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Abstract: Radial acquisition with MOCCO reconstruction has been previously proposed for high
spatial and temporal resolution breast DCE imaging. In this work, we characterize MOCCO across
a wide range of temporal contrast enhancement in a digital reference object (DRO). Time-resolved
radial data was simulated using a DRO with lesions in different PK parameters. The under sampled
data were reconstructed at 5 s temporal resolution using the data-driven low-rank temporal model for
MOCCO, compressed sensing with temporal total variation (CS-TV) and more conventional low-rank
reconstruction (PCB). Our results demonstrated that MOCCO was able to recover curves with Ktrans

values ranging from 0.01 to 0.8 min−1 and fixed Ve = 0.3, where the fitted results are within a 10% bias
error range. MOCCO reconstruction showed less impact on the selection of different temporal models
than conventional low-rank reconstruction and the greater error was observed with PCB. CS-TV
showed overall underestimation in both Ktrans and Ve. For the Monte-Carlo simulations, MOCCO
was found to provide the most accurate reconstruction results for curves with intermediate lesion
kinetics in the presence of noise. Initial in vivo experiences are reported in one patient volunteer.
Overall, MOCCO was able to provide reconstructed time-series data that resulted in a more accurate
measurement of PK parameters than PCB and CS-TV.

Keywords: breast DCE-MRI; compressed sensing; quantitative imaging

1. Introduction

Dynamic contrast enhanced (DCE) MRI is widely accepted as the most sensitive
imaging method for the detection of breast cancer [1,2] and shows promise for assessing
response to therapy [3–5]. Conventional DCE-MRI protocols using high spatial resolution
(at or below 1 mm × 1 mm in-plane pixel size) but low temporal resolution (60–120 s/time-
frame) [6] enable evaluation of lesion morphology as well as the kinetic features of lesions
based on the MRI BI-RADS lexicon [7]. Kinetic features, including assessment of early
wash-in and late wash-out phase images, are used to differentiate between benign and
malignant lesions to improve sensitivity and specificity [8]. However, studies have shown
that there is an overlap between the kinetic features of benign and malignant lesions with
conventional methods [9–13].

To overcome limitations in the specificity of DCE-MRI, prior authors have proposed
including quantitative pharmacokinetic (PK) analysis to extract more detailed physiological
information from contrast kinetics showing potential for improving diagnostic accuracy and
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specificity [14–17]. In breast studies, the extended Tofts model (ETM) is commonly used [18]
to provide insight into correlations between tumor angiogenesis and contrast agent (CA)
kinetics from the derived PK parameters. For example, the Ktrans (min−1) value is correlated
to the wash-in slope describing the transfer rate of CA from plasma to extravascular
extracellular space (EES). Ve (%) is the volume fraction of EES and Vp (%) is the volume
fraction of blood plasma. These parameters have shown potential in the evaluation of
treatment planning [19], screening [20] and treatment response assessment [21,22], yet their
clinical usage has been severely hampered due to the uncertainty of measurement accuracy.

To accurately measure PK parameters, multiple factors should be considered including
the native T1 value of the tissue [23], choice of the arterial input function, and temporal
resolution of the time-resolved T1-weighted imaging sequence [24,25]. Lopata et al. [26]
demonstrated that the accuracy of the Ktrans estimation is highly dependent on the temporal
resolution, which becomes increasingly more important for Ktrans values greater than
0.5 min−1. Another simulation study conducted by Giovanni et al. [24] in breast DCE-MRI
evaluated the fitting error base on different temporal resolutions showing that the error can
be less than 10% for Ktrans > 0.5 min−1 if a temporal resolution of less than 20 s could be
achieved. However, advanced acquisition and reconstruction approaches are needed to
achieve such high temporal resolution while maintaining the required spatial resolution
and large field of view bilateral breast coverage.

Several accelerated data acquisition approaches have been proposed for dynamic
image reconstruction, such as parallel imaging, view-sharing techniques [20,27–30], low-
rank matrix recovery approaches [31] and compressed sensing reconstruction [32–35].
Parallel imaging alone can only provide moderate acceleration factors and view-sharing
techniques can provide higher nominal temporal resolution but have been shown to
suffer from temporal blurring [36]. Low-rank matrix recovery approaches assume the
dynamic image series can be modeled by a low-dimension subspace, that is only a few
temporal basis functions are needed to estimate the kinetic features of each voxel [31].
Studies have exploited the use of rank reduction [37,38] and have shown that a low-rank
matrix of the image series can be recovered from under sampled k-space data. However,
low-rank techniques are known to suppress temporal dynamics in the cases of complex
tissue kinetics, that cannot be accurately represented by a small number of temporal basis
functions, especially when high under sampling factors are required. These deficiencies
may be overcome by the data-driven model consistency condition (MOCCO) technique
proposed by Velikina et al., 2015 that uses low-rank temporal models for regularization
instead of hard constraining, which results in full-rank solutions that preserve temporal
dynamics [39]. More recently, Wang et al., 2021 optimized using MOCCO for breast DCE-
MRI and demonstrated the ability to provide 5 s temporal resolution while still matching
the in-plane spatial resolution and full volume coverage typically used in routine clinical
protocols [40].

