic Target

CONCLUSIONS AND OUTLOOK

Conclusions
1. Excess free heme is toxic via pro-oxidant, cytotoxic and pro-

inflammatory effects.
2. Heme toxicity plays a major pathophysiological role in

classical hemolytic disorders such as SCD andmalaria, but also
in diseases, which are not typically associated with hemolysis
including sepsis and atherosclerosis.

3. The scavenger protein Hx and the HO enzyme system
specifically control homeostasis and toxicity of heme in
physiological and pathophysiological conditions.

Outlook
1. Pharmacological applications of Hx and HOs are promising

therapeutic options to target the toxicity of heme in various
clinical settings.

2. Hx might be a near-future therapy to counteract the
detrimental effects of excess extracellular free heme.

3. Potential therapeutic strategies that apply targetedmodulation
of HO-1 require further detailed studies.

4. A better understanding of the mechanisms that mediate
heme toxicity in pathophysiology of various diseases is
required to afford the development of innovative therapeutic
interventions.

5. Diagnostic tests to determine free heme concentrations in
plasma and tissues are necessary to achieve these goals.
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