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Abstract: KIT is a type-III receptor tyrosine kinase that contributes to cell signaling in various cells.
Since KIT is activated by overexpression or mutation and plays an important role in the development
of some cancers, such as gastrointestinal stromal tumors and mast cell disease, molecular therapies
targeting KIT mutations are being developed. In acute myeloid leukemia (AML), genome profiling
via next-generation sequencing has shown that several genes that are mutated in patients with
AML impact patients’ prognosis. Moreover, it was suggested that precision-medicine-based treat-
ment using genomic data will improve treatment outcomes for AML patients. This paper presents
(1) previous studies regarding the role of KIT mutations in AML, (2) the data in AML with KIT muta-
tions from the HM-SCREEN-Japan-01 study, a genome profiling study for patients newly diagnosed
with AML who are unsuitable for the standard first-line treatment (unfit) or have relapsed/refractory
AML, and (3) new therapies targeting KIT mutations, such as tyrosine kinase inhibitors and heat
shock protein 90 inhibitors. In this era when genome profiling via next-generation sequencing is
becoming more common, KIT mutations are attractive novel molecular targets in AML.

Keywords: acute myeloid leukemia; genome profiling; KIT mutation; RUNX1-RUNX1T1;
HSP90 inhibitor

1. Introduction

KIT is a type-III receptor tyrosine kinase that contributes to signal transduction in
certain cells, such as hematopoietic stem cells, mast cells, and Cajal cells of the gastroin-
testinal tract [1]. KIT mutations have been reported in more than 90% of cases of mast
cytosis [2,3], 80–85% of cases of gastrointestinal stromal tumor (GIST) [4], 10–20% of cases
of melanoma [5,6], and cases of acute myeloid leukemia (AML), especially in core-binding
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factor (CBF) leukemia [7–11]. In AML, recent studies involving the genome profiling of
AML via next-generation sequencing (NGS) showed that some mutated genes (e.g., ASXL1,
NPM1, FLT3, TP53, CEBPA, and RUNX1) in patients with AML impacted the prognosis of
these patients [12–14]. Moreover, recent clinical studies incorporating genomic data into
treatment decisions, such as the BEAT AML trial [15], suggested that precision-medicine-
based treatment using genomic data will improve treatment outcomes for AML. In this
era when NGS genome profiling is becoming more common, KIT mutations are attracting
attention as new molecular targets in AML.

2. Structure, Function, and Mutation of KIT
2.1. Structure and Function of KIT

The KIT gene is located on chromosome segment 4q11 in humans and is composed of
21 exons [3,16]. The structure of KIT consists of five immunoglobulin-like (Ig-like) domains
(D1-D2-D3-D4-D5), a trans-membrane domain (TMD), a juxta-membrane domain (JMD),
two kinase domains (KD), and a kinase insert that lies between the KDs [17] (Figure 1A).
KIT is expressed on the cell surface and functions as a receptor. The first three Ig-like
domains (D1-D3) bind the stem cell factor (SCF), and the two KIT monomers are adjacent to
each other. After that, the interaction between D4-D4 and D5-D5 occurs between adjacent
KIT monomers, and a stable homodimer is formed. It generates trans-phosphorylation in
the JMD region, kinase insert region, KD, and COOH-terminal tail (Figure 1B) [3,18,19]. The
signals transmitted by KIT activation are primarily mediated through the phosphatidylinos-
itol 3-kinase (P13K) pathway [20,21], Janus kinase (JAK)/signal transducers and activators
of transcription (STAT) pathway [22–24], MAPK pathway [25–27], and the Src family kinase
pathway [26,28] (Figure 1C). In the hematopoietic system, KIT is strongly expressed in
hematopoietic stem cells and progenitor cells [29]. KIT plays an important role in the
self-renewal potency of hematopoietic stem cells and differentiation into myeloid and lym-
phoid cells [30,31]. The expression of KIT is observed to decrease with the differentiation of
hematopoietic cells [32]; however, it is highly expressed in mast cells [33].
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Figure 1. (A) Schematic representation of the structure of KIT. (B) The homodimeric state of KIT 
brought about by SCF binding and stabilized by interactions between immunoglobulin-like do-
mains. (C) Signaling pathways involving KIT. The MAPK pathway, JAK/STAT pathway, P13K path-
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Figure 1. (A) Schematic representation of the structure of KIT. (B) The homodimeric state of KIT
brought about by SCF binding and stabilized by interactions between immunoglobulin-like domains.
(C) Signaling pathways involving KIT. The MAPK pathway, JAK/STAT pathway, P13K pathway, and
Src family kinase pathway are shown as orange, yellow, green, and blue lines, respectively.

