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Abstract

Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating
PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we
report that at early G1 the glycogen synthase kinase (GSK) 3b phosphorylates and stabilizes NM1, allowing for NM1
association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active
GSK3b selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3b2/2 mouse embryonic
fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin
state incompatible with transcription. We found that GSK3b directly phosphorylates the endogenous NM1 on a single serine
residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1
polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3b-mediated
phosphorylation of NM1 is required for pol I transcription activation.
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Introduction

rRNA genes are transcribed by RNA polymerase I (pol I) into a

large precursor (pre)-rRNA which is cleaved into 18S, 5.8S and

28S rRNAs for incorporation into ribosomal subunits [1,2]. Pol I,

in complex with the transcription initiation factor TIF1A, is first

recruited to the gene promoter via the upstream binding factor

(UBF) and the selectivity factor 1 (SL1) [3]. After promoter

assembly, pol I transcription requires the synergy between actin

and nuclear myosin 1c (NM1) [4,5]. The interaction between pol

I-associated actin with the chromatin-bound NM1 is required for

transcription activation [6–9]. NM1 interacts with the chromatin

through its C-terminal tail and it is also part of the multiprotein

assembly B-WICH that contains the WICH chromatin remodel-

ing complex with the subunits WSTF and the ATPase SNF2h but

does not comprise actin [9–12]. While WSTF bookmarks the

position of the chromatin remodeling complex on the rDNA

transcription unit, NM1 interacts with SNF2h, stabilizes the

WICH complex but, crucially, facilitates recruitment of the

histone acetyl transferase (HAT) PCAF [9]. An important

structural role has therefore been ascribed to NM1 that connects

pol I with the chromatin through direct interactions with

chromatin and the pol I-associated actin, respectively. This

mechanism depends on the myosin ATPase activity. Further, this

mechanism activates transcription by providing the permissive

chromatin that in turn facilitates polymerase function across the

active gene through modulating WICH assembly and PCAF

recruitment [9]. At the exit of mitosis, this mechanism is critical for

cell cycle progression when pol I transcription must be re-activated

[9]. However, how NM1 is regulated at the onset of pol I

transcription activation is not known.

GSK3b is a proline-directed serine/threonine kinase regulated

by phosphorylation. The unphosphorylated form of GSK3b is

enzymatically active [13,14]. GSK3b is inactivated through

activation of several signaling pathways including Wnt signaling

that either leads to serine phosphorylation [15–17], or disrupts

multiprotein complexes that contain GSK3b and its substrates

[18]. GSK3b regulates cellular metabolism, the cytoskeleton and

gene expression [16]. GSK3b also mediates cell cycle progression

by phosphorylating pro-proliferative factors for degradation or by

phosphorylating and stabilizing anti-proliferative factors. c-Myc is

an example of short-lived proteins that is ubiquitinated in a

GSK3b -dependent manner by the F-box protein Fbw7 and

subsequently degraded by the proteasome [19]. GSK3b also
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controls expression of cyclin D1, which is phosphorylated to

promote nuclear export and subsequent degradation [20]. In

contrast, GSK3b-mediated phosphorylation of a single serine

residue (Ser-118) in the estrogen receptor a leads to the

stabilization of the receptor and protects it from proteasome-

mediated degradation [21]. This dual mode of activity ensures that

cell cycle progression, growth and proliferation are kept under

tight regulation.

Previous work has shown a link between GSK3b and pol I-

specific transcription factors [22]. Induction of granulocytic

differentiation in murine myeloid cells results in the degradation

of UBF via GSK3b and the ubiquitin/proteasome system [23].

Furthermore, enzymatically active GSK3b interacts with the

member of the SL1 complex TAFI110 and suppresses pol I

transcription in a H-RAS dependent manner [24]. GSK3b has

therefore been suggested to suppress pol I transcription by

repressing assembly of transcription-competent polymerase at

rRNA gene promoter in transformed cells.

Here, we studied whether GSK3b has a more fundamental

role in pol I transcription in non-transformed cells. A genome-

wide screen showed that GSK3b is selectively distributed across

the entire rDNA transcription unit. Further, GSK3b is required

for rDNA association of numerous factors required for pol

I transcription. In GSK3b2/2 mouse embryonic fibroblasts

(MEFs) we found decreased levels of occupancy of actin, NM1

and SNF2h, at both promoter and transcribed sequences. These

mechanisms, along with ultrastructural analysis of nucleoli in the

GSK3b2/2 MEFs, correlate with decreased pol I transcription

through loss of permissive chromatin. Further, in G1-arrested

GSK3b2/2 MEFs, NM1 becomes specifically ubiquitinated by

the E3 ligase UBR5 and degraded by the proteasome. These

observations collectively suggest that GSK3b suppresses NM1

degradation through the ubiquitin-proteasome system, facilitates

NM1 association with the rDNA chromatin and promotes pol I

transcription activation at G1. We therefore propose a novel

and fundamental role for GSK3b as a key regulator of rRNA

synthesis.

Results

GSK3b associates with the rDNA chromatin
We confirmed the localization of GSK3b on the rDNA with a

novel antibody termed CGR11 against the first nine N-terminal

amino acids of the protein (Figure 1A). Since the epitope contains

Serine 9, which is kept unphosphorylated in the active form of

GSK3b [25], the CGR11 antibody is designed to preferentially

target active GSK3b. The CGR11 antibody specifically detected a

single protein of 48 kDa on immunoblots of nuclear extracts from

HeLa cells and wild type mouse embryonic fibroblasts (GSK3b+/+

MEFs), similarly to the commercial pan- GSK3b antibody 27C10

(Figure 1B), but not in the GSK3b2/2 MEFs.

We used the GSK3b antibodies CGR11 and 27C10 to study

GSK3b occupancy along the rDNA transcription unit by

chromatin immunoprecipitation (ChIP). We prepared crosslinked

chromatin from both GSK3b+/+ MEFs and GSK3b2/2 MEFs

and subjected the chromatin to immunoprecipitations with the

CGR11 and 27C10 antibodies. The precipitated DNA was

analyzed by quantitative real-time PCR (qPCR) using primers

amplifying fragments of 45S (promoter), 18S, 5.8S, 28S rDNA and

the IGSs (intergenic sequences). The qPCR analysis shows that

both antibodies precipitated rDNA from the chromatin isolated

from GSK3b+/+ MEFs (Figure 1C). In contrast we did not get any

signal when chromatin isolated from GSK3b2/2 MEFs was used

in the immunoprecipitations (Figure 1C). We conclude that

GSK3b specifically associates with the rDNA.

For further assessment of GSK3b protein occupancy through-

out the rDNA we performed a genome-wide screen by ChIP

followed by next-generation sequencing (ChIP-Seq). We subjected

crosslinked chromatin isolated from GSK3b+/+ MEFs to immu-

noprecipitations with the CGR11 antibody and the DNA

fragments were sequenced directly. Compared to background

genomic binding levels the rDNA repeat showed GSK3b binding

that was approximately two orders of magnitude higher. High

levels of binding were found within the rRNA gene sequence, its

upstream promoter elements and in the IGS extending 12 kb

downstream of the rDNA (Figure 1D; Figure S1). In contrast large

segments of the IGS appeared devoid of GSK3b binding

(Figure 1D). The pattern of GSK3b binding across the rDNA

transcription unit is similar to the binding patterns of pol I and

UBF to the rDNA repeats [26–28]. Interestingly, very low levels of

GSK3b binding to other genomic loci were detected (Table S1).

Although the presence of GSK3b in the IGSs is not yet

understood, the distribution of GSK3b all along the rDNA

transcription unit, including externally transcribed sequences

(ETSs), 18S, 5.8S, 28S and internally transcribed sequences

(ITSs), suggests that GSK3b has a primary role in pol I

transcription regulation.

rDNA transcription activation is modulated by GSK3b
To evaluate the possible involvement of GSK3b in rDNA

transcription, we isolated total RNA from wild type and GSK3b2/2

MEFs and measured relative pre-rRNA levels by quantitative

reverse transcription real time PCR (qRT-PCR). Using primers

amplifying 45S pre-rRNA, in the GSK3b2/2 MEFs we

detected a fivefold drop in the amount of nascent transcript

relative to b-actin mRNA levels (Figure 2A). Twofold decrease

in the levels of 45S pre-rRNA levels were also detected in HeLa

cells subjected to GSK3b gene silencing by RNAi (Figure S2).

To confirm these results in living cells, GSK3b+/+ MEFs and

GSK3b2/2 MEFs were treated with DRB to selectively block RNA

polymerase II transcription and then subjected to in situ run on

assays. In these experiments incorporation of the cell permeable

Author Summary

Nuclear actin and myosin are essential regulators of gene
expression. At the exit of mitosis, nuclear myosin 1c (NM1)
mediates RNA polymerase I (pol I) transcription activation
and cell cycle progression by modulating assembly of the
chromatin remodeling complex WICH with the subunits
WSTF and SNF2h and, crucially, facilitating H3K9 acetyla-
tion by the histone acetyl transferase PCAF. The molecular
mechanism by which NM1 is regulated remains however
unknown. Here, we conducted a genome-wide screen and
demonstrate that GSK3b is selectively coupled to the rDNA
transcription unit. In embryonic fibroblasts lacking GSK3b
there is a significant drop in rRNA synthesis levels and the
rDNA is devoid of actin, NM1 and SNF2h. Concomitantly
with a transcriptional block we reveal decreased levels of
histone H3 acetylation by the histone acetyl transferase
PCAF. At G1, transcriptional repression in the GSK3b
knockout mouse embryonic fibroblasts, leads to NM1
ubiquitination by the E3 ligase UBR5 and proteasome-
mediated degradation. We conclude that GSK3b suppress-
es NM1 degradation through the ubiquitin-proteasome
system, facilitates NM1 association with the rDNA chro-
matin and transcription activation at G1. We therefore
propose a novel and fundamental role for GSK3b as
essential regulator of rRNA synthesis and cell cycle
progression.

