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Comparative assessment of genetic 
diversity matrices and clustering 
methods in white Guinea yam 
(Dioscorea rotundata) based 
on morphological and molecular 
markers
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Adrian Powell5, Guillaume Bauchet5, David De Koeyer8, Satoru Muranaka4, Patrick Adebola6, 
Robert Asiedu1, Ryohei Terauchi7 & Asrat Asfaw1*

Understanding the diversity and genetic relationships among and within crop germplasm is 
invaluable for genetic improvement. This study assessed genetic diversity in a panel of 173 D. 
rotundata accessions using joint analysis for 23 morphological traits and 136,429 SNP markers from 
the whole-genome resequencing platform. Various diversity matrices and clustering methods were 
evaluated for a comprehensive characterization of genetic diversity in white Guinea yam from West 
Africa at phenotypic and molecular levels. The translation of the different diversity matrices from 
the phenotypic and genomic information into distinct groups varied with the hierarchal clustering 
methods used. Gower distance matrix based on phenotypic data and identity by state (IBS) distance 
matrix based on SNP data with the UPGMA clustering method found the best fit to dissect the genetic 
relationship in current set materials. However, the grouping pattern was inconsistent (r = − 0.05) 
between the morphological and molecular distance matrices due to the non-overlapping information 
between the two data types. Joint analysis for the phenotypic and molecular information maximized 
a comprehensive estimate of the actual diversity in the evaluated materials. The results from our 
study provide valuable insights for measuring quantitative genetic variability for breeding and genetic 
studies in yam and other root and tuber crops.

Yam (Dioscorea spp.) is a widely cultivated crop in the tropics and subtropics for its edible starchy tubers. The 
crop is, however, most prominent in five countries in West Africa (Nigeria, Ghana, Côte d’Ivoire, Benin, and 
Togo), known as the “yam belt,” an area accounting for 92% of global yam production1. Of the over 600 Dioscorea 
species2, D. rotundata, native to West Africa, is the most important in terms of volume of production3 and the 
most preferred in the yam belt due to its suitability for many traditional foods2. Besides the food and economic 
value, yam is very important in traditional and contemporary medicine4,5 and has social, cultural, and religious 
relevance in West Africa6.

The genetic variability of crops held in gene banks, wild and cultivated varieties as well as elite breeding 
lines serve as gene pools from which breeders continually source rare alleles of essential traits for introgression 
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into adapted lines and for the generation of new variability for selection. Been the bedrock of plant breeding 
endeavors without which there would not be much scope for crop improvement, breeders have, over the years, 
employed many strategies to explore and quantify the extent of variability in plant populations7. Genetic diver-
sity in D. rotundata has been assessed using morphological traits8,9, isozymes10,11, amplified fragment length 
polymorphism12, simple sequence repeats13,14, random amplified polymorphic DNA15 and single nucleotide 
polymorphisms16. As a result of the strong environmental influence on their expression, phenotypic markers 
may not precisely capture the available diversity in a population7,17. Molecular markers, particularly SSR and 
SNPs have been widely employed to study the diversity in many species with much success, however, very low or 
negligible correlations have been reported between the dissimilarity matrices from the genotypic and phenotypic 
data18,19. Hence, it suggests that the non-overlapping information is emanating from the phenotypic and geno-
typic dissimilarity matrices. Combining such information for diversity analysis would provide a comprehensive 
overview of the total diversity in a population20–22. This approach, which seeks to explore the synergistic benefits 
of morphological and molecular markers in the evaluation of genetic variability and population structure, has 
not gained much attention in yam.