2.2. Mutations of KIT in Cancer

Both the downregulation and upregulation of KIT signaling have been reported
in human cancers. In many cancers, such as GIST, mast cytosis, and AML, the activa-
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tion of KIT was detected through overexpression or mutation [34]. Moreover, the down-
regulation of KIT signaling was detected in melanoma [35]. KIT mutations often occur
in the membrane proximal immunoglobulin-like domain (exon 8 and exon 9), the JMD
(exon 11), and the tyrosine kinase domain (exon 17) [36]. Mutations in the JMD of KIT have
been described in GIST [37] and extranodal NK/T cell lymphoma (ENKL) [38]. Mutations
in the tyrosine kinase domain of KIT are detected frequently in systemic mastocytosis
(SM) [39,40], ENKL [38], and seminomas [41] (Table 1).

Table 1. Summary of KIT mutations in cancers.

Site Exon Disease Description

Immunoglobulin-like domain

8 AML T417, Y418, D419

9
GIST A502

Mastocytosis K5091

Trans-membrane domain 10
AML V530I

Mastocytosis F522C, A533D

Juxta-membrane domain

11

AML V560, V559, ITD

GIST CD117, V559A, V559D, W557R, V560G

Melanoma L576P

Mastocytosis V560G

13
AML K642E

Melanoma K642E

14 GIST K704, N705

Kinase insert 15 GIST S715

Kinase domain

16 AML 1748T, L773S

17

AML D816V, D816Y, D816F, D816H, N822, V8251

Germ cell tumor D816H, D816V

Mastocytosis D816V, D816Y, D816H, D820G

ENKL V825A, D816N

Abbreviations: AML: acute myeloid leukemia, GIST: gastrointestinal stromal tumor, ENKL: extranodal NK/T
cell lymphoma.

3. Prognosis of AML with KIT Mutations Treated with Conventional Chemotherapy

KIT mutations are detected in approximately 4–6% of adult patients with de novo
AML [13,42] and 20–40% of adult patients with de novo CBF-AML [7–11]. Fan et al.
reported that 256 patients (23%) had KIT mutations in 1123 children with CBF-AML [43].
Three mutational hot-spots (exon 8, exon 10–11, and exon 17) have been identified in
the KIT gene [44–47] (Table 2). Of these, exon 17 has been recognized as the site of KIT
mutations most strongly associated with poor prognosis in adult patients with de novo
AML harboring RUNX1-RUNX1T1 [7,11,48,49]. Ishikawa et al. showed that KIT exon-
17 mutations were associated with poor prognoses in patients with de novo AML with
RUNX1-RUNX1T1 being treated with an HDAC regimen [49].

Table 2. Summary of KIT mutations in AML.

Exon Description Functional Impact

8 T417, Y418, D419 Hyper-reactivity to stem cell factor
10–11 V530, V540, W557, V559, L576, ITD Spontaneous dimer formation
17 D816, D820, N822, Y823, V825 Auto activation

Abbreviations: AML: acute myeloid leukemia.
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Several reasons have been proposed for the poor prognosis in AML with RUNX1-
RUNX1T1 harboring a KIT mutation. For instance, it has been reported that activated KIT
cooperates with a C-terminal truncated variant of RUNX1T1 to expand the pool of human
CD34+ hematopoietic progenitors and augment the DNA repair machinery, resulting in
increased chemo-resistance [50]. Using an in vitro model, Omori et al. compared the
cell-proliferative and anti-apoptotic activity of KIT-D816V and KIT-N822K, both of which
have been shown to undergo autophosphorylation in the absence of growth factors. Cells
harboring KIT-D816V exhibited the activation of the SRC kinase and JAK/STAT pathways
and demonstrated greater cell-proliferative and anti-apoptotic ability than cells harboring
KIT-N822K [51]. In another study, Tarlock et al. used a cell line harboring a KIT mutation
in an in vitro functional analysis, confirming the results of a clinical study of pediatric
CBF-AML [52]. Those authors showed that KIT exon-17 mutations resulted in aberrant KIT
phosphorylation and were associated with worse clinical outcomes. They further reported
that KIT exon-8 mutations have no functional or prognostic impact.