GSK3b in rRNA Synthesis
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fluorine-conjugated UTP analogue FUrD was allowed for

10 minutes and the FUrD incorporated in nascent rRNA

transcripts was monitored by immunofluorescence and confocal

microscopy [29]. Consistent with the qRT-PCR analysis these

experiments showed that in the absence of GSK3b, FUrD

incorporation in nascent nucleolar transcripts was down-

regulated (Figure 2B).

We next analyzed how GSK3b affects pol I transcription. We

started by applying methylated DNA immunoprecipitation

(MeDIP), for unbiased detection of methylated DNA [30,31].

Genomic DNA obtained from GSK3b+/+ MEFs and GSK3b2/2

MEFs was randomly sheared by sonication and immunoprecip-

itated with a monoclonal antibody that recognizes 5-methylcyti-

dine. qPCR analysis on the immunoprecipitated DNA using

primers amplifying rRNA gene promoter show that the methyl-

ation levels did not change in the absence of GSK3b when

compared to the reference TSH2B gene, a region of the histone

H2B gene which is known to be methylated (Figure 2C). To

determine whether the absence of GSK3b affected rDNA

occupancy of the pol I machinery, we performed ChIP on

crosslinked chromatin from GSK3b+/+ MEFs and GSK3b2/2

MEFs with a human autoimmune serum against active pol I

(S57299), an antibody to UBF, and antibodies to actin, WSTF,

SNF2h, NM1, GSK3b (CGR11) and non-specific rabbit IgGs. In

GSK3b2/2 MEFs we detected modest increments in the amounts

of promoter and 18S co-precipitated with the pol I and UBF

antibodies (Figure 2D). In contrast, we detected drops in the

amounts of promoter, 18S and IGSs co-precipitated with

antibodies to actin, NM1 and SNF2h (Figure 2E). The WSTF

antibody precipitated promoter, 18S and IGSs with similar

efficiencies from both GSK3b+/+ MEFs and GSK3b2/2 MEFs

chromatin (Figure 2E). These results indicate that as consequence

of GSK3b knockout the rDNA occupancies of pol I machinery,

actin and certain components of the B-WICH complex are

altered. These changes were accompanied by decreased PCAF

occupancy and H3K9 acetylation levels (Figure 2F). However, the

levels of H3K4me3 were not altered. We conclude that in the

GSK3b2/2 MEFs reduced levels of rRNA synthesis are primarily

due to a chromatin state which is not compatible with

transcription. Morphological analyses of nucleoli in GSK3b2/2

MEFs were consistent with this hypothesis. GSK3b2/2 and

GSK3b+/+ MEFs were synchronized in G1 to avoid differences in

cell cycle progression, double-stained with antibodies against

nucleolin and UBF, and analyzed by fluorescence microscopy.

The overall nuclear size and shape were similar in the two cell

lines, but the GSK3b2/2 MEFs showed a significant increase in

the number of nucleoli per cell, and the nucleoli were smaller

(Figures 3A–B). The GSK3b2/2 nucleoli were UBF-positive, in

accordance with our ChIP results (Figure 2D).

We also analyzed the ultrastructure of the nucleoli in GSK3b2/2

and GSK3b+/+ MEFs by transmission electron microscopy. In

normal GSK3b+/+ MEFs, the nucleoli were well developed and

showed a normal morphology with three typical components:

dense fibrillar centers (DFCs), fibrillar component (FC) and

granular component (GC). The GSK3b2/2 cells were instead

characterized by reduced nucleoli that often lacked a

well-defined compartmentalization and displayed reduced

amounts of GC (Figure 3C). We could occasionally observe

GSK3b2/2 MEFs with large nucleoli, but these nucleoli

exhibited a highly vacuolated ultrastructure that was never

observed in GSK3b+/+ nucleoli (Figure S3). Interestingly, the

nucleolar alterations that we observed in GSK3b2/2 MEFs do

not resemble the nucleolar disruption phenomenon that has

been described in response to a variety of stress conditions [32].

The morphology of the GSK3b2/2 nucleoli and the fact that

they contain UBF, support instead the idea that a larger

number of nucleolar organizer regions (NORs) becomes

activated in GSK3b2/2 MEFs than in GSK3b+/+ MEFs.

However, these numerous GSK3b2/2 NORs do not engage in

efficient rRNA production and fail to assemble fully structured

nucleoli. The morphological analysis of GSK3b2/2 and

GSK3b+/+ MEFs also revealed differences in the patterns of

chromatin condensation between the two cell types. Staining of

GSK3b2/2 MEFs with DAPI revealed the existence of small

patches of dense chromatin scattered throughout the nucleo-

plasm, often in association with the nuclear periphery, whereas

GSK3b+/+ MEFs were characterized by fewer and larger areas

of densely packaged chromatin (Figure 3D). This difference was

confirmed at the ultrastructural level (Figure 3E).

In summary, the morphological analyses reveal severe defects in

nucleolar function and chromatin organization and together with

the molecular analyses presented above support the conclusion

that GSK3b contributes to pol I transcription activation by

indirectly inducing a permissive chromatin state.

GSK3b phosphorylates and stabilizes NM1 at early G1
Actin, NM1, SNF2h and PCAF levels along the rDNA

transcription unit are dependent on GSK3b (Figure 2E–F). To

test whether GSK3b interacts with actin, NM1, SNF2h, WSTF or

PCAF, we applied immunoprecipitations to nuclear lysates from

GSK3b+/+ MEFs. Briefly, we incubated nuclear lysates with the

anti- GSK3b antibody CGR11. Analysis of the immunoprecipi-

tated fractions by immunoblotting showed that endogenous

GSK3b co-precipitated NM1 as well as actin whereas SNF2h,

PCAF, and WSTF were not co-immunoprecipitated (Figure 4A).

These results show that in the nucleus GSK3b is part of the same

complex with NM1 and actin.

To evaluate whether GSK3b targets any specific regions of

NM1, we used HEK293T cell lines stably expressing V5-tagged

wild-type NM1 (V5-wtNM1), a V5-tagged NM1 mutant with

impaired actin binding function (V5-RK605AA NM1) as well as

V5-tagged deletion constructs that lack IQ motifs (V5-DIQ NM1)

or the tail domain (V5-DC NM1) [8,9] (Figure 4B). We subjected

total lysates from each of the above cell lines to immunoprecip-

itations with an anti-V5 antibody to pull down the NM1

constructs. Analysis of the co-immunoprecipitated proteins on

immunoblots with the CGR11 antibody showed specific co-

precipitations of endogenous GSK3b with V5-wtNM1 but not

with the V5-RK605AA NM1 (Figure 4C). Further, GSK3b co-

precipitated with V5-DIQ NM1 and with lower efficiency, also

Figure 1. GSK3b distributes through the entire rDNA transcription unit, occupying the rRNA gene promoter and transcribed
sequences. (A) Schematic representation of the primary structure of human GSK3b, including the N-terminal stretch of amino acids used as epitope
for the GSK3b antibody CGR11. (B) Immunoblots of total lysates obtained from GSK3b+/+ MEFs, GSK3b2/2 MEFs and HeLa cells analyzed with the anti-
GSK3b antibodies CGR11 and 27C10 and with an anti-actin antibody. (C) ChIP and qPCR on growing GSK3b+/+ MEFs and GSK3b2/2 MEFs at the rRNA
gene promoter, 18S, 5.8S, 28S rDNA and IGS with the anti- GSK3b antibodies CGR11 and 27C10. Positions of all primers are indicated in bracket. The
structure of individual mouse ribosomal rDNA repeat is shown to show the location of the different rDNA fragments analyzed. (D) ChIP-Seq
performed on GSK3b+/+ MEFs. The previously sequenced mouse rDNA repeat BK000964 was utilized in our analysis procedure. The frequency of hits
by sequences matching the region spanning the rDNA repeat sequence and IGS is shown by the resulting graph.
doi:10.1371/journal.pgen.1004390.g001
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with V5-DC NM1 (Figure 4C). Interestingly, a recent study

supports the possibility of a direct interaction with NM1 as three

putative GSK consensus sites were identified in the C-terminus of

the human NM1 [33]. Our present results suggest that NM1 and

GSK3b are part of the same complex and further indicate that the

association is negatively affected when NM1 cannot interact with

actin.