In most studies, the temporal curves generated by using the proposed accelerated
techniques were compared with state-of-the-art techniques, such as non-uniform fast
Fourier transform (NUFFT) [34,41,42]. However, due to the lack of the ground truth in
the in-vivo setting, the temporal accuracy of PK parameters derived from these advanced
reconstruction methods has not been studied in a wide range of PK values and scan
parameters for bilateral breast DCE-MRI. Simulations using digital reference objects (DROs)
provide an important tool for validation purposes due to the ability to provide a ground
truth for quantitative analysis. Current community initiatives such as the Radiological
Society of North American Quantitative Imaging Alliance (QIBA) propose using DROs to
validate the quantitative accuracy of new techniques if these approaches are to be used in
clinical practice.

The aim of this study is to evaluate the accuracy of PK parameter estimation from
the data-driven low-rank compressed sensing (MOCCO) reconstruction with 5 s temporal
resolution for breast MRI using a range of relevant tissue contrast kinetics and at clinically
applicable spatial resolution. Specifically, we will determine how well the MOCCO re-
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construction is able to recover relevant slow to rapid contrast kinetics using a breast DCE
digital reference object (DRO) with signal characteristics generated using the ETM.

2. Materials and Methods

To validate the temporal accuracy of our proposed imaging techniques for estimating
quantitative PK parameters, a DRO was used to generate k-space data that included a wide
range of tissue contrast kinetics. It was shown that the error of MOCCO reconstruction
depends both on the rank of the temporal model and on the ability to learn temporal
basis functions from the available data [39]. To evaluate the impact of each source of error
on quantitative accuracy, we compared MOCCO reconstructions using temporal models
derived from both high and low spatial resolution images. Additionally, Monte-Carlo
simulations were performed to evaluate the accuracy and precision of quantitative PK
parameters from MOCCO reconstruction in slow and rapid tissue contrast kinetics in the
presence of noise.

2.1. Digital Reference Object (DRO)

The DRO used in this study was recently published by Henze Bancroft et al. [43] and
is publicly available through a GitHub repository referenced in their manuscript. The DRO
allowed for generation of specific breast tissue structures as well as adding user defined
tissue structures with uniquely assigned contrast kinetics (Figure 1). Imaging simulation
parameters were chosen for the DRO to replicate a conventional clinical bilateral breast
protocol: FOV = 340 mm × 340 mm, in-plane spatial resolution = 0.75 mm × 0.75 mm,
slice thickness = 1.4 mm, flip angle = 30◦, TE/TR = 2.4 ms/4.7 ms and acquired matrix
size = 448 × 448 × 142. Homogeneous round lesions with a diameter of 8 mm were added
to simulate enhancing lesions. Note that a flip angle of 30◦ is not typical for standard clinical
breast protocols but is more optimal for PK modeling. The concentration time curves (CTC)
for the lesions were modeled using the extended Tofts model (ETM) [44,45]. Parameters
for the ETM were chosen to span relatively wide ranges of Ktrans = 0.01–1.5 min−1 and
fixed values of Ve = 0.3, and Vp = 0.001. These ranges were selected to extend slightly
beyond the typical range of slow, intermediate and rapid changing lesion kinetics to allow
performance assessment extending to the limits of the expected parameter ranges. An
arterial input function (AIF) curve was simulated by using the publicly available dispersion
model described by Barboriak et al. [46]. A hematocrit of 0.45 was assumed. The spoiled
gradient recalled echo (SPGR) signal model was then used to generate signal time curves
assuming a field strength of 3T, T1 value of breast tissue (T10 = 1444 ms [47]) and contrast
agent relaxivity of r1 = 4.9 mM−1 s−1 to simulate Gd-BOPTA (gadobenate dimeglumine,
Multihance, Bracco, Milan, Italy) [48], and imaging flip angle (FA = 30◦). Images containing
both static and dynamic features were then sampled using the NUFFT [49] to simulate
k-space data generated from an under sampled golden-angle radial acquisition consisting
of 1024 radial projections with a 16-channel breast coil array. The breast coil sensitivity
maps were derived from MRI images acquired using a breast shaped water phantom
followed by a local fitting method to remove Gibbs ringing artifacts and noise [50].

2.2. Reconstruction

The under sampled radial data were reconstructed at 5 s temporal resolution correspond-
ing to eight projections per time frame (under sampling factor, R = 88) using MOCCO:

ŝ = argmin
s

(
||Es−m||22 + λ||

(
ĨK Ĩ∗K − It

)
s||1
)

(1)

here m denotes the measured MRI signal of the underlying image series, which was
acquired using an encoding matrix E comprising the coil sensitivity values and Fourier
encoding terms. λ is a regularization parameter providing a balance between the data
consistency and the regularization terms. ĨK is a matrix of rank K defining the temporal
model, whose columns are temporal basis functions learned from the data, and Ĩ∗K is its
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adjoint matrix. To evaluate the impact of ĨK on reconstruction accuracy, we evaluated two
approaches to generate the temporal basis functions for MOCCO:

1. Behavior with temporal models derived from high resolution images (HR): the ĨK for
this approach included two elements of the pre-estimated temporal matrix, which
included the reference CTCs and temporal curve with constant value to simulate
dynamic and static tissue signal changes.