4. KIT Mutation in Unfit and Relapsed/Refractory AML: Results from the
HM-SCREEN-Japan-01 Study

Hematologic Malignancy (HM)-SCREEN-Japan-01 (UMIN000035233) is a genome
profiling study of patients newly diagnosed with adult AML who are unsuitable for
the standard first-line treatment (unfit) or have relapsed/refractory (R/R) AML [53–55]
(methods are described in Supplementary Materials). The objective of the present study
was to evaluate the frequency and characteristics of cancer-related genomic alterations in
patients with AML using a comprehensive genome profiling assay (FoundationOne®Heme
(F1H)) and to determine the quality of specimens used in gene analysis. One hundred
and eighty-two patients were recruited, and an F1H report was successfully obtained for
one hundred and seventy-seven patients [53,55]. We show the subgroup analysis of the
HM-SCREEN-Japan-01 dataset focusing on KIT mutations below.

4.1. Frequency of KIT Mutation in Unfit and R/R AML

Of the 177 patients who participated in the study, we identified 15 patients (8.5%)
with a KIT mutation. Of the 15 AML patients with a KIT mutation, 6 were registered
as unfit AML and 9 as R/R AML. In addition, a total of 17 patients with CBF leukemia
(12 AML with RUNX1-RUNX1T1 gene fusion and 5 AML with CBFβ-MYH11 gene fusion)
were confirmed via NGS analysis. Eight of the patients had both a KIT mutation and
RUNX1-RUNX1T1; these individuals represented 53% of AML with KIT mutation cases
and 67% of AML with RUNX1-RUNX1T1 cases. Two patients had both a KIT mutation
and CBFβ-MYH11; these individuals represented 13% of AML with KIT mutation cases
and 40% of AML with CBFβ-MYH11 cases. Five patients with non-CBF leukemia had a KIT
mutation (Figure 2).

Our study showed a high frequency of KIT mutations in R/R or unfit CBF-AML
patients compared with the previous studies targeting new-onset CBF-AML (Table 3).
Patients’ characteristics and clinical outcomes are described in the Supplementary Materials.

Table 3. Frequency of KIT mutations in CBF-AML.

Author, Year Disease Status
Frequency of KIT Mutations

CBF Leukemia RUNX1-RUNX1T1 CBFβ-MYH11

Qin 2014 Newly diagnosed 37% (128/351) 39% (99/253) 30% (29/98)
Allen 2013 Newly diagnosed 28% (100/354) 23% (46/199) 35% (54/155)
Kim 2013 Newly diagnosed 26% (32/121) 27% (22/82) 35% (54/155)
Ishikawa 2019 Newly diagnosed 34% (63/199) 32% (42/132) 31% (21/67)
HM-SCREEN01 R/R or Unfit 59% (10/17) 67% (8/12) 40% (2/5)

Abbreviations: CBF: core-binding factor, R/R: relapse/refractory.
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mutation, CBFβ-MYH11, and RUNX1-RUNX1T1, respectively. Fifteen had the KIT mutation, eight of
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4.2. Landscape of Gene Mutations in the KIT Mutation Cohort

Fourteen of fifteen patients had a mutation in the region encoding the tyrosine kinase
domain, resulting in predicted amino acid substitutions such as D816V, D816F, and N822K
(Figure 3A). Two individuals (Patients 39 and 160) had two mutations in the region encoding
the kinase domain (Table 4). The median variant allele frequency was 0.25. Chromosomal
karyotypes were reported by each investigator. Eight cases were t(8;21)(q22;q22.1), and
two were inv(16) or t(16;16). These rearrangements were confirmed via the detection of
RUNX1-RUNX1T1 or CBFβ-MYH11, respectively, on NGS analysis. Of the five patients
with non-CBF leukemia, two had a complex karyotype, and one had a 3q abnormality
(Table 4). The mutation profiles for each case with a KIT mutation are shown in Figure 3B.
The proportions of AML with RUNX1-RUNX1T1 among unfit and R/R patients harboring
a KIT mutation were 19% (two of six) and 66% (six of nine), respectively. Other than KIT,
the mutated gene detected most frequently was RAD21 (3/15, 20%). FLT3, TP53, and
GATA2 mutations were found in two cases each (12%). The FLT3 mutations detected in
patients 13 and 158 were FLT3-N676K and FLT3-D835H, respectively. The two cases with
complex chromosomal abnormalities (patients 13 and 56) both harbored TP53 mutations.
In R/R patients, mutations in tyrosine kinase-encoding genes other than KIT (e.g., FLT3
and JAK2) were not detected (Table 4).