To start evaluating whether GSK3b phosphorylates NM1, we

resolved extracts from growing GSK3b+/+ MEFs or GSK3b2/2

MEFs by phosphate affinity SDS PAGE [34]. In these assays,

extensive protein phosphorylation is revealed by comparing

changes in the protein electrophoretic mobility on immunoblots

of lysates treated or untreated with alkaline phosphatase. The

results of immunoblots of growing GSK3b+/+ MEFs lysates for

NM1 showed specific gel retardations which were lost upon

phosphatase treatment (Figure 4D, lanes 1, 2). Similar results were

obtained upon analysis of GSK3b2/2 MEFs lysates (Figure 4D,

lanes 5, 6), altogether suggesting that in growing cells NM1 is

extensively phosphorylated but not by GSK3b. We next applied

phosphate affinity SDS PAGE to resolve lysates from GSK3b+/+

MEFs or GSK3b2/2 MEFs blocked in G1 by serum starvation

(see also Figure S4). Even though we did not reveal the same

extent of gel retardation as in growing cells, upon alkaline

phosphatase treatment on wild type lysates we observed consid-

erable reduction in the amount of NM1 (Figure 4D, lanes 3,4).

Remarkably, analysis of immunoblots of lysates from the

GSK3b2/2 MEFs blocked in G1 showed decreased NM1 levels

independent of the alkaline phosphatase treatment (Figure 4D,

lanes 7, 8). In support of this observation, analysis on immunoblots

of lysates from GSK3b2/2 MEFs blocked in G1 by contact

inhibition [35] independently revealed a similar drop in the NM1

protein levels (see also Figure S5A–B). Immunoblots performed on

the phosphate affinity SDS PAGE for actin revealed that

endogenous actin is phosphorylated, but phosphorylation appears

to be independent of GSK3b since it was not affected in either

growing or G1-blocked GSK3b2/2 MEFs (Figure 4D). Further-

more, in contrast to NM1, the expression levels of endogenous

actin were not affected in growing or G1-arrested GSK3b2/2

MEFs. We therefore conclude that at G1 NM1 is specifically

stabilized by GSK3b and this regulation possibly occurs through a

direct interaction.

We next investigated whether GSK3b directly phosphorylates

NM1. To start addressing this point, we prepared G1 lysates from

GSK3b2/2 MEFs, untreated or treated with the proteasome

inhibitor MG132, under which conditions the NM1 levels are

rescued (see also Figure 5D). Lysates were supplemented with

c-33P-ATP and with purified recombinant GSK3b. Following

incubation, endogenous NM1 was immunoprecipitated, resolved

by SDS PAGE and visualized by phosphorimaging (Figure 4E).

The results show that a fraction of the immunoprecipitated NM1

was phosphorylated by recombinant GSK3b in the presence of

MG132 (Figure 4E). To confirm that endogenous NM1 is a

substrate for GSK3b, we subjected lysates from G1-arrested

GSK3b 2/2 MEFs treated with MG132 to immunoprecipitations

with anti-NM1 or anti-actin antibodies. After the immunoprecip-

itations, the beads were washed and the bound NM1 or actin were

incubated with c-33P-ATP and with purified recombinant GSK3b.

Following incubation, the endogenous NM1 and actin were eluted

from the beads and resolved by SDS PAGE. Analysis by

phosphorimaging shows that a radioactive band was detected

only for NM1 but not for actin (Figure 4F), indicating that NM1 is

a direct substrate for GSK3b. Consistent with previous observa-

tions [36], in the same assay, a degree of GSK3b autophospho-

rylation was also detected. To further endorse the specificity of

these results and identify potential phosphorylation sites in the

NM1 primary sequence, we immunoprecipitated endogenous

NM1 from nuclear extracts of MG132-treated GSK3b+/+ MEFs

and GSK3b2/2 MEFs arrested in G1. The immunoprecipitated

protein fraction was resolved by SDS-PAGE and subjected to in

gel digestion. The resulting peptides were extracted and analyzed

by tandem mass spectrometry. Analysis of the immunoprecipitated

NM1 from the G1 GSK3b+/+ MEFs nuclear lysate identified the

peptide DGIIDFTSGSELLITK in both its phosphorylated

(Figure 4G) and non-phosphorylated state (Figure S6) with mascot

ion scores of 61 and 94, respectively. The MS/MS data indicates

that within the above peptide the phosphorylation is present at

Serine 8 which in the mouse full length NM1 amino acid sequence

corresponds to the Serine 1020 located in the NM1 C-terminal tail

(Accession number, Q9WTI7-3). In contrast, the same analysis

performed on the endogenous NM1 immunoprecipitated from the

G1 GSK3b2/2 MEFs nuclear lysate identified the non-phosphor-

ylated peptide DGIIDFTSGSELLITK with a mascot ion score of

78 (Figure 4H) but did not reveal its phosphorylated form. These

results show that Ser-1020 is directly phosphorylated by GSK3b in

early G1.

We conclude that the endogenous NM1 is a bona fide

phosphorylation substrate for GSK3b. Phosphorylation specifical-

ly targets the NM1 C-terminus at Ser-1020 and occurs in G1. We

suggest that at the exit of mitosis GSK3b phosphorylation

stabilizes NM1 from proteasome-mediated degradation.

GSK3b-mediated phosphorylation facilitates NM1
association with rDNA at G1

Cell cycle profiling by flow cytometry and NM1 steady state

expression analysis in GSK3b+/+ MEFs and GSK3b2/2 MEFs

after release from a G1 block confirmed a specific down regulation

of NM1 (Figure 5A; Figure S7). In the absence of GSK3b NM1

down-regulation is at the protein level since qRT-PCR analysis of

the relative NM1 mRNA levels in the GSK3b2/2 MEFs were not

altered in comparison to those in the GSK3b+/+ MEFs (Figure 5B).

Furthermore, we isolated total RNA from wild type and GSK3b2/2

MEFs blocked in early G1 and measured relative 45S pre-

Figure 2. GSK3b regulates pol I transcription activation. (A) rRNA synthesis in GSK3b+/+ MEFs and GSK3b2/2 MEFs. For the analysis, relative
45S pre-rRNA levels were monitored from total RNA preparations by RT–qPCR using actin mRNA as internal control. Error bars represent the standard
deviation of three independent experiments [p = 3.39e-05 (***)]. (B) FUrD incorporation assays on living GSK3b2/2 and GSK3b+/+ MEFs subjected to
DRB treatment. Transcription was monitored by a short FUrd pulse to monitor incorporation into nascent nucleolar transcripts. After fixation, cells
were co-stained with a fluorochrome conjugated anti-BrdU antibody to detect the incorporated FUrd and with a human auto-immune serum against
pol I (S57299). Detection was by confocal microscopy. Scale bar, 5 ı̀m. (C) MeDIP and qPCR analysis on growing GSK3b+/+ MEFs and GSK3b2/2 MEFs
performed with an antibody for 5-methylcytidine. qPCR analysis on the precipitated DNA was performed with primers amplifying rRNA gene
promoter and reference genes TSH2B and GAPDH. (D) ChIP and qPCR on growing GSK3b+/+ MEFs and GSK3b2/2 MEFs at the rRNA gene promoter
and 18S with the pol I specific autoimmune serum S57299 and an anti-UBF antibody. (E) ChIP and qPCR on growing GSK3b+/+ MEFs and GSK3b2/2

MEFs at the rRNA gene promoter, 18S and IGS with the anti-GSK3b antibody CGR11 and antibodies against WSTF, SNF2h, NM1, actin and non-specific
rabbit IgGs. (F) ChIP and qPCR on growing GSK3b+/+ MEFs and GSK3b2/2 MEFs at the rRNA gene promoter with antibodies against H3K9Ac,
H3K4me3 and PCAF.
doi:10.1371/journal.pgen.1004390.g002
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Figure 3. The effects of GSK3b knockout on the morphology of the nucleolus. (A) The size and number of nucleoli in GSK3b+/+ and
GSK3b2/2 MEFs were analyzed in double-stained preparations using anti-UBF (red) and anti-nucleolin (green) antibodies as nucleolar markers. (B)
Quantitative evaluation of the number of nucleoli per cell. The histogram shows the average number of nucleoli per cell based on the analysis of 212
GSK3b+/+ MEFs and 211 GSK3b2/2 MEFs, from two independent experiments. (C) The ultrastructure of the nucleolus in GSK3b+/+ and GSK3b2/2 MEFs
analyzed by transmission electron microcopy. GSK3b+/+ nucleolus. DFC: dense fibrillar component; FC: fibrillar center; GC: granular component;
chrom: dense chromatin. The magnification bars represent 0.5 mm. (D) GSK3b+/+ and GSK3b2/2 MEFs stained with an antibody against nucleolin
(green) and counterstained with DAPI (blue) to visualize patterns of chromatin condensation. Dense chromatin of GSK3b2/2 MEFs is found in small
patches that are often located at the nuclear periphery, whereas in GSK3b+/+ cells they are often larger and more centrally located. (E) Transmission
electron microscopy images showing the accumulation of dense chromatin near the nuclear envelope in GSK3b2/2 MEFs. Nuc: nucleus; Cyt:
cytoplasm. The bar represents 200 nm.
doi:10.1371/journal.pgen.1004390.g003
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rRNA levels by qRT-PCR. Using both serum starvation and

contact inhibition to arrest cells in G1, we detected significant

drops in the amount of nascent transcript relative to b-tubulin

mRNA levels (Figure 5C; Figure 5SC).

We next synchronized GSK3b2/2 MEFs in G1 by serum

starvation and treated with the proteasome inhibitor MG132.

After release from the G1 block, total lysates were collected at 0 h,

4 h and 8 h and analyzed for NM1 protein levels on immunoblots.