2. Performance with temporal models derived from low resolution images (LR): in this
approach, ĨK was learned through the low frequency region from fully-sampled central
k-space data using progressive learning with cubic spline approximation [51,52]
followed by complex independent component analysis (ICA) [53]. The ICA technique
assumes that each component is statistically independent from the source signals,
which has been shown to be a robust method to identify key components of the
perfusion series and remove unwanted image-to-image fluctuations [54].
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Figure 1. (A) A breast digital reference object (DRO) (matrix size 448 × 448 × 142) phantom is shown 
with one lesion located in the fibroglandular tissue. (B) Nine configurations of the DRO phantom 
were evaluated, each with an 8 mm diameter lesion at the same location and having contrast kinetics 
generated by assigning the fixed Ve = 0.3, fixed Vp = 0.001, and Ktrans ranging from 0.01 to 1.5 using 
the extended Tofts model, respectively. 
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iteratively re-weighted least squares minimization [55]. For comparison, we also applied 
a more conventional low-rank reconstruction [31,38] approach using a principal 

Figure 1. (A) A breast digital reference object (DRO) (matrix size 448 × 448 × 142) phantom is shown
with one lesion located in the fibroglandular tissue. (B) Nine configurations of the DRO phantom
were evaluated, each with an 8 mm diameter lesion at the same location and having contrast kinetics
generated by assigning the fixed Ve = 0.3, fixed Vp = 0.001, and Ktrans ranging from 0.01 to 1.5 using
the extended Tofts model, respectively.

MOCCO with ĨK using the HR approach (MOCCO-HR) can provide a theoretical
baseline when the ideal temporal model is available. However, MOCCO using the LR
approach (MOCCO-LR) presents a more realistic scenario where the temporal model is
learned from the data itself. Both MOCCO-HR and MOCCO-LR were implemented using
iteratively re-weighted least squares minimization [55]. For comparison, we also applied a
more conventional low-rank reconstruction [31,38] approach using a principal component
basis (PCB), which assumes that the image series ŝ is restricted to a low dimensional
subspace, i.e., is of the form

ŝ(x, t) = ĨK(t)C̃K(x) (2)

where ĨK(t) is temporal model of rank K and the spatial coefficients C̃K(x) can be deter-
mined by solving a quadratic minimization problem:

C̃K = argmin
C

(
||EĨKC−m||2

)
(3)

As with MOCCO, two different temporal models were also used for PCB, denoted as
PCB-HR and PCB-LR, and quadratic minimization was implemented using the conjugate
gradient method.
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Since individual image pixels often have similar temporal enhancement curves for
dynamic imaging, the temporal total variation (TV) is often used as a sparse representation
for compressed sensing reconstruction [41,42]. The compressed sensing with temporal total
variation (CS-TV) regularization can be defined as

ŝ = argmin
s

(
||Es−m||22 + λ||∇ts||1

)
(4)

where ∇t is the first order temporal gradient.
A regularization value (λ) of 10 and 2 was used for both MOCCO and CS-TV to provide

the same visually perceived image sharpness based on previous studies using the same
DRO configuration [56]. Iterations of the reconstruction were performed until the relative
norm of the k-space residual was less than a specified tolerance (10−9) or until a maximal
number of iterations (n = 400) was reached for MOCCO, PCB and CS-TV, respectively.

For the purposes of providing reference images for comparison, fully-sampled radial
data consisting of 704 individual projections per time frame were generated by matching
the temporal resolution of the under sampled radial images. Next, reference images were
reconstructed using iterative SENSE reconstruction from fully sampled k-space data.

2.3. Analysis

PK fitting was performed to determine how well the original curve shapes were
recovered using the radial acquisition and advanced reconstruction methods. Specifically,
the fitting was used to measure how well the original kinetic parameters could be recovered
from the reconstructed temporal curves. Signal intensity time curves from regions-of-
interest (ROI) placed in the lesion locations were measured across all image time-series and
subsequently converted to CTCs. PK modeling was performed using the ROCKETSHIP
toolbox [56] by fitting the ETM to the CTCs using the Levenberg–Marquardt algorithm
with a step tolerance of 1 × 10−6 and a function tolerance of 1 × 10−8. Fitting bounds
were set between 0 and 1 with randomly selected initial estimates for Ktrans, Ve and Vp.
The fitted voxel-wise PK parameters were then compared to the original PK parameters to
generate % error maps. Bland–Altman plots were used to evaluate the agreement between
the PK parameters measured from two different reconstructions and the corresponding
ground truth.

Monte-Carlo simulations were performed to evaluate the performance of the MOCCO
reconstruction in the presence of noise. Thirty realizations of independent identically
distributed (i.i.d.) complex Gaussian noise with zero mean and standard deviation of
20% of the mean k-space magnitude were added to each coil channel for three k-space
data sets that included lesions with Ktrans = 0.01, 0.3 and 1.5 min−1 resulting in 90 unique
datasets (30 for each tissue contrast kinetics). Additionally, 90 realizations (30 for each tissue
contrast kinetics) were performed using fully-sampled data with additive i.i.d. Gaussian
noise with the standard deviation matched to the under sampled data. The reconstruction
accuracy was assessed by taking a pixel-wise mean and standard deviation across all
Monte-Carlo realizations and calculating the percent error between the ground truth and
the Monte-Carlo mean from under sampled and fully sampled images, respectively.

2.4. In Vivo Imaging

Two patient volunteers were imaged during contrast injection (gadobenate dimeglu-
mine, Multihance; Bracco Inc., Milan, Italy) on a clinical 3T MRI (Signa Premier, GE Health-
care, Waukesha, WI, USA) using a 16-channel breast coil (Sentinelle, Invivo International,
Gainsville, FL, USA) for this institutional review board-approved, HIPPA-compliant study.