4.3. Clinical Impact of KIT Mutation in Unfit and R/R AML

Our data also showed that AML with RUNX1-RUNX1T1 accounted for a very high
proportion of unfit and R/R AML patients who had a KIT mutation. Notably, the proportion
of AML with RUNX1-RUNX1T1 in R/R patients was 66%. Of the nine R/R patients, none
harbored mutations in tyrosine kinase-encoding genes other than KIT, and the number
of other gene mutations was similar in patients with and without RUNX1-RUNX1T1
(Figure 3B). Moreover, all of the KIT mutations detected in these nine R/R patients were
located in exon 17 (typically encoding D816V/Y/F substitutions in the KIT protein). These
data suggested that KIT mutations, especially those in exon 17, are related to a poor
prognosis in AML with RUNX1-RUNX1T1, consistent with previous reports on the genetic
profiling of R/R AML in patients with de novo AML [7,11,48,49,52].
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17 KIT mutations were detected in 15 cases. (B) Mutational data of the 15 patients with KIT mutations.

Based on our analysis of all cases in HM-SCREEN-Japan-01, KIT mutations represented
the predictor with the worst outcomes of all assessed gene mutations [53,55]. Most of the
surviving patients had received allo-HSCT, regardless of whether they had been diagnosed
with CBF or non-CBF leukemia in R/R cases (Supplementary Materials). However, CBF-
AML is not currently indicated for transplantation after a first remission [14]. Indeed, there
are unmet needs for these R/R patients, such as bridge therapy to transplantation.

In non-CBF leukemia with KIT mutation, three of five patients (Nos. 13, 56, and 111)
had high-risk chromosomal abnormalities such as complex events or 3q abnormalities. An
additional patient (No. 149) harbored t(3;3)(p25;q13), the source of which was unclear but
might be related to the 3q abnormality. Although this subset of patients is small in number,
these observations raise the interesting question of whether KIT mutations are associated
with an elevated risk of chromosomal abnormality in non-CBF leukemia.

The results obtained from our study are limited by the small number of the KIT-
mutated cases, and the results should be confirmed by increasing the total number of
patients with AML including KIT-mutated AML. However, previous studies and our
results suggested that the treatment strategies with conventional chemotherapy may not
be able to overcome KIT-mutation-positive AML. Thus, new treatment agents targeting
cancers with KIT mutations are needed.
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Table 4. Summary of KIT mutations and chromosomal karyotypes.

KIT Mutation

ID Category Description SNV VAF Other Mutations Chromosomal
Karyotype

13 Unfit D816V 2447A > T 0.372 FLT3, KRAS, CEBPA,
TP53 Complex karyotype

50 Unfit D816V 2447A > T 0.123 RAD21, SPEN t(8;21)(q22;q22.1)

56 Unfit D816F 2446_2447GA > TT 0.37 TP53, CDKN2A,
CDKN2B Complex karyotype

149 Unfit D816V 2447A > T 0.344
ASXL1, DNMT3A,
SETBP1, FANCD2,

CASP8
46, XY, t(3;3)(p25:q13)

158 Unfit T417_D419 > Y 1249_1255ACTTACG > T 0.078 FLT3, NRAS inv(16)/t(16;16)

160 Unfit
D816V 2447A > T 0.146

CSF3R, JAK1 t(8;21)(q22;q22.1)
N822K 2466T > G 0.018

10 R/R D816V 2447A > T 0.234 None t(8;21)(q22;q22.1)

39 R/R
D816V 2447A > T 0.252

RAD21 t(8;21)(q22;q22.1)
D816Y 2446G > T 0.056

45 R/R D816Y 2446G > T 0.923 CD36 t(8;21)(q22;q22.1)

76 R/R D816V 2447A > T 0.932 NF1 t(8;21)(q22;q22.1)

94 R/R D816V 2447A > T 0.459 RAD21, NPM1 Normal

111 R/R D816V 2447A > T 0.338 SETD2 3q Abnormality

121 R/R D816Y 2446G > T 0.021 CBL inv(16)/t(16;16)

146 R/R D816V 2447A > T 0.082 GATA2, HIST1H2BJ t(8;21)(q22;q22.1)

175 R/R N822K 2466T > G 0.461 GATA2, PHF6, ATM t(8;21)(q22;q22.1)

Abbreviations: R/R: relapse/refractory, SNV: single-nucleotide variant, VAF: variant allele frequency.