In lysates from untreated GSK3b2/2 MEFs, NM1 expression was

down at 0 h and 4 h after release from the G1 block and was

rescued around 8 h after the release (Figure 5D). In contrast,

immunoblots of lysates from MG132-treated GSK3b2/2 MEFs

showed a marginal increase in the NM1 protein levels between 0 h

and 8 h after the G1 block release (Figure 5D), altogether

suggesting selective degradation of NM1 by the proteasome at

early G1. Since treatment with MG132 rescued the levels of NM1,

we further evaluated whether by inhibiting the proteasome we

could also rescue the ability of NM1 to bind to the rDNA

chromatin. We therefore performed ChIP on crosslinked chro-

matin from GSK3b+/+ and GSK3b2/2 MEFs blocked in G1,

treated or untreated with MG132, using antibodies to NM1 and

GSK3b (CGR11). The precipitated DNA was analyzed by qPCR

with primers specific for the rDNA promoter. In the GSK3b2/2

MEFs the NM1 antibodies precipitated the promoter 2-fold less

efficiently (Figure 5E), possibly due to NM1 degradation by the

proteasome. NM1 occupancy on the promoter was not restored

even in the presence of MG132 (Figure 5E). On the contrary, in

ChIP experiments performed on chromatin from GSK3b+/+

MEFs at G1 the anti-NM1 antibody co-precipitated the promoter,

independently of the MG132 treatment (Figure 5E). These results

show that at G1, rescuing the NM1 protein levels by proteasome

inhibition does not restore the ability of NM1 to efficiently bind

the chromatin in the absence of GSK3b. To find out whether

GSK3b-mediated phosphorylation of NM1 modulates association

with the rDNA, we treated GSK3b+/+ MEFs arrested at G1 with

the cell-permeable GSK3b inhibitor 6-bromoindirubin-30-oxime

(BIO) [37,38]. On immunoblots of lysates of BIO-treated

GSK3b+/+ MEFs the reactivity of CGR11 to GSK3b was

considerably decreased whereas the pan-GSK3b antibody

27C10 and the antibodies to actin and NM1 were not affected

by the BIO treatment (Figure 5F). Using the CGR11 antibody we

performed ChIP on crosslinked chromatin from BIO-treated

GSK3b+/+ MEFs to monitor occupancies of NM1 and active

GSK3b at the rDNA promoter. The qPCR results show that upon

inhibition of the GSK3b kinase activity with BIO, GSK3b does

not co-precipitate rDNA and under the same conditions, NM1

shows a 50% drop in rDNA binding (Figure 5G).

We conclude that at G1 GSK3b phosphorylates NM1 to

facilitate NM1 association with the rDNA chromatin while

simultaneously protecting NM1 from degradation by the protea-

some.

At G1 GSK3b phosphorylates NM1 to suppress
ubiquitination by the E3 ligase UBR5

We next determined whether NM1 is a GSK3b-dependent

substrate for ubiquitination. For this purpose cells were transiently

transfected with a plasmid encompassing a HA-tagged version of

the ubiquitin open reading frame. Following expression of the HA-

ubiquitin, cells were arrested in G1 by serum starvation and

treated with MG132. We prepared total lysates and subjected

them to immunoprecipitations with the anti-NM1 antibody. The

fractions of co-immunoprecipitated proteins were analyzed on

immunoblots for HA-tagged ubiquitin. The results show that in

contrast to GSK3b+/+ MEFs, in G1 lysates from GSK3b2/2

MEFs treated with MG132, NM1 becomes polyubiquitinated

(Figure 6A). NM1 polyubiquitination was not detected in lysates

from growing GSK3b2/2 MEFs even in the presence of MG132

(Figure S8A), whereas in lysates prepared from growing

GSK3b+/+ MEFs or HEK293T cells NM1 appears to be

polyubiquitinated (Figure S8B–C). To confirm these results in an

independent cellular system, HeLa cells were incubated with a

master mix containing the HA-tagged ubiquitin plasmid and

siRNA oligonucleotides for specific GSK3b gene silencing

(GSK3b RNAi) or control scrambled siRNA oligonucleotides

(scrRNAi) (Figure 6B; Figure S2). HeLa cells were maintained at

G1 by serum starvation and were treated with MG132. Lysates

were subjected to immunoprecipitations with anti-NM1 antibodies

and the co-immunoprecipitated protein fractions were analyzed

on immunoblots for HA-tagged ubiquitin. The results show a

marked increase in the levels of endogenous NM1 polyubiquitina-

tion in lysates of GSK3b-silenced HeLa cells treated with MG132

(Figure 6B, lanes 3 and 6). We conclude that NM1 polyubiquitina-

tion is dependent on GSK3b only at G1.

To identify possible E3 ligases involved in NM1 ubiquitination,

we subjected nuclear lysates from untreated or MG132-treated

GSK3b+/+ MEFs to immunoprecipitations with antibodies to

NM1. The co-immunoprecipitated proteins were subjected to

mass spectrometry analysis by nLC-MS/MS. Within the subset of

co-immunoprecipitated proteins we found two candidate E3

ligases, UBR5 and F-box/WD repeat-containing protein 8

(Fbxw8) (Table S2). Remarkably, UBR5 and Fbxw8 were not

co-precipitated with NM1 from MG132-treated GSK3b+/+ MEFs

nuclear lysates (Table S3), suggesting a functional association with

NM1. To find out whether UBR5 and Fbxw8 target NM1 for

ubiquitination in a GSK3b-dependent manner at G1, we silenced

Figure 4. GSK3b phosphorylates NM1. (A) GSK3b, NM1 and actin are co-precipitated from nuclear protein extracts prepared from growing
GSK3b+/+ MEFs. Bound proteins were detected on immunoblots with antibodies against WSTF, SNF2h, NM1, PCAF, GSK3b (CGR11) and actin. 10% of
the input is shown in Lane 1. IP, immunoprecipitation. (B) Schematic representation of V5-tagged wt and mutated NM1 constructs stably expressed
in HEK293T cell lines. (C) Co-precipitations of GSK3b from total lysates obtained from HEK293T cells stably expressing wt and mutated V5-tagged
NM1 constructs as indicated. 10% of the input is shown. IP, immunoprecipitation. (D) Lysates were prepared from growing GSK3b+/+ MEFs and
GSK3b2/2 MEFs or from GSK3b+/+ MEFs and GSK3b2/2 MEFs arrested in G1 by serum starvation. Where indicated extracts were subjected to alkaline
phosphatase (AP) treatment. Lysates were analyzed on immunoblots for NM1 and actin. (E) Kinase assays were performed on lysates from G1-
arrested GSK3b2/2 MEFs untreated or treated with the proteasome inhibitor MG132, supplemented with c-33P-ATP. Where indicated the lysates were
incubated with recombinant GSK3b. To monitor NM1 phosphorylation, the lysates were subjected to immunoprecipitations with anti-NM1
antibodies. Phosphorylated NM1 was detected by phosphorimaging against the levels of unphosphorylated NM1 detected on immunoblots. (F)
Kinase assays were performed on endogenous NM1 or actin immunoprecipitated from lysates of G1-arrested GSK3b2/2 MEFs treated with MG132;
after immunoprecipitations the beads were washed and incubated with c-33P-ATP and recombinant GSK3b. Phosphorylated NM1 (NM1*) and
autophosphorylated GSK3b (GSK3b*) were detected by phosphorimaging. The immunoprecipitated endogenous NM1 and actin were detected on
immunoblots. Non-specific IgGs were used as negative control for the immunoprecipitations. (G–H) Tandem MS spectra of phosphoprylated and
non-phosphorylated peptide DGIIDFTSGSELLITK identified within the primary NM1 sequence immunoprecipitated from G1-arrested lysates of
GSK3b+/+ MEFs and GSK3b2/2 MEFs, respectively.
doi:10.1371/journal.pgen.1004390.g004
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Figure 5. GSK3b-dependent NM1 phosphorylation suppresses proteasome mediated degradation and mediates association with
chromatin. (A) Cell cycle profile analyzed at the indicated time points, after release from a G1 arrest by serum starvation, on immunoblots of the
corresponding lysates for NM1, cyclin A, cyclin E, p27 and b-actin. (B) Relative NM1 mRNA levels in GSK3b+/+ MEFs and GSK3b2/2 MEFs monitored by
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the UBR5 and Fbxw8 genes in the GSK3b2/2 MEFs expressing

HA-tagged ubiquitin and maintained at G1. After treatment with

MG132, lysates were subjected to immunoprecipitations with anti-

NM1 antibodies and the co-immunoprecipitated protein fractions

were analyzed on immunoblots for HA-tagged ubiquitin. The

results show that silencing Fbxw8 did not affect the level of NM1

polyubiquitination compared to control scrRNAi (Figure 6C). On

the contrary NM1 polyubiquitination was not observed upon

UBR5 gene silencing (Figure 6C). We conclude that in the absence

of GSK3b NM1 polyubiquitination is specifically mediated by

UBR5 at G1.

In summary, NM1 phosphorylation by GSK3b blocks NM1

ubiquitination by UBR5 and degradation by the proteasome, leads

to NM1 association with the chromatin and promotes rDNA

transcription activation at G1.

Discussion

By interacting with some components of the SL1 complex, in

cells transformed with oncogenic H-RAS GSK3b functions as

negative regulator of rDNA transcription suppressing assembly of

transcription-competent pol I at the gene promoter [24]. Here we

show for the first time that GSK3b also has a positive role on the

basal mechanism that leads to activation of rRNA synthesis.