MRI Acquisition

Radial imaging was performed using a 3D stack-of-stars golden-angle spoiled gradient
echo (SPGR) imaging sequence to sample 1344 unique radial angles. The radial field of
view (FOV) was oversampled by doubling the sampling bandwidth to limit aliasing from
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signal outside the FOV. Acquisition parameters included: repetition time (TR) = 5.87 ms;
echo time (TE) = 2.79 ms; FOV = 38 cm; flip angle = 10; receiver bandwidth = +/−63.3 kHz;
acquisition matrix = 448 × 448 × 142, acquired spatial resolution = 0.8 × 0.8 mm in-plane
resolution and 1.4 mm out of plane, acceleration factor of 1.5 at z phase encoding. A weight-
based dose (0.1 mmol/kg) of a gadolinium-based contrast agent (gadobenate dimeglumine,
Multihance; Bracco Inc., Milan, Italy) was administered followed by a 20-mL saline flush,
both injected at a rate of 2 mL/s using a power injector.

3. Results

Figure 2 illustrates the temporal performance of MOCCO-HR, MOCCO-LR, PCB-HR
PCB-LR and CS-TV for recovering the simulated lesion CTCs with varying enhancement
patterns. Note that the displayed time interval ranges from 150 s to 400 s to allow for
a better visualization over the period of greatest signal change. The HR approach with
K = 2 represents the best approximation of lesion kinetics for the reconstructions when
using the reference CTCs as the temporal basis. Therefore, as illustrated in Figure 2A–C,
the mean concentration value of the temporal curves generated by both PCB-HR and
MOCCO-HR are closely matched to the original reference time curves in the noise-free
dataset. For the LR approach with K = 3 in Figure 2D–F, MOCCO-LR showed similar results
to the MOCCO-HR with only slightly increased standard deviation whereas PCB-LR has
shown severe temporal blurring on wash-in slopes in both intermediate (Figure 2E) and
rapid (Figure 2F) contrast kinetics. CS-TV shows general over-smoothing of the temporal
curves across the different lesion kinetics (Figure 2G–I).

Bland–Altman plots of the fitted Ktrans and Ve within the lesion ROI in noise-free data
and in data with 20% noise added are shown in Figures 3 and 4, respectively. In noise-free
data, the fitted Ktrans and Ve were within a 10% bias error range of the corresponding
ground truth Ktrans and Ve for MOCCO-HR (Figure 3A) and PCB-HR (Figure 3B). The
results from MOCCO-LR (Figure 3C) were aligned with MOCCO-HR (Figure 3A) for
CTC with Ktrans < 0.8 min−1. For the cases with Ktrans ≥ 0.8 min−1, the error range was
close to or slightly larger than the limits of the 10% error range. On the contrary, the
PCB-LR (Figure 3D) and CS-TV (Figure 3E) showed much greater underestimation of
the fitted Ktrans and Ve (errors exceeding the 10% range) when Ktrans ≥ 0.3 min−1 and
0.2 min−1, respectively.

In data with 20% noise added, the CTCs with Ktrans = 0.01 and 0.04 in MOCCO-HR
(Figure 4A) and PCB-HR (Figure 4B) showed greater increased standard deviation within
the lesions, whereas similar results of the mean % error reconstructed by MOCCO-LR
(Figure 4C) and PCB-LR (Figure 4D) were observed compared with the results in noise-free
data (Figure 3C,D). On the contrary, CS-TV (Figure 4E) showed overall increased error
across all fitted Ktrans values compared with the results in noise-free data (Figure 3E).
A larger increased mean error was observed at the Ktrans ≤ 0.2 min−1. Note that the
same reconstruction parameters were used to reconstruct both the noise-free and the
corresponding noisy-data.

In order to better assess the source of the signal differences within the lesion includ-
ing the increased standard deviation observed with some of the reconstructions, spatial
mapping of the PK fitting results was performed. Figures 5 and 6 demonstrate the percent
difference zoomed-in error maps of the derived Ktrans and Ve from MOCCO and PCB
without and with 20% noise added, respectively. Color maps of the lesion with Ktrans = 0.01,
0.3 and 1.5 were selected to show the difference between the slow, intermediate and rapid
contrast kinetics with and without noise added. In results of noise-free data, the zoomed-in
error map from MOCCO-HR (Figure 5A) showed relatively homogenous under-estimation
of Ktrans and Ve in the error distribution for the intermediate and rapid contrast kinetics.
Only results from the lesion with slow contrast kinetics (Ktrans = 0.01 min−1) displayed a
mixed response with over- and under-estimation of both Ktrans and Ve with an error range
within ±10%. MOCCO-LR (Figure 5C) demonstrated similar error distribution compared
with MOCCO-HR, with only slightly increased error observed at the lesion edge for rapid
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contrast kinetics (Ktrans = 1.5 min−1) in error map of Ktrans and Ve. In contrast, there is a
discrepancy in the error distributions between PCB-HR (Figure 5B) and PCB-LR (Figure 5D)
without the noise added. The error maps derived from PCB-HR (Figure 5B) displayed
more heterogeneous over- and under-estimation over the entire lesion but resulted in
lower % error across all three lesions for both Ktrans and Ve, which results in lower mean
error but higher standard deviation (note that the % mean and standard deviation are
shown in Table 1). Table 1 also includes a comparison against the simulated setting of
acquiring a fully sampled dataset at 5 s temporal resolution to demonstrate the level of
error introduced through the PK modeling at this discrete time-sampling. The PCB-LR
(Figure 5D) demonstrated a relatively homogeneous error distribution within the lesion
but showed an overall increased under-estimation of both Ktrans and Ve. Only the error
maps of Ve with Ktrans = 0.01 min−1 showed overestimation of the entire lesion.
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data are plotted with dark black lines in all frames. 
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Figure 2. Simulated CTCs with slow (A,D,G), intermediate (B,E,H) and rapid (C,F,I) contrast kinetics
in noise-free data (displayed for a subset of time from 150 to 400 s). Mean CTCs measured for three
lesions with varying Ktrans values reconstructed using CS-TV (green star) (G–I), MOCCO (red star)
and PCB (blue circle) with the temporal model derived from high spatial resolution (HR) (A–C) and
low spatial resolution (LR) images (D–F). The corresponding standard deviations within the lesions
are shown with banded area. The input time curves (“truth”) used to generate the source data are
plotted with dark black lines in all frames.
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(C,D) represent more realistic scenarios where the temporal model could be learned from the under
sampled data.