5. Possible Role for Kinase Inhibitors in the Treatment of AML with KIT Mutation

Few specific inhibitors of KIT have been reported; however, several agents designed to
target other RTKs such as FLT and ABL are expected to have utility for KIT mutations [56,57]
(Table 5). Several drugs have been used in clinical trials in AML with KIT expression or
KIT mutation.

Table 5. Summary of FDA-approved KIT-targeted therapies.

Drug Primary Targets FDA-Approved Disease

Imatinib BCR-ABL1 CML, Ph+ALL, HES, GIST, SM, DFSP
Dasatinib BCR-ABL1 CML, PhALL
Sunitinib VEGFR and FLT3 GIST, RCC, Pancreatic Cancer
Regorafenib VEGFR GIST, HCC, Colorectal Cancer
Midostaurin FLT3 AML (FLT3 mutation), SM
Ripretinib KIT GIST
Avapritinib KIT/PDGFRA GIST, SM

Abbreviations: FDA: US Food and Drug Administration, CML: chronic myeloid leukemia, PhALL: Philadelphia-
positive acute lymphoblastic leukemia, HES: chronic eosinophilic leukemia with PDGFRα rearrangement, GIST:
gastrointestinal stromal tumor, SM: systemic mastocytosis, DFSP: dermatofibrosarcoma protuberans, RCC: renal
cell carcinoma, HCC: hepatocellular carcinoma.

Imatinib (IM), which inhibits ABL, KIT, and PDGFR, has been used in chronic myeloid
leukemia, Philadelphia chromosome-positive acute lymphoblastic leukemia, and chronic
eosinophilic leukemia with PDGFRα rearrangement. In a phase I study, a combination of
cytarabine, daunorubicin, and IM was investigated in relapsed AML patients with KIT
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expression [58]. The complete remission (CR)/CR with incomplete platelet recovery (CRp)
rate was 57%. In addition, the phase I/II study evaluated IM combined with mitoxantrone,
etoposide, and cytarabine therapy for patients with R/R KIT-positive AML [59]. The
combination was well tolerated up to 400 mg/day IM. Of the 21 patients treated at this
dose, 13 (62%) achieved CR. Low-dose cytarabine (LDAC) and IM were well tolerated in
incompatible or R/R AML patients with KIT expression [60]. However, the combination of
LDAC and IM was not shown to be effective compared to LDAC monotherapy. Recently,
it was reported that IM as maintenance therapy after the completion of post-remission
therapy may improve the outcome of newly diagnosed AML patients [61].

Dasatinib is a medication that is expected to target cancers harboring KIT
mutations [52,62,63]. Tarlock et al. showed that cells with KIT exon-17 mutations ex-
hibited in vitro sensitivity to dasatinib [52]. In other work, Malani et al. obtained drug
response profiles for established AML cell lines and ex vivo samples from patients with
AML by subjecting the cells to high-throughput drug sensitivity and resistance testing with
290 approved and investigational oncology compounds [63]. They suggested that the gene-
expression-based upregulation of the KIT pathway may serve as a biomarker of dasatinib
efficacy in AML. Indeed, several clinical studies have examined the use of dasatinib for
the treatment of CBF leukemia with a KIT mutation. For instance, in single-arm studies
by the Cancer and Leukemia Group B (CALGB), patients with CBF leukemia received
combination treatment with dasatinib and chemotherapy including HDAC [64]. The results
of that study showed that patients harboring tumors with a KIT mutation had disease-free
survival and overall survival comparable to those observed for patients harboring tumors
with wild-type KIT [64]. Separately, in the phase Ib/IIa study of the German–Austrian
AML Study Group (AMLSG), dasatinib was added to intensive induction/consolidation
chemotherapy and administered as a maintenance treatment for CBF leukemia [65]. The
exploratory analysis of the KIT mutation in that trial showed that five of nine patients
who exhibited KIT mutation in paired samples from the time of diagnosis and relapse had
lost the variant at relapse, suggesting the possibility that dasatinib inhibited clones with
KIT mutations.