Genomic analysis of GSK3b by ChIP-Seq showed that GSK3b
selectively distributes across the entire rDNA transcription unit

and to a certain degree, GSK3b also binds to intergenic sequences.

This association with the gene is shown to be functional since in

the GSK3b knockout MEFs we found a fivefold reduction in

rRNA synthesis levels, which correlated with increased levels of

pol I occupancy at the rRNA gene promoter. Furthermore, results

from the ChIP analysis showed decreased occupancy for actin,

NM1 and SNF2h at the promoter and across the gene. We have

recently shown that NM1 binds the rDNA chromatin, to promote

the activation of pol I transcription by stabilizing the B-WICH

complex, such that it can subsequently recruit the HAT PCAF.

These mechanisms contribute to the permissive chromatin

required for pol I transcription activation [9]. These results are

compatible with the pol I transcriptional drop observed in the

GSK3b knockout MEFs where the rRNA gene promoter is almost

quantitatively devoid of the HAT PCAF and displays a fourfold

down-regulation in the levels of H3K9 acetylation. Local

impairment of H3 acetylation is accompanied by moderate

impairment of the chromatin remodeling function due to the

absence of SNF2h at the gene promoter. The morphological

analysis of GSK3b2/2 MEFs suggests that in the absence of

GSK3b activity the cell activates additional NORs, probably in an

attempt to compensate for the reduced rRNA production. The

GSK3b2/2 nucleoli are not fully functional but do recruit

nucleolin and UBF, which indicates that these nucleoli are

functional to some extent, in agreement with our molecular

analysis. The GSK3b2/2 MEFs also display differences in the

overall patterns of chromatin condensation. These chromatin

changes could either be a direct consequence of impaired GSK3b
function or an indirect response to the reduced ribosome

biosynthetic capacity of the cell. In any case, the severe structural

alterations observed in the nuclei of GSK3b2/2 cells support the

important role of GSK3b in rRNA biogenesis. We conclude that

GSK3b contributes to transcription activation and maintenance

by regulating local rDNA chromatin modifications.

Our results suggest that across the rDNA transcription unit

GSK3b performs its regulatory function by targeting pol I-

associated factors. GSK3b is a promiscuous enzyme [39] that

phosphorylates serine or threonine at position 4 of the consensus

sites S/TXXXS/T[PO3] [40,41], but also single Ser residues

outside the above mentioned consensus sequence [21]. About 20%

of the mammalian proteome contains multiple putative GSK3

phosphorylation sites [33]. UBF has, for instance, five putative

GSK consensus sites and it is directly phosphorylated by GSK3b
in vitro and in vivo [23]. Both NM1 and actin were also found to

be potential GSK3b substrates [33]. Accordingly, we found that

GSK3b co-precipitated NM1 and actin from nuclear lysates, but

not SNF2h, WSTF or PCAF. This suggests that GSK3b is part of

the same complex with actin and NM1. We found however that

only NM1 is directly phosphorylated by GSK3b and that NM1

phosphorylation by GSK3b occurs on a single Serine residue (Ser-

1020), located within the murine NM1 C-terminal tail domain.

Mass spectrometry analysis identified a single NM1 phosphopep-

tide in G1-arrested GSK3b+/+ MEFs but not in the GSK3b2/2

MEFs. We cannot exclude the presence of other GSK3b
phosphorylation sites; Ser-1020 phosphorylation however, seems

to occur outside the canonical GSK3b consensus site. Considering

that the state of NM1 phosphorylation is not dependent on

GSK3b in growing cells, we conclude that the Ser-1020

phosphorylation by GSK3b exclusively occurs in G1.

GSK3b-dependent phosphorylation can lead to either stabili-

zation of the substrates or further polyubiquitination and

degradation by the proteasome [42,43]. UBF phosphorylation

by GSK3b promotes UBF degradation by the ubiquitin-protea-

some system, concomitantly with differentiation of myeloid cells

[23]. Our results therefore indicate that at early G1, GSK3b
phosphorylates NM1 to prevent NM1 polyubiquitination and

degradation by the proteasome. Consistently, in the absence of

GSK3b, we discovered that at G1 NM1 is polyubiquitinated by

UBR5 and rapidly degraded. UBR5, also termed EDD/hHyd, is

an E3 ligase that targets the N-terminus of its substrates and

interacts with GSK3b [44,45]. UBR5 resides in the nucleolus and

it is known to associate with SIRT7 [46]. Furthermore, UBR5

seems to have a huge impact on cell cycle progression. UBR5

regulates S-phase and G2/M DNA damage checkpoints, it

induces cell cycle arrest by increasing p53 levels and has been

recently implicated in cellular proliferation [47–49]. Since in G1-

arrested GSK3b2/2 MEFs we discovered an almost quantitative

drop in the levels of nascent rRNA, we now hypothesize that

GSK3b-mediated phosphorylation protects NM1 from UBR5-

mediated polyubiquitination, and this mechanism is important for

RT-qPCR using b-tubulin mRNA as internal control. (C) rRNA synthesis in GSK3b+/+ MEFs and GSK3b2/2 MEFs arrested in G1 by serum starvation. For
the analysis, relative 45S pre-rRNA levels were monitored from total RNA preparations by RT-qPCR using tubulin mRNA as internal control [p = 3.2e-09
(***)]. (D) Lysates from GSK3b2/2 MEFs untreated or treated with the proteasome inhibitor MG132, released from a G1 block were collected at the
indicated time points and analyzed on immunoblots for NM1 and b-actin. (E) ChIP and qPCR analysis on chromatin isolated from GSK3b+/+ MEFs and
GSK3b2/2 MEFs synchronized in G1, untreated or treated with MG132, at the rRNA gene promoter with antibodies against NM1 and GSK3b (CGR11).
Significances p(2MG132) = 2.2e-05 (***) and p(+MG132) = 3.0e-05 (***) were respectively calculated against the NM1 values obtained in GSK3b+/+

MEFs not treated with MG132. (F) Immunoblots of total lysates from GSK3b+/+ MEFs untreated or treated with the kinase inhibitor BIO. Analysis was
performed with antibodies to NM1, actin, and the GSK3b antibodies 27C10 and CGR11 as indicated. (G) ChIP and qPCR analysis on chromatin isolated
from GSK3b+/+ MEFs at G1, untreated or treated with BIO, at the rRNA gene promoter with antibodies against NM1 and GSK3b (CGR11). The
significance p = 0.009 (**) was calculated against the NM1 values obtained in GSK3b+/+ MEFs not treated with BIO.
doi:10.1371/journal.pgen.1004390.g005
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pol I transcription activation and progression through the cell

cycle (Figure 7).

A key question is why NM1 phosphorylation by GSK3b is

important for rRNA synthesis at a specific temporal window of the

cell cycle. We recently demonstrated that NM1 binds the rDNA

chromatin through its C-terminal tail, interacts with the pol I-

associated actin and this interaction is dependent on the myosin

ATPase cycle. Association with the chromatin stabilizes actin-

binding and allows for the establishment of permissive chromatin

required for pol I transcription activation and cell cycle

progression [9]. In the GSK3b knockout cells arrested in G1,

the rRNA gene promoter displays reduced NM1 levels even when

the NM1 protein expression is rescued by MG132 treatment.

Similarly, NM1 promoter occupancy levels drop after inhibition

of GSK3b activity in living cells by treatment with BIO. The

NM1 C-terminal tail is necessary for chromatin association [9]. It

is therefore possible that phosphorylation by GSK3b is a primary

requirement for NM1 to bind the rRNA gene promoter. Since

NM1 association with the rDNA is a condition for actin

occupancy [9], it is tempting to speculate that by enhancing

Figure 6. At G1, NM1 is ubiquitinated in a GSK3b-dependent manner by the E3 ligase UBR5. (A) Lysates prepared from GSK3b+/+ MEFs
and GSK3b2/2 MEFs at G1 transiently expressing HA-tagged ubiquitin, treated with MG132 where indicated, were subjected to immunoprecipitations
with the anti-NM1 antibody and the co-immunoprecipitated fractions were analyzed on immunoblots for HA-tagged ubiquitin. (B) Lysates from HeLa
cells synchronized in G1 co-transfected with GSK3b RNAi oligonucleotides or scrambled scrRNAi oligonucleotides and transiently expressing HA-
tagged ubiquitin. Where indicated lysates were obtained from HeLa cells treated with MG132. Immunoprecipitations were performed from all lysates
with the anti-NM1 antibody and the co-immunoprecipitated fractions were analyzed on immunoblots for HA-tagged ubiquitin. (C) Lysates from G1-
blocked GSK3b2/2 MEFs were subjected to RNAi-mediated gene silencing of the E3 ligases UBR5 and Fbxw8 or to scrRNAi oligonucleotides
transiently expressing HA-tagged ubiquitin. The lysates were subjected to immunoprecipitations with the anti-NM1 antibody and the co-
immunoprecipitated fractions were analyzed on immunoblots for HA-tagged ubiquitin.
doi:10.1371/journal.pgen.1004390.g006
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association of NM1 with the chromatin, phosphorylation at Ser-

1020 indirectly stabilizes the actomyosin complex on the rDNA;

this may be achieved by tethering of GSK3b to NM1 through

actin.