In data with 20% noise added, an increased deviation in the percent error of both
Ktrans and Ve was observed in MOCCO-HR (Figure 6A) and PCB = HR (Figure 6B) but
no major difference was observed in MOCCO-LR (Figure 6C) and PCB-LR (Figure 6D).
Increased error was only observed in the error maps of Ve with Ktrans = 0.01 min−1.

Figure 7 shows the temporal curves with Ktrans = 0.01, 0.3 and 1.5 min−1 obtained
from MOCCO-LR and the corresponding fully-sampled images by measuring the mean
across the Monte-Carlo realizations with noise levels of 20%. The results demonstrated that
the mean signal values were found to closely match the curves from the ground truth with
very small standard deviation.

Figure 8 depicts the results of the Monte-Carlo simulation in estimating the mean
(Figure 8A), standard deviation (Figure 8B) and percent error between the Monte-Carlo
mean and the true values for lesions (Figure 8C) from MOCCO-LR images. Correspond-
ing results are shown for the fully sampled data in Figure 9. MOCCO-LR was found
to provide the most accurate reconstruction results for curves with the middle value of
Ktrans = 0.3 min−1, where the overall performance was consistent with the fully-sampled
dataset. Only slightly higher standard deviation (~5%) was found in MOCCO-LR for
the Monte-Carlo simulation including noise. For curves with slow contrast kinetics
(Ktrans = 0.01 min−1), there was no obvious difference between MOCCO-LR and the fully
sampled data in the mean and standard deviation of Ktrans on visual inspection. However,
increased variations in estimates of Ve were observed. For curves with fast contrast kinetics
(Ktrans = 1.5 min−1), the Ve value was recovered with low reconstruction error. Although
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MOCCO-LR showed relatively accurate measurements of the mean Ktrans values, increased
standard deviation was observed in the Monte-Carlo simulation.
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Figure 4. The influence of temporal model and noise using MOCCO (A,C), PCB (B,D) and CS-TV
(E) reconstruction on parameter estimation of Ktrans and Ve. Bland–Altman plots show the mean
(±standard deviation) of Ktrans (blue stars) and Ve (red circles). The ±10% error range is shown as
black dash lines.
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Ktrans and Ve. Only the error maps of Ve with Ktrans = 0.01 min−1 showed overestimation of 
the entire lesion.  

 
Figure 5. Visualization of zoomed-in error maps for Ktrans and Ve from (A) MOCCO-HR, (B) PCB-
HR, (C) MOCCO-LR, (D) PCB-LR and (E) CS-TV without noise added to the simulated lesions with 
Ktrans = 0.01, 0.3, 1.5 min−1, obtained by measuring the % differences between the fitted parameters 
and the true values for the lesion. 
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Figure 5. Visualization of zoomed-in error maps for Ktrans and Ve from (A) MOCCO-HR, (B) PCB-HR,
(C) MOCCO-LR, (D) PCB-LR and (E) CS-TV without noise added to the simulated lesions with Ktrans

= 0.01, 0.3, 1.5 min−1, obtained by measuring the % differences between the fitted parameters and the
true values for the lesion.
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(C) MOCCO-LR, (D) PCB-LR and (E) CS-TV with 20% noise added to the simulated lesions with
Ktrans = 0.01, 0.3, 1.5 min−1, obtained by measuring the % differences between the fitted parameters
and the true values for the lesion.



Tomography 2022, 8 1562

Table 1. Summary of results and % errors for Ktrans and Ve from PK model fitting to three different reconstruction results without and with 20% noise added. Note
that red text indicates errors with magnitude greater than 10%.