Midostaurin is a first-generation FLT3 inhibitor that inhibits FLT3-ITD and TKD
mutations [66]. It was reported that the KIT-D816V receptor expressed in Ba/F3 cells was
sensitive to midostaurin [48]. A therapeutic effect of midostaurin is expected in KIT D816V
mutation-positive mastocytosis [67,68]. A phase II study (MIDOKIT study: NCT01830361)
has been conducted to investigate the additional effect of midostaurin on the treatment of
t(8; 21) AML with KIT or FLT3-ITD mutations, and its results are awaited.

6. HSP90 Inhibitors for the Treatment of AML with KIT Mutation

Heat shock protein 90 (HSP90) is a molecular chaperone that plays an important
role in mediating the correct folding and functionality of its client proteins in cells [69,70].
HSP90 is involved in the stabilization of the cancer-related proteins necessary for tumor
development, including receptor tyrosine kinases, signal transducers, cell-cycle regulators,
and transcription factors [71,72]. Therefore, HSP90 inhibitors have been developed and
are undergoing clinical trials in various cancers. One mechanism of HSP90 inhibitors is
blocking the binding of ATP, which induces the degradation of target proteins [71,73,74]
(Figure 4). In AML, it has been reported that HSP90 inhibitors may suppress mutated
FLT3, as well as the JAK-STAT and P13K pathways [75–77]. Yu et al. reported that the
inhibition of Hsp90 by 17-allylamino-17-demethoxygeldanamycin disrupted downstream
signaling pathways of mutant KIT in a RUNX1-RUNX1T1 with a KIT-mutant cell line [78].
Tsujimura et al. examined the potency of the novel KIT inhibitor KI-328 against different
types of mutant KIT kinases in AML. They reported that KI-328 showed little potency
against D816V-KIT; however, they demonstrated that HSP90 inhibitors suppress the growth
of D816V-KIT-expressing cells [79]. Although these reports suggested the effect of HSP90
inhibitors on AML, the clinical use of HSP90 inhibitors has been delayed, partly due to their
association with adverse events such as hepatotoxicity and visual abnormalities [72,74].
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Figure 4. HSP90 inhibitor treatment for leukemia (such as FLT3). By binding of the HsP90 inhibitor to
the ATP/ADP pocket of Hsp90, the equilibrium state of Hsp90 becomes ADP dominant. This inhibits
the function of chaperone complexes containing client proteins and promotes the degradation of
client proteins.

Pimitespib (TAS-116), a highly selective inhibitor of HSP90 α and β, is a new agent that
is attracting attention for the treatment of malignancies with KIT mutations. HSP90 regu-
lates the conformation, function, and activation of several HSP90 client proteins, including
KIT [80,81]. In a mouse model, pimitespib showed anti-tumor activities while minimizing
the adverse effects (e.g., visual disturbances) observed with other HSP90 inhibitors [72].
Pimitespib prolonged progression-free survival in a phase III trial comparing the efficacy
and safety of pimitespib to a placebo in patients with previously treated GIST [82]. Re-
cently, it was reported that pimitespib exhibits anti-adult T-cell leukemia/lymphoma (ATL)
effects in ex vivo and in vivo preclinical models [74]. In this study, pimitespib suppressed
the growth of ATL-related cell lines and primary ATL cells ex vivo and tumors in ATL
cell-xenografted mice.

7. Conclusions

Here, we discussed the potential of KIT mutations as molecular targets for treating
AML. KIT is a type-III receptor tyrosine kinase that contributes to signal transduction in
many pathways, including the P13K, JAK/STAT, MAPK, and Src pathways, in various
cells. The KIT mutation plays a central role in various malignant tumors such as GIST and
SM, and it is attracting attention as an important molecular target. Treatment with tyrosine
kinase inhibitors and HSP90 inhibitors is evolving for these diseases. In AML, it has been
noted that the KIT mutation is associated with a poor prognosis in primary CBF leukemia.
The HM-SCREEN01 study also showed that AML with RUNX1-RUNX1T1 accounted for a
very high proportion of patients with R/R AML with KIT mutations, but this point needs
to be confirmed in the future by increasing the study population. Furthermore, with the
development of NGS in recent years, the pathological and clinical roles of KIT mutations in
AML other than CBF leukemia have also attracted attention. Current treatment strategies
may not be able to overcome KIT-mutation-positive AML, and the availability of new
precision medicine strategies targeting KIT mutations is eagerly awaited in clinical practice.
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