A standard approach applied to study genetic diversity is the comparison of individual genotypes within and 
between populations using a genetic dissimilarity matrix of all potential pairwise combinations of individuals 
for characterizing population structure based on relative affinity of everyone to all other individuals evaluated23. 
Several measures, including Euclidean, Manhattan, Mahalanobis, and Gower coefficient, are frequently employed 
in the analysis of dissimilarity of individuals using phenotypic attributes. In contrast, other dissimilarity matrices 
such as Nei, Jaccard, the Identity by state (IBS), and Rogers are applied for molecular markers24. These similarity 
coefficients are defined differently and so may produce different results for both the qualitative and quantita-
tive relationships among individuals23,24, hence, the choice of an appropriate similarity index is very crucial for 
determining actual genetic dissimilarity among individuals. Also, affecting the results of genetic diversity studies 
is the method used for summarizing the dissimilarity matrices into groups or clusters25. Hierarchical cluster-
ing is the most widely used approach in the analysis of crop genetic diversity26. Several hierarchical clustering 
methods, including single linkage, complete linkage, simple average, median, unweighted paired group method 
using arithmetic averages (UPGMA), McQuitty, and Ward’s minimum variance have been used25,26. Each of these 
approaches has some distinctive features and may generate different results, hence, the choice of an appropri-
ate method to meet the desired objectives is very imperative25. Comparative studies of different dissimilarity 
matrices, as well as hierarchical clustering methods, have been conducted to identify the appropriate approach 
for genetic diversity assessment in many crops, including sweetpotato18, switchgrass21, and maize27, but not yet 
for white Guinea yam. The objectives of this study were to (1) compare different dissimilarity matrices and hier-
archical clustering methods for evaluating genetic diversity in white Guinea yam, (2) assess the genetic diversity 
and differentiation in a population of white Guinea yam using morphological, molecular and combined data.

Results
Principal component analysis.  Results of the principal component analysis (PCA) indicated that the first 
ten components with eigenvalues ranging from 1.01 to 6.26 were important in explaining the variation among 
the 173 accessions studied and cumulatively accounted for 72.32% of the total phenotypic variation (Table 1). 
The first principal component (PC) accounted for 20.87% of the total variation. It illustrated the variations in 
stem diameter, plant vigor, plant sex, tuber yield per plant, tuber yield per hectare, average tuber weight, leaf den-
sity, tuber length, and tuber width primarily. Principal component two contributed 11.85% to the total variation. 
Seven variables, including days to maturity, days to flowering, tuber dry matter content, tuber flesh oxidation, 
yam mosaic virus severity, and tuber surface cracks, were identified to contribute most to PC two. The third PC 
emphasized the number of stems and number of tubers per plant and explained 7.55% of the total variation. 
Principal components 4 and 5 accounted for 5.94% and 5.43% of the total variance and explained the variation 
in tuber appearance and tuber area, respectively. Out of the 30 traits evaluated, 23 were found to contribute most 
to the first ten principal components (Table 1) and were therefore considered most discriminant to summarize 
phenotypic variation among the accessions through hierarchical cluster analysis. Phenotypic variations of the 
selected 23 variables were assessed (mean, median, minimum, maximal, Kurtosis variation, and standard error) 
and a summary presented in Supplementary Table S1.

Assessment of diversity matrices and clustering methods for phenotypic and molecular 
data.  Table 2 presents the cophenetic correlation coefficients (CCC) for translating phenotypic and geno-
typic information from various dissimilarity matrices into a dendrogram using different clustering methods. 
The translation of various dissimilarity matrices from the phenotypic information into a dendrogram showed 
consistently higher CCC (> 0.70) with the UPGMA method. Among the four dissimilarity matrices calculated 
for the phenotypic traits, the Gower distance showed the highest CCC value 0.91 with UPGMA method. The 
cophenetic correlation coefficients between the various distance matrices of molecular markers and hierarchal 
clustering methods were generally higher (> 0.79) than that of phenotypic distance matrices. The IBS matrix, 
however, showed a high correlation with the UPGMA clustering method. The UPGMA method proved superior 
to the other techniques in translating the information from the combined matrix (Gower + IBS) into a dendro-
gram too. Based on the cophenetic correlation, employing the IBS and Gower dissimilarity matrices with the 
UPGMA method was found to be suitable for clustering the accessions based on the genotypic and phenotypic 
information, respectively.

Clustering pattern based on morphological diversity.  The grouping pattern of the 173 D. rotundata 
accessions for morphological diversity using Gower distance in UPGMA method showed three major clusters 
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Table 1.   Eigenvalues, variance, cumulative variance, and principal component scores (Eigenvectors) of the 
first ten components of genetic divergence in a panel of 173 D. rotundata accessions. PC principal component, 
YAD yam anthracnose disease, YMV yam mosaic virus, AUDPC area under disease progression curve.