Reference MOCCO-HR PCB-HR MOCCO-LR PCB-LR CS-TV

%
er

ro
r

fo
r

K
tr

an
s

Ktrans 0% 0% 20% 0% 20% 0% 20% 0% 20% 0% 20%

0.01 −4.7 −1.65 ± 7.52 −0.99 ± 27.14 −1.79 ± −7.04 −1.32 ± 30.77 −1.74 ± 7.81 −3.91 ± 7.87 −7.04 ± 7.02 −10.77 ± 6.84 3.17 ± 22.67 19.24 ± 60.41
0.04 0.06 −1.72 ± 7.49 −1.46 ± 16.54 −2.36 ± −1.69 −0.80 ± 17.04 −1.21 ± 7.67 −0.92 ± 7.75 −1.69 ± 7.5 −0.68 ± 7.71 −6.15 ± 8.06 −62.50 ± 8.11
0.1 0.09 −1.72 ± 7.51 −2.03 ± 12.07 −3.96 ± −2.3 −2.40 ± 15.48 −1.83 ± 7.78 −2.07 ± 7.85 −2.3 ± 7.52 −2.79 ± 7.74 −9.94 ± 9.05 −54.77 ± 8.11
0.2 −0.13 −2.04 ± 7.47 −2.22 ± 12.2 −1.64 ± −6.54 −0.70 ± 13.96 −2.38 ± 8.02 −2.33 ± 8.1 −6.54 ± 7.13 −6.94 ± 7.3 −16.52 ± 10.29 −44.29 ± 9.00
0.3 −1.50 −3.53 ± 6.9 −1.15 ± 12.49 −1.72 ± −11.51 −0.59 ± 12.98 −3.22 ± 8.19 −3.09 ± 8.17 −11.51 ± 6.86 −11.5 ± 6.84 −22.92 ±10.95 −42.09 ± 9.20
0.4 −1.91 −2.7 ± 7.55 −1.97 ± 11.43 −1.87 ± −16.58 −0.72 ± 12.05 −4.35 ± 8.64 −4.45 ± 8.74 −16.58 ± 6.59 −16.79 ± 6.46 −28.79 ± 11.11 −64.42 ± 6.31
0.8 −2.71 −4.39 ± 8.16 −4.04 ± 9.86 −2.13 ± −30.54 −1.67 ± 11.21 −8.07 ± 10.85 −7.94 ± 10.65 −30.54 ± 5.6 −30.43 ± 5.67 −46.46 ± 10.21 −64.26 ± 6.90
1.2 −3.64 −6.03 ± 8.55 −5.83 ± 11.23 −1.90 ± −42.34 −0.80 ± 12.58 −11.76 ± 13.32 −12.49 ± 13.97 −42.34 ± 4.86 −42.04 ± 4.88 −58.19 ± 8.68 −66.76 ± 7.46
1.5 −4.86 −7.17 ± 8.76 −5.81 ± 11.19 −1.48 ± −50.6 −0.05 ± 12.23 −15.1 ± 14.86 −15.04 ± 14.54 −50.6 ± 4.28 −50.44 ± 4.27 −64.58 ± 7.63 −64.75 ± 7.90

%
er

ro
r

fo
r

V
e

Ktrans 0% 0% 20% 0% 20% 0% 20% 0% 20% 0% 20%

0.01 −8.38 −1.86 ± 7.55 −5.65 ± 37.29 −2.03 ± 10.10 −3.18 ± 38.12 −3.71 ± 11.14 6.22 ± 13 28.27 ± 9.47 59.68 ± 11.16 −53.17 ± 14.28 −64.65 ± 35.00
0.04 −0.36 −1.74 ± 7.49 −1.07 ± 16.49 −2.44 ± 9.49 −0.80 ± 17.04 −2.72 ± 7.68 −3.37 ± 7.77 −0.35 ± 7.59 −2.09 ± 7.59 −0.12 ± 7.53 5.86 ± 32.90
0.1 −0.08 −1.9 ± 7.51 −2.35 ± 12.11 −4.12 ± 10.46 −2.60 ± 15.44 −2.65 ± 7.68 −2.51 ± 7.82 −2.36 ± 7.51 −2.46 ± 7.76 −3.92 ± 7.82 −2.45 ± 14.76
0.2 −0.13 −1.95 ± 7.5 −2.28 ± 12.25 −1.79 ± 8.02 −0.96 ± 13.92 −2.98 ± 7.86 −2.81 ± 7.88 −6.56 ± 7.12 −6.05 ± 7.37 −7.40 ± 8.69 −6.70 ± 14.90
0.3 −0.73 −3.24 ± 7.02 −1.44 ± 12.38 −1.93 ± 7.95 −0.90 ± 12.94 −3.34 ± 8.03 −3.36 ± 8.04 −10.67 ± 6.93 −10.96 ± 6.88 −10.07 ± 9.31 −9.32 ± 13.66
0.4 −0.95 −2.66 ± 7.59 −1.88 ± 11.39 −2.23 ± 8.14 −1.22 ± 12.00 −3.79 ± 8.39 −3.91 ± 8.49 −14.4 ± 6.77 −14.43 ± 6.64 −12.43 ± 9.69 −12.31 ± 15.04
0.8 −1.42 −4.48 ± 8.15 −4.34 ± 9.93 −3.00 ± 8.28 −2.68 ± 11.09 −5.78 ± 9.37 −5.86 ± 9.14 −23.77 ± 6.15 −23.73 ± 6.22 −19.72 ± 10.23 −18.81 ± 12.10
1.2 −1.67 −6.04 ± 8.59 −6.13 ± 11.23 −3.34 ± 8.31 −2.41 ± 12.36 −7.57 ± 10.45 −8.02 ± 10.58 −29.09 ± 5.98 −28.93 ± 5.99 −25.12 ± 10.53 −25.39 ± 12.70
1.5 −1.87 −7.06 ± 8.86 −6.39 ± 11.06 −3.37 ± 8.25 −2.10 ± 12.00 −9.13 ± 11.03 −9.45 ± 11.13 −32.13 ± 5.89 −32.57 ± 5.82 −28.38 ± 9.78 −28.62 ± 11.57
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Figure 7. Simulated CTCs with 20% noise added (displayed for a subset of time from 150 s to
400 s). Mean CTCs measured for three lesions with Ktrans values of 0.1 min−1 (A), 0.3 min−1 (B) and
1.5 min−1 (C). values reconstructed using MOCCO-LR. The input time curves (“truth”) used to
generate the source data are plotted with dark black lines in all frames.
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Figure 8. Visualization of zoomed-in color maps for Ktrans and Ve from fully-sampled data with 20% 
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Figure 9. Visualization of zoomed-in color maps for Ktrans and Ve from MOCCO-LR with 20% noise 
added to Ktrans = 0.01, 0.3, 1.5 min−1 obtained by measuring the (A) mean, (B) standard deviation, (C) 
percent differences between the fitted parameters from all Monte-Carlo noise realizations and the 
true values for the lesions. 