How the NM1 phosphorylation by GSK3b is restricted to the

G1 phase of the cell cycle is not known and deserves further

investigation. Our working model is however that at G1

GSK3b-mediated NM1 phosphorylation unleashes a domino

effect that maintains the actin-NM1 complex and B-WICH

assembly on the rDNA chromatin. This mechanism therefore

stabilizes the multiprotein complex that contains GSK3b and its

substrate NM1 and contributes to defining the structure and

organization of the pol I machinery with respect to its chromatin

template for pol I transcription activation and cell cycle

progression.

In summary we propose a novel gatekeeping function for

GSK3b across the rDNA, where GSK3b targets NM1 and

consequently controls local chromatin modifications compatible

with rRNA synthesis by instructing G1 cells to slow down NM1

degradation. In the GSK3b knockouts, cell cycle progression

and in particular, the transition to S-phase occurs more rapidly

than in wild type cells. The dual mode of GSK3b activity

ensures that cell cycle progression is kept under tight regulation

in proliferating cells [20]. It is therefore tempting to speculate

that NM1 is a novel proliferative factor that is directly stabilized

by GSK3b at G1 and it is likely to be altered concomitantly with

inactivation of GSK3b, possibly in response to intracellular

signaling.

Methods

Antibodies
The CGR11 antibody against GSK3b was designed as peptide

specific polyclonal antibody against the N-terminal amino acid

sequence GRPRTTSFAE and affinity purified against the same

epitope (Agrisera AB, Sweden). The anti-GSK3b antibody 27C10

was purchased from Cell Signaling (9315). Antibodies against

WSTF (ab50850), SNF2h (ab3749), H3K9Ac (ab10812), Ki67

(ab15580) and the non-specific rabbit IgGs (ab46540) were from

Abcam. The mouse anti-PCAF (sc13124) and anti-UBF antibod-

ies, the rabbit anti-UBF (sc9131), anti-Nucleolin (sc-13057) and

anti-Cyclin D1 (sc-718) antibodies were purchased from Santa

Cruz Biotech, whereas the anti-b-actin antibody (clone AC74) was

from Sigma Aldrich. The V5 epitope antibody (A190-120A) was

purchased from Bethyl Laboratories. The human autoimmune

sera S57299 specific for the RPA194 pol I subunit was a kind gift

of U. Scheer (Wurzburg University, Germany) [10] and the

antibody against NM1 has previously been characterized [6]. The

Figure 7. A speculative model in which GSK3b phosphorylates the NM1 C-terminal tail at G1. (I) In the presence of GSK3b, NM1 is
phosphorylated and binds to rDNA chromatin. This phosphorylation event triggers a domino effect that leads to stabilization of the actomyosin
complex and B-WICH multi-protein assembly on the rDNA. This mechanism leads to recruitment of PCAF, maintains the levels of H3K9 acetylation
and activates transcription. (II) When GSK3b does not phosphorylate NM1, NM1 becomes polyubiquitinated by UBR5 and degraded by the
proteasome. Consequently, the WICH complex is not assembled on the chromatin. At G1 NM1 degradation leads to suppression of pol I transcription
and alterations in cell cycle progression.
doi:10.1371/journal.pgen.1004390.g007
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monoclonal antibody to bromouridine triphosphate (BrdU) to

monitor FUrd incorporation was from Sigma Aldrich. Species-

specific secondary antibodies conjugated to Cy2, Alexa 488, Alexa

568, Alexa 594 or Texas-Red were purchased from Invitrogen and

Jackson ImmunoResearch. The secondary antibodies conjugated

to FITC and Texas-Red were from DakoCytomation. DNA was

revealed by DAPI staining (300 nM for 3 min at room temper-

ature, RT).

Cell culture, reagents and flow cytometry
The GSK3b +/+ MEFs and GSK3b2/2 MEFs were a kind gift

from J.R. Woodgett (University of Toronto, Canada). MEFs,

HeLa and HEK293T cells were grown in DMEM medium

(Gibco), supplemented with 10% foetal bovine serum (Gibco) and

a 1% penicillin/streptomycin cocktail (Gibco). For synchroniza-

tion in G1, subconfluent cells were grown in serum-free media for

24 hours or grown until contact inhibition [35]. The cells were

released from the G1 block by adding back serum. Where

indicated, GSK3b+/+ MEFs, GSK3b2/2 MEFs and HeLa cells

were incubated with MG132 (Cayman Chemical, ref no

10012628) to a final concentration of 40 mM for 3 h at 37uC.

GSK3b+/+ MEFs were also incubated with BIO (Sigma Aldrich,

B1686) to a final concentration of 1 mM for 24 hrs at 37uC.

HEK293T cells and HEK293T cells constitutively expressing V5-

tagged wtNM1 and RK605AA NM1 point mutant, as well as DIQ

NM1 and DC NM1 deletion mutants were previously character-

ized [9] and are gifts of I. Grummt (University of Heidelberg,

Germany). The plasmid expressing the HA-tagged Ubiquitin was

a gift of O. Sangfelt (Karolinska Institutet, Sweden).

Flow cytometry (FACS) was performed as described [9]. Briefly,

cells were collected by trypsinization and fixed in 70% ethanol on

ice for 15 min. The DNA was stained with propidium iodine (PI)

solution containing 50 mg/ml PI, 0.1 mg/ml RNasaA and 0.05%

Trition X-100 in PBS (phosphate buffer saline) at 37uC for

40 min. Cells were then FACS on FACSCalibur (Becton

Dickinson) and 10000 cells were counted. The experiment was

repeated three times.

ChIP assays and qPCR analysis
ChIP on growing or synchronized GSK3b+/+ MEFs, GSK3b2/2

MEFs was performed as previously described [9]. Briefly,

formaldehyde cross-linked chromatin was obtained from grow-

ing cells and from early G1 cells, treated or untreated with BIO

(1 mM) and MG132 (40 mM) as indicated. Cross-linked chro-

matin was immunoprecipitated with antibodies to pol I

(S57299), UBF, WSTF, SNF2h, NM1, Actin, H3K9Ac, PCAF,

GSK3b (CGR11 and 27C10) and non-specific rabbit IgGs.

DNA-protein complexes were analyzed by qPCR with specific

primers amplifying multiple regions of the rRNA gene,

including promoter, 18S, 5.8S, 28S and IGS (see Table S4

for sequences). qPCR was performed using SYBR-green from

Applied Biosystems according to the manufacturer’s instructions.

The primer concentration was 2.5 mM and the samples

analyzed by Rotor-Gene 6000 series software 1.7. The PCR

conditions were: hold 95uC for 3 minutes, followed by cycles of

95uC for 3 seconds, 60uC for 20 seconds, 72uC for 3 seconds.

The results were analyzed using an average of Ct of IgG as

background. The 2DCt of each sample in triplicates was related

to the 2DCt of the input sample.

ChIP-Seq, sequencing data alignment and analysis
For ChIP-Seq analysis, crosslinked chromatin from GSK3b+/+

MEFs was subjected to immunoprecipitations with the GSK3b
antibody CGR11. 5 ng of precipitated DNA was used to prepare

sequencing libraries at the Bejing Genome Institute (Hong Kong)

using the Illumina HiSeq 2000 platform. For sequencing data

alignment and analysis, the current assembly of mouse reference

genome is missing the ribosomal rDNA repeats, of which there are

approximately 400, located on chromosomes 12, 14 and 15. To

compensate for this we utilized the procedure of Zentner et al

(2011) [28] and constructed a custom reference sequence that

contained a non-masked rDNA repeat, taken from BK000964,

which was added to the end of chromosome 12 of the MM9

assembly. This allows for the identification and mapping of

sequences present within the rDNA repeat region that are

associated with the ChIP pulldown. Without the addition of the

rDNA to the assembly these sequences would be removed from

the analysis pipeline. The method has previously been shown to

be a robust technique to identify regions within the genomic

rDNA region that are associated with transcription factors,

silencing or enhancing factors or histone modifications. The

ChIP-Seq data sets are available in the Gene Expression

Omnibus (GEO) database with accession number GSE57153.

The analysis procedure involved the use of the SOAP2 program

to map the reads to the constructed reference genome.

Sequences with more than two mismatches were discarded

from further analysis. The resulting individual sequences were

remapped back to the annotated UCSC MM9 reference

sequence, which allows for the identification of peaks corre-

sponding to the levels of association of the ChIP target with

those loci.

Methylated DNA immunoprecipitation assays (MeDIP)
MeDIP assays were carried out essentially as previously

described [30,31]. In brief, genomic DNA was extracted using

the Qiagen QIAmp DNA kit from GSK3b+/+ and GSK3b2/2

MEFs. DNA was sonicated to make 200–500 bp fragments and

subsequently denatured. Immunoprecipitation with anti-5-methyl-

cytodin (Abcam) antibody was done overnight. The complexes

were captured with protein A Sepharose. The methylated DNA

was finally eluted with minElute PCR purification kit (Qiagen) and

qPCR for the rDNA promoter region was run. Bars represent

percent of input.

Analysis of protein-protein interactions
Immunoprecipitation assays were performed as previously

described [9]. Endogenous GSK3b from nuclear extracts of

growing GSK3b+/+ MEFs nuclear lysates were incubated with the

CGR11 antibody or control non-specific rabbit IgGs. Constitu-

tively expressed V5-tagged wtNM1, RK605AA NM1, DIQ NM1

and DC NM1 mutants from HEK293T cells lysates were

incubated with the anti-V5 epitope antibody and control non-

specific rabbit IgGs. The antibodies were subsequently precipitat-

ed with Protein G Sepharose (Invitrogen). The beads were washed

with 1XPBS supplemented with 1 mM PMSF, 0.2 % NP-40 and

then resuspended in SDS-loading buffer and heat denatured.