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Days to start senescence 0.21 0.79 − 0.14 0.18 0.15 0.02 − 0.19 0.04 0.11 0.02

Days to flowering 0.06 0.59 0.07 0.15 0.14 − 0.19 0.12 0.24 − 0.15 0.18

Days to maturity 0.29 0.67 − 0.01 0.25 0.04 0.10 − 0.04 0.04 0.11 0.04

Number of stems − 0.30 0.07 0.72 − 0.09 0.00 0.22 0.01 − 0.19 0.18 − 0.03

Stem diameter 0.51 − 0.24 − 0.26 0.18 − 0.01 − 0.34 − 0.17 0.25 − 0.09 0.32

YAD (AUDPC value) − 0.21 0.01 0.37 − 0.20 − 0.04 − 0.38 0.09 0.08 − 0.04 0.10

YMV (AUDPC value) − 0.10 0.78 0.02 0.27 0.10 − 0.21 − 0.20 − 0.06 0.07 0.12

Plant vigor 0.55 − 0.23 0.27 − 0.04 − 0.15 − 0.25 − 0.10 0.04 − 0.16 0.19

Plant sex 0.53 − 0.06 0.20 0.41 0.21 − 0.14 − 0.06 0.10 − 0.01 − 0.52

Flowering intensity 0.48 − 0.10 0.13 0.01 0.00 − 0.20 − 0.47 − 0.17 − 0.32 − 0.49

Number of tubers plant−1 − 0.10 0.07 0.78 0.19 − 0.20 0.27 0.12 0.10 − 0.13 0.08

Tuber yield (kg plant−1) 0.91 0.01 0.24 − 0.10 − 0.10 0.07 0.08 − 0.02 0.12 0.08

Tuber yield (t ha−1) 0.91 0.01 0.23 − 0.09 − 0.09 0.08 0.08 − 0.02 0.12 0.08

Average tuber weight (kg) 0.91 − 0.02 − 0.04 − 0.18 − 0.04 − 0.05 0.02 − 0.06 0.14 0.09

Tuber appearance 0.16 0.40 0.21 − 0.53 − 0.21 0.02 0.02 0.16 − 0.11 − 0.14

Spines on tuber 0.38 − 0.07 0.15 0.33 0.00 0.22 0.01 − 0.48 − 0.10 0.18

Tuber cracks − 0.28 − 0.53 − 0.08 0.14 − 0.10 − 0.19 0.06 − 0.05 0.37 − 0.01

Tuber hairiness 0.42 − 0.15 − 0.03 0.29 0.41 0.40 0.03 − 0.33 − 0.15 0.05

Canopy architecture − 0.04 − 0.04 0.43 − 0.19 0.14 0.16 − 0.45 0.42 0.31 − 0.05

Leaf density 0.76 − 0.17 0.21 0.13 − 0.22 0.03 0.22 0.17 − 0.11 0.05

Leaf shape − 0.38 0.26 − 0.17 − 0.28 0.04 0.38 0.20 0.00 0.02 − 0.21

Senescence class − 0.42 − 0.02 0.30 − 0.16 0.22 − 0.35 − 0.06 − 0.37 0.07 0.25

Spines on stem 0.18 − 0.22 − 0.17 − 0.18 0.40 0.46 0.00 0.31 − 0.20 0.25

Inflorescence type 0.22 − 0.10 0.05 0.39 0.19 − 0.06 0.34 0.17 0.59 − 0.12

Stem color − 0.08 0.13 − 0.07 0.19 − 0.37 − 0.14 0.59 0.05 − 0.22 − 0.17

Tuber length 0.65 0.00 − 0.15 − 0.48 0.36 − 0.16 0.21 − 0.13 0.10 − 0.10

Tuber width 0.70 0.03 − 0.34 − 0.28 − 0.29 0.09 − 0.08 − 0.14 0.23 − 0.04

Tuber area − 0.05 0.00 − 0.26 0.23 − 0.71 0.30 − 0.35 0.02 0.12 0.07

Tuber flesh oxidation 0.28 0.57 − 0.08 − 0.02 0.07 0.04 0.10 0.13 − 0.12 − 0.04

Dry matter content − 0.04 − 0.65 0.02 0.18 0.21 0.07 − 0.03 0.33 − 0.13 − 0.03

Eigenvalue 6.26 3.56 2.26 1.78 1.63 1.51 1.34 1.21 1.13 1.01

% variance 20.87 11.85 7.55 5.94 5.43 5.05 4.45 4.05 3.76 3.38

Cumulative variance (%) 20.87 32.72 40.27 46.20 51.64 56.68 61.14 65.18 68.94 72.32

Table 2.   Results of the cophenetic correlation coefficients (CCC) for comparing diversity matrices and 
clustering methods for phenotypic and molecular data in white Guinea yam.