Figure 10 demonstrates the in vivo results for a patient volunteer with an enhancing 
lesion, using the radial acquisition with MOCCO-LR. High image quality is observed 
along all time frames. Rapid wash-in and wash-out contrast kinetics are observed in the 
aorta (Figure 10D). The enhancing lesion showed relatively rapid contrast uptake (Figure 
10B), while slower contrast update was observed in the pectoralis muscle and a 
contralateral lymph node (Figure 10C,E). 

Figure 8. Visualization of zoomed-in color maps for Ktrans and Ve from fully-sampled data with 20%
noise added to Ktrans = 0.01, 0.3, 1.5 min−1 obtained by measuring the (A) mean, (B) standard devia-
tion, (C) percent differences between the fitted parameters from all Monte-Carlo noise realizations
and the true values for the lesions.
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Figure 9. Visualization of zoomed-in color maps for Ktrans and Ve from MOCCO-LR with 20% noise
added to Ktrans = 0.01, 0.3, 1.5 min−1 obtained by measuring the (A) mean, (B) standard deviation,
(C) percent differences between the fitted parameters from all Monte-Carlo noise realizations and the
true values for the lesions.
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Figure 10 demonstrates the in vivo results for a patient volunteer with an enhancing
lesion, using the radial acquisition with MOCCO-LR. High image quality is observed along
all time frames. Rapid wash-in and wash-out contrast kinetics are observed in the aorta
(Figure 10D). The enhancing lesion showed relatively rapid contrast uptake (Figure 10B),
while slower contrast update was observed in the pectoralis muscle and a contralateral
lymph node (Figure 10C,E).
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Figure 10. Time-resolved DCE images from a patient volunteer reconstructed using MOCCO-LR 
with 5 s temporal resolution (A). Curves of the percent signal change (PSC) are plotted from ROIs 
placed in the lesion ((B), blue), muscle ((C), green), aorta ((D), red) and lymph node ((E), yellow).  
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with a data-driven low-rank based CS reconstruction (MOCCO), using quantitative PK 
analysis for breast DCE-MRI. The DRO used in this study can be employed to simulate a 
wide spectrum of tissue contrast kinetics with a user-defined PK model and different 
levels of noise in the data. This simulation approach provides the opportunity to validate 
the accuracy of our proposed technique for quantitative analysis, which can be difficult to 
achieve in patient studies. MOCCO reconstruction was also compared to another low-
rank method (PCB) as well as a more general CS-based reconstruction algorithm that uses 
temporal total variation as a sparsity transform (CS-TV) to assess the performance with 
respect to the selection of temporal model and in the setting of noisy data.  

Figure 10. Time-resolved DCE images from a patient volunteer reconstructed using MOCCO-LR
with 5 s temporal resolution (A). Curves of the percent signal change (PSC) are plotted from ROIs
placed in the lesion ((B), blue), muscle ((C), green), aorta ((D), red) and lymph node ((E), yellow).

4. Discussion

In this work, we present a framework to evaluate the temporal fidelity of our proposed
technique, the combination of golden-angle stack-of-stars radial acquisition with a data-
driven low-rank based CS reconstruction (MOCCO), using quantitative PK analysis for
breast DCE-MRI. The DRO used in this study can be employed to simulate a wide spectrum
of tissue contrast kinetics with a user-defined PK model and different levels of noise in the
data. This simulation approach provides the opportunity to validate the accuracy of our
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proposed technique for quantitative analysis, which can be difficult to achieve in patient
studies. MOCCO reconstruction was also compared to another low-rank method (PCB) as
well as a more general CS-based reconstruction algorithm that uses temporal total variation
as a sparsity transform (CS-TV) to assess the performance with respect to the selection of
temporal model and in the setting of noisy data.