Bound proteins were resolved by SDS-PAGE and analyzed on

immunoblots for GSK3b, NM1, WSTF, SNF2h, PCAF, actin or

V5. Endogenous NM1 from nuclear extracts of growing GSK3b+/+

MEFs treated or untreated with MG132 (40 mM for 3 hrs at

37uC) were incubated with the CGR11 antibody or control

non-specific rabbit IgGs. The co-immunoprecipitated protein

fractions were resolved by SDS-containing gel electrophoresis

and in gel digested with trypsin (minus the heavy and light

chain gel sections). The tryptic peptides were analyzed on a

RSLC nanoLC system coupled to a Velos I system (LTQ

Orbitrap Velos Pro).
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Kinase assays and analysis of endogenous
phosphorylated proteins

To monitor phosphorylation of the endogenous NM1 protein,

GSK3b2/2 MEFs were arrested in G1 by serum starvation and

treated with 40 mM MG132 for 3 hrs at 37uC. Lysates were

prepared in 20 mM Hepes pH 7.4, 0.05 mM ATP, 10 mM

MgCl2, 1 mM dithiothreitol, 2 mM sodium orthovanadate, and

then incubated with 5 mCi of c-33P-ATP and recombinant GSK3b
(Abcam) for 30 min at 30uC. The lysates were next subjected to

immunoprecipitations with the anti-NM1 antibody as previously

described [9]. The immunoprecipitated NM1 was resolved by

SDS PAGE and the proportion of phosphorylated NM1 within the

immunoprecipitated protein fraction was detected by phosphor-

imaging. Alternatively, the kinase assays were performed on

immunoprecipitated NM1 or actin from lysates of GSK3b2/2

MEFs treated with MG132 still coupled to the Sepharose beads.

Briefly, the beads were washed with 1X PBS containing 0.5% NP-

40 and supplemented with c-33P-ATP and recombinant GSK3b
for 30 min at 30uC. The immunoprecipitated protein fraction was

detected by phosphorimaging and immunoblotting for NM1 and

actin.

Phosphate affinity gel electrophoresis for detection of endoge-

nous NM1 and actin phosphorylation was performed as previously

described [9]. Lysates prepared from growing or G1 synchronized

GSK3b+/+ MEFs and GSK3b2/2 MEFs were separated by 8%

SDS-PAGE containing 25 mM Phos-tagTM AAL-107 according

to the manufacturer’s instructions (MANAC Incorporated) and

50 mM MnCl2, and transferred to a PVDF membrane using a

transfer buffer containing 25 mM Tris, 86 mM glycine and 10%

methanol. Immunoblots were analyzed for NM1 and actin. Where

indicated extracts were subjected to alkaline phosphatase treat-

ment as described in the instruction manual provided by the

manufacturer (New England Biolabs). For identification of

phosphorylated residues, NM1 was immunoprecipitated from

nuclear lysates prepared from GSK3b+/+ MEFs and GSK3b2/2

MEFs, resolved by SDS PAGE and in gel digested with trypsin.

The tryptic peptides were analyzed by tandem mass spectrometry.

Ubiquitin assays
GSK3b+/+ MEFs, GSK3b2/2 MEFs, HeLa and HEK293T cells

on 10 cm dishes were transfected with 7–10 ng of a plasmid

expressing HA-tagged ubiquitin using Lipofectamine 2000 as

described in the instruction manual (Invitrogen). Following 24 h

expression cells were treated with 40 mM MG132 for 3 hrs at 37uC
and lysed in SDS containing lysis buffer (1 % SDS, 25 ml saturated

NEM in PBS). Lysates were denatured and the SDS diluted to 0.1%

with 1X PBS. Lysates were subjected to immunoprecipitations with

the anti-NM1 antibody overnight at 4uC and precipitated with

Protein G Sepharose. The beads were washed in 0.5% NP-40

buffer, resuspended in SDS-containing buffer and heat denatured.

Samples were resolved by SDS-PAGE and transferred on PVDF

membrane for immunodetection of ubiquitin with anti-HA epitope

antibody. Where indicated, ubiquitination assays were performed

on GSK3b2/2 MEFs and HeLa cells subjected to GSK3b, UBR5

or Fbxw8 gene silencing by RNAi (see below).

GSK3b, UBR5 and Fbxw8 gene silencing by RNAi
For the GSK3b gene silencing, HeLa cells were subjected to

GSK3b RNAi oligonucleotides (target sequence 59 GGACC-

CAAAUGUCAAACUA) or control scrambled RNAi (scrRNAi)

oligonucleotides (59 UCGUUGCAGGAUAUGUAGUUUUU).

GSK3b gene silencing duplexes and control scrambled versions

were purchased from Dharmacon and applied by transfection with

Lipofectamine RNAiMax (Invitrogen) at a final concentration of

400 pmol for 24 hrs. For the UBR5 and Fbxw8 genes silencing,

GSK3b2/2 MEFs were subjected to RNAi oligonucleotides

(Dharmacon) to UBR5 (target sequence 59-GGGUGUACAUU-

CUUUAAUA) and Fbxw8 (target sequence 59-CGCCAAGGAG-

CACACAUUA) applied by transfection with Lipofectamine

RNAiMax at a final concentration of 400 pmol for 24 hrs.

Transcription assays
To reveal active pol I transcription foci, living GSK3b+/+ MEFs

and GSK3b2/2 MEFs grown on cover slips were pre-incubated

with DMEM supplemented with 75 mM DRB (Sigma Aldrich) for

1 h. The FURD (Sigma-Aldrich) was then added to a final

concentration of 2 mM and cellular uptake was allowed for up to

10 min [9,29]. Cells were fixed with a 3.7% formaldehyde solution

in PBS at room temperature and permeabilized with a 0.5%

Triton X-100 solution in PBS. For detection of incorporated

FURD, fixed cells were incubated with a mouse monoclonal

antibody to BrdU followed by a Cy3-conjugated goat anti-mouse

secondary antibody. Fluorescence images were obtained from a

confocal microscope (Zeiss LSM meta) with 63X oil objective NA

1.3. Images were collected and analyzed using the LSM software.

For analysis of nascent pre-rRNA, total RNA was extracted

from growing GSK3b+/+ MEFs, GSK3b2/2 MEFs and GSK3b-

silenced HeLa cells with the TRI reagent as specified by the

manufacturer (Sigma). 1 ng of RNA was reversed transcribed and

analysis by qRT-PCR with specific primers amplifying mouse and

human 45S pre-rRNA relative to b-actin mRNA. qRT-PCR was

performed using SYBR-green from Applied Biosystems according

to the manufacturer’s instructions (see also above for further

details). Where indicated the same analysis was performed on

nascent 45S pre-rRNA in GSK3b+/+ MEFs, GSK3b2/2 MEFs

synchronized in G1, both by serum starvation and contact

inhibition. Relative 45S pre-rRNA levels were measured by

qRT-PCR against the levels of b-tubulin mRNA (primers

sequences are shown in Table S4). The qRT-PCR values are

shown as bars diagrams. Error bars represent the standard

deviation of three independent experiments. Significances were

obtained by Student’s T-test, two-sample, equal variance.

Immunofluorescence
For immunolocalization of nucleolin and UBF, GSK3b+/+

MEFs and GSK3b2/2 MEFs cells were grown on coverslips to

subconfluence and arrested in G1 by growing in serum-free

medium for 24 hours. The cells were fixed with 4% formaldehyde

in PBS for 15 min, permeabilized with 0.1% Triton X-100 in PBS

for 13 min at room temperature and stained with primary

antibodies against Nucleolin and UBF following standard proce-

dures. Secondary antibodies conjugated to FITC and Texas-Red

were used to visualize Nucleolin and UBF, respectively. The slides

were mounted in Vectashield containing DAPI (Vector Labora-

tories), and examined and photographed with an Axioplan

fluorescence microscope (Carl Zeiss). Cells in random areas of

the preparations were classified into three groups according to the

number of positively stained nucleoli per cell (one to three, four to

eight, more than eight).

Transmission electron microscopy
Subconfluent GSK3b+/+ MEFs and GSK3b2/2 MEFs cells

were arrested in G1 by growing in serum-free medium for

24 hours. The cells were pelleted and fixed with 2% glutaralde-

hyde (Merck) in Sorensen’s phosphate buffer, washed with

Sorensen’s buffer, and embedded in 2% low melting point

agarose. The agarose blocks were cut into small pieces, dehydrated
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in a graded series of ethanol at room temperature, and embedded

in Agar 100 resin (Agar Scientific Ltd). The embedded cell pellets

were cut into 50 nm thin sections, mounted on 100 mesh copper

grids, and stained with 2% uranyl acetate in 50% ethanol for

5 min at room temperature. The specimens were examined and

photographed in a transmission electron microscope Tecnai G2

Spirit BioTwin (FEI Company) at 80 kV. Photoshop software

(Adobe) was used for the preparation of composite images and for

adjustment of intensity and contrast.

Supporting Information

Figure S1 ChIP and qPCR on growing GSK3b+/+ MEFs and

GSK3b2/2 MEFs at the rRNA gene promoter (45S-2) and

proximal (IGS-1) and distal (IGS-2) positions across the IGS

with the anti-GSK3b antibody CGR11 for further validation of

the ChIP-Seq analysis (see Table S4). The values are presented

as the percentage of the input signal for each primer pair. The

structure of individual mouse ribosomal rDNA repeat is

shown to show the location of the different rDNA fragments

analyzed.

(TIF)

Figure S2 GSK3b gene silencing by RNAi in HeLa cells. (A)

GSK3b steady state expression levels on immunoblots of lysates

prepared from control (scrRNAi) and GSK3b-silenced HeLa cells.

(B) Densitometric quantification of GSK3b steady state protein

expression relative to b-actin. (C) rRNA synthesis in growing

HeLa cells subjected to GSK3b gene silencing by RNAi. For the

analysis, relative 45S pre-rRNA levels were monitored from total

RNA preparations by RT–qPCR using b-actin mRNA as internal

control. Error bars represent the standard deviation of three

independent experiments.

(TIF)

Figure S3 The ultrastructure of the nucleus in the GSK3b
knockout MEFs. (A) Overview images showing the morphology of

the cell nuclei of GSK3b+/+ and GSK3b2/2 MEFs, as indicated.

In GSK3b+/+ MEFs, the dense chromatin is typically concentrated

in a few large domains (arrow), whereas the nucleus of GSK3b2/2

MEFs contains a larger number of smaller chromatin patches

(arrows) that are often associated with nucleolar material. The

magnification bar represents 1 mm. (B) An example of GSK3b2/2

MEFs displaying large and very vacuolated nucleoli. The

magnification bar represents 200 nm.

(TIF)

Figure S4 GSK3b+/+ MEFs and GSK3b2/2 MEFs subjected to

serum starvation. (A) Cell cycle profile for growing and time-

course serum starvation (16 h, 20 h, 24 h, 48 h) performed on

propidium iodide-stained GSK3b+/+ MEFs and GSK3b2/2

MEFs by FACS. (B) Immunoblots of lysates obtained from

growing and serum starved GSK3b+/+ MEFs and GSK3b2/2

MEFs at the time points 16 h, 20 h, 24 h, 48 h, using antibodies

to Ki67, cyclin D1, NM1, GSK3b and b-actin.

(TIF)

Figure S5 GSK3b+/+ MEFs and GSK3b2/2 MEFs blocked in

G1 by contact inhibition. (A) Cell cycle profile for growing and

G1-arrested GSK3b+/+ MEFs and GSK3b2/2 MEFs by FACS

on propidium iodide-stained cells. (B) Immunoblots of lysates from

GSK3b+/+ MEFs and GSK3b2/2 MEFs arrested in G1 by

contact inhibition using antibodies for NM1, cyclin D1, and b-

actin. (C) rRNA synthesis in GSK3b+/+ MEFs and GSK3b2/2

MEFs arrested in G1 by contact inhibition. For the analysis,

relative 45S pre-rRNA levels were monitored from total RNA

preparations by RT–qPCR using tubulin mRNA as internal

control [p = 5.4e-05, ***].

(TIF)

Figure S6 Tandem MS spectrum of non-phosphorylated

peptide DGIIDFTSGSELLITK identified within the primary

NM1 sequence immunoprecipitated from G1-arrested nuclear

lysate of GSK3b+/+ MEFs.

(TIF)

Figure S7 Cell cycle profile analyzed at the indicated time points

after release from a G1 arrest by serum starvation using FACS on

propidium iodide-stained GSK3b+/+ MEFs and GSK3b2/2 MEFs.

(TIF)

Figure S8 In growing cells NM1 is not ubiquitinated in a

GSK3b-dependent manner. (A) Lysates were prepared from

growing GSK3b2/2 MEFs transiently expressing HA-tagged

ubiquitin. The lysates were subjected to immunoprecipitations

with the anti-NM1 antibody and the co-immunoprecipitated

fractions were analyzed on immunoblots for HA-tagged ubiquitin.

Lane 1, immunoprecipitationf from growing GSK3b2/2 MEFs

which do not express HA-tagged ubiquitin; lane 2, immunopre-

cipitations from untreated growing GSK3b2/2 MEFs expressing

HA-tagged ubiquitin; lane 3, immunoprecipitations from growing

GSK3b2/2 MEFs expressing HA-tagged ubiquitin treated with

MG132. (B) Lysates were prepared from growing GSK3b+/+

MEFs transiently expressing HA-tagged ubiquitin. The lysates

were subjected to immunoprecipitations with the anti-NM1

antibody and the co-immunoprecipitated fractions were analyzed

on immunoblots for HA-tagged ubiquitin. Lane 1, immunoprecip-

itations from growing GSK3b+/+ MEFs which do not express HA-

tagged ubiquitin; lane 2, immunoprecipitations from growing

GSK3b+/+ MEFs expressing HA-tagged ubiquitin; lane 3, immu-

noprecipitations from growing GSK3b+/+ MEFs expressing HA-

tagged ubiquitin treated with MG132. (C) Lysates were prepared

from growing HEK293T cells transiently expressing HA-tagged

ubiquitin. The lysates were subjected to immunoprecipitations with

the anti-NM1 antibody and the co-immunoprecipitated fractions

were analyzed on immunoblots for HA-tagged ubiquitin. Lane 1,

immunoprecipitations from growing HEK293T cells which do not

express HA-tagged ubiquitin; lane 2, immunoprecipitations from

untreated growing HEK293T cells expressing HA-tagged ubiquitin;

lane 3, immunoprecipitations from growing HEK293T cells

expressing HA-tagged ubiquitin treated with MG132.

(TIF)

Table S1 GSK3b binding genome-wide. Mouse genomic

regions corresponding to high levels of deep sequencing hits from

the ChIP-Seq analysis.

(DOC)

Table S2 Mass spectrometry identification of the fraction of

proteins co-immunoprecipitated with the anti-NM1 antibody from

total lysates of untreated GSK3b+/+MEFs.

(XLS)

Table S3 Mass spectrometry identification of the fraction of

proteins co-immunoprecipitated with the anti-NM1 antibody from

total lysates of GSK3b+/+ MEFs treated with the proteasome

inhibitor MG132.

(XLS)

Table S4 Sequences of mouse and human oligonucleotide

primers used in the qPCR and qRT PCR analyses. For primer

sequences, see references [7,9,50].

(DOC)
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biochemical fractionation with a refined flow cytometry approach to monitor

nucleocytoplasmic protein expression throughout the unperturbed mammalian

cell cycle. Nat Protoc 8: 602–626.

36. Cole A, Frame S, Cohen P (2004) Further evidence that the tyrosine

phosphorylation of glycogen synthase kinase-3 (GSK) in mammalian cells is

an autophosphorylation event. Biochem J 377: 249–255.

37. Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, et al.

(2003) GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem

Biol 10: 1255–1266

38. Tseng A-S, Engel FB, Keating MT (2006) The GSK-3 inhibitor BIO promotes

proliferation in mammalian cardiomyocytes. Chem Biol 13: 957–963

39. Jope RS, Johnson GVW (2004) The glamour and gloom of glycogen synthase-3.

Trends Biochem Sci 29: 95–102

40. Fiol CJ, Mahrenholz AM, Wang Y, Roeske RW, Roach PJ (1987) Formation of

protein kinase recognition sites by covalent modification of the substrate.

Molecular mechanism for the synergistic action of casein kinase II and glycogen

synthase kinase 3. J Biol Chem 262: 14042–14048

41. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2:

769–776

42. Fuentealba LC, Eivers E, Ikeda A, Hurtado C, Kuroda H, et al. (2007)

Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/

Smad1 signal. Cell 131: 980–993

43. Kim NG, Xu C, Gumbiner BM (2009) Identification of targets of the Wnt

pathway destruction complex in addition to b-catenin. Proc Natl Acad Sci USA

106: 5165–5170

44. Hay-Koren A, Caspi M, Rosin-Arbesfeld R (2011) The EDD E3 ligase

ubiquitinates and up-regulates beta-catenin. Mol Biol Cell 22: 399–411

45. Tasaki T, Sriram SM, Park KS, Kwon YT (2012) The N-end rule pathway.

Annu Rev Biochem 81: 261–289.

46. Tsai YC, Greco TM, Boonmee A, Miteva Y, Cristea IM (2012) Functional

proteomics establishes the interaction of SIRT7 with chromatin remodeling

complexes and expands its role in regulation of RNA polymerase I transcription.

Mol Cell Proteomics 11: 60–76

47. Munoz MA, Saunders DN, Henderson MJ, Clancy JL, Russell AJ, et al. (2007)

The E3 ubiquitin ligase EDD regulates S-phase and G(2)/M DNA damage

checkpoints. Cell Cycle 6: 3070–3077.

48. Smits VA (2012) EDD induces cell cycle arrest by increasing p53 levels. Cell

Cycle 11: 715–720.

49. Benavides M, Chow-Tsang LF, Zhang J, Zhong H (2013) The novel interaction

between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates

cell cycle progression. Biochim Biophys Acta 1833: 21–32.

50. Young DW, Hassan MQ, Pratap J, Galindo M, Zaidi SK, et al. (2007) Mitotic

occupancy and lineage-specific transcriptional control of rRNA genes by Runx2.

Nature 445: 442–446.

GSK3b in rRNA Synthesis

PLOS Genetics | www.plosgenetics.org 17 June 2014 | Volume 10 | Issue 6 | e1004390