We present results from generating the temporal basis functions using ICA on low
spatial resolution images (LR) and benchmark these against using ICA on high resolution
images (HR). The results from HR provide a lower bound on the reconstruction accuracy
of MOCCO in the theoretical setting where the exact temporal model can be learned. This
idealized scenario resulted in only a small error when compared with reference CTCs that
were simulated to reflect the non-realistic case of achieving full angular sampling over all
phase encodes at a 5 s temporal resolution. The reference CTCs demonstrate one of the
strengths of the digital reference objects in that it is possible to simulate temporal sampling
rates well beyond those that can be achieved on current state of the art hardware. The
LR approach learned the temporal model from the under sampled data, which reflects
real-life scenarios and has been demonstrated to be an effective approach in many other
applications [38,39]. In our simulation results, MOCCO-LR produced time-resolved images
with high temporal fidelity that enabled robust and consistent estimation of Ktrans and Ve
compared with MOCCO-HR. On the other hand, we observed increased errors using PCB-
LR, especially in lesions with the highest Ktrans value (1.5 min−1). This can be explained
by the fact that MOCCO was shown to produce high-rank solutions even using low-rank
temporal models [39], whereas the PCB approach limits the reconstruction result to a low-
dimensional subspace, which may be inadequate for describing complex contrast dynamics.
In our simulations, MOCCO was found to be less sensitive to the selection of the temporal
model and led to a more stable solution, which is consistent with the conclusion from prior
works [39,56].

We have demonstrated the comparison between two different CS-based reconstruction
approaches that use different temporal models. The selection of the reconstruction regular-
ization parameters for both reconstructions was chosen to optimize the image sharpness
and resolution to avoid loss of fine imaging features and small lesions. The results showed
that the error range of the fitted PK parameters using the signal-specific temporal model
(MOCCO) was improved as compared to the use of a generic sparsity transform in the form
of the temporal TV approach (CS-TV). These results were aligned with prior work showing
that the MOCCO technique could outperform CS-TV with improved temporal fidelity
when matching the spatial resolution and coverage from routine clinical protocols [40].

The PK parameters obtained from tissue CTCs with very low Ktrans < 0.04 min−1 were
found to be vulnerable to noise for both MOCCO-HR and MOCCO-LR. This is attributed
to the low intensity of signal enhancement that can be easily corrupted by the background
noise. Otherwise, both techniques were found to be less affected by noise in the source
data with Ktrans > 0.04 min−1 and provided similar measurements of PK parameters to
the results in the noise-free simulations. The Monte-Carlo simulations also demonstrated
that MOCCO-LR was less impacted by noise in the source data and provided better
reconstruction accuracy with Ktrans above 0.3 min−1 that is typically of greater interest for
characterizing suspicious lesions.

In our simulations, we found that the increased reconstruction error in the low con-
trast kinetics (Ktrans = 0.01 min−1) was mostly due to the overall lower maximum lesion
CTC peak amplitude. This effect was demonstrated by increased standard deviation in
estimations of Ve including for lesions measured from the fully sampled data, however
slower contrast kinetics are usually of less clinical interest.

Although multiple studies have proposed new imaging methods to improve the
spatial and temporal resolution for breast DCE-MRI, few studies have investigated absolute
quantification of the derived PK parameters. One of the challenges is the lack of known
ground truth measurements of the contrast signal kinetics due to the need for high temporal
and 3D spatial resolution as well as confounding effects such as physiological variability,
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motion, B0 and B1 inhomogeneities and accurate tissue T1 values. The DRO used in this
study allowed for simulating a wide spectrum of known ground truth contrast kinetics to
compare reconstruction techniques and characterize performance. In this study, we focus
on the impact of temporal accuracy when achieving under 5 s temporal resolution, which
shows the potential to provide robust quantitative PK parameters and can be applied to
different clinical settings, such as differentiating lesion types and evaluating response to
neoadjuvant chemotherapy [21,22].

There are some limitations to the current study. We have shown that accuracy of
the PK parameters estimated with both PCB and, to a lesser degree, MOCCO depend on
the availability of an adequate temporal model. However, it may be more challenging
to obtain such temporal models in situations with highly under sampled data and/or
in the presence of motion, based on our current strategy. Therefore, further work is
needed to investigate obtaining temporal models using other techniques (e.g., dictionary
learning [57]). In this study, emphasis was placed on the evaluation of temporal fidelity
of MOCCO reconstruction, and therefore populated AIF curves were used. Although
population-based AIFs are still routinely used due to the inability to achieve sufficiently
high temporal and spatial resolution to resolve the extremely rapid kinetics, these do
represent a limitation to the ability to accurately model a given individual perfusion
setting. We have demonstrated the feasibility of using radial acquisition with MOCCO
reconstruction to achieve temporal resolution of 5 s at a clinically relevant spatial resolution
of 0.8 × 0.8 mm. Future work will aim to validate these results through larger patient
studies in the setting of breast cancer.

5. Conclusions

We have evaluated the temporal fidelity of the data-driven low-rank compressed
sensing reconstruction (MOCCO) reconstruction for recovering a wide range of PK param-
eters and in the presence of noise to better match typical in vivo settings. Results from the
more practical scenarios of learning the temporal model (LR) using low spatial frequency
data were compared to the theoretical idealized scenario where the exact temporal model
can be learned (HR). We have demonstrated that using MOCCO reconstruction for an
image series at a temporal resolution of 5 sec and spatial resolution of 0.8 mm × 0.8 mm
× 1.2 mm would lead to an error with 10% or less for Ve across all Ktrans values and an
error of −0.9% to −10% for Ktrans values of less than 0.8 min−1 in this DRO simulation
matching the clinical setting for DCE-MRI. Only contrast kinetics with very high Ktrans

values beyond the typical in vivo range showed larger errors. Overall, MOCCO was able
to provide a reconstructed time-series that resulted in a more accurate measurement of PK
parameters than the general low-rank technique (PCB) as well as a more general CS-based
reconstruction algorithm that uses temporal total variation as a sparsity transform (CS-TV).
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