 Dissimilarity matrices

Clustering methods

Ward.D2 Single Average (UPGMA) Median Mcquitty (WPGM) Complete

Phenotypic data

Gower 0.58 0.67 0.91 0.61 0.80 0.78

Manhattan 0.74 0.85 0.90 0.81 0.86 0.88

Euclidean 0.74 0.85 0.90 0.81 0.86 0.87

Mahalanobis 0.59 0.83 0.85 0.81 0.84 0.81

Genotypic data

IBS 0.80 0.87 0.91 0.83 0.90 0.88

Jaccard 0.80 0.85 0.90 0.79 0.89 0.86

Nei 0.81 0.87 0.90 0.85 0.89 0.88

Roger 0.81 0.87 0.90 0.85 0.89 0.88

Gower + IBS 0.56 0.62 0.75 0.62 0.67 0.71
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(Fig. 1). The cluster size varied between groups identified with a larger number of accessions in cluster three 
(blue) containing 137 accessions (79%), of which 66 were genebank accessions, 62 breeding lines from IITA as 
well as nine farmers’ varieties. Accessions in cluster three were generally highly susceptible to yam mosaic virus 
disease, less vigorous, low yielding, and with moderate tuber dry matter content. The second cluster (green) was 
made up of 25 accessions, out of which 19 were breeding lines, five genebank accessions, and a farmer’s variety. 
Cluster two accessions were high yielding, with longer and broader tubers characterized by high oxidation. In 
cluster one (red) were 11 accessions, comprising of five breeding lines and six genebank accessions. Accessions 
in cluster one were early flowering and maturing, tolerant to the YMV disease, and produced tubers with many 
cracks, high dry matter content, and no oxidation.

Summary statistics and clustering pattern of accessions based on molecular diversity indi-
ces.  The minor allele frequency of the 136,429 SNP markers used in this study varied from 0.052 to 0.50, with 
an average of 0.26 (Supplementary Table S2). The mean observed and expected heterozygosity were 0.42 and 
0.35, respectively. Polymorphic information content was high across the SNPs, with an average of 0.28. The mean 
Hardy Weinberg Equilibrium was 0.20.

Using the IBS dissimilarity matrix, the genetic distance for the entire population varied from 0.05 to 0.31. 
The genetic distance was highest between TDr2161C (genebank accession from Nigeria) and TDr0900055 (a 
breeding line from the hybridization of TDr9700973 and TDr9501932), while it was lowest between TDr4180A 
(landrace from Guinea) and TDr2674A (landrace from Nigeria).

Using the 136,429 SNP markers, the 173 accessions were grouped into three major clusters (Fig. 2). Cluster 
three (blue) was the biggest with 99 accessions comprising of 54 genebank accessions from six countries with 
the highest number of accessions from Togo (27) followed by Nigeria (20) (Supplementary Information 1). The 
third cluster contained in addition to the genebank accessions, 35 breeding lines from IITA, and ten farmers’ 
varieties from Nigeria. The 35 breeding lines in cluster three were full-sibs and half-sibs from the bi-parental or 
open pollination of 11 females and ten males (Supplementary Information 1). Cluster two (green) contained 58 
accessions, of which 51 were breeding lines, while the remaining seven were genebank accessions collected from 
Cote d’Ivoire (1), Nigeria (4), and Togo (2). The breeding lines in cluster two originated from bi-parental crosses 
involving eight females and three males. Out of the 51 breeding lines grouped in cluster two, 35 lines shared the 
same male parent (TDr9501932) and three female parents (TDr0200076, TDr9518544, and TDr9700973). Clus-
ter one (red) was the smallest group containing 16 accessions, all of which were genebank accessions collected 
from Benin Republic (1), Cote d’Ivoire (1), Ghana (1), Nigeria (4) and Togo (9) (Supplementary Information 1). 
Genetic distance in cluster one varied from 0.062 (TDr3002 and TDr1807A) to 0.083 (TDr1615 and TDr3592).

Figure 1.   Hierarchical cluster dendrogram based on the ‘Gower’ morphological dissimilarity matrix using the 
23 most discriminant phenotypic traits showing the grouping pattern of the 173 Dioscorea rotundata accessions 
evaluated.
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Genetic diversity indices and grouping.  Table 3 presents the most widely used genetic diversity indices, 
the Shannon–Wiener index, Simpson’s indices, and Pilou evenness index calculated for 173 white Guinea yam 
accessions based on phenotypic and molecular data. The diversity indices calculated were generally high and did 
not differ significantly for the phenotypic and molecular data. Similarity in the genetic diversity indices distribu-
tion was observed for the phenotypic and molecular data. However, the inverse Simpson’s index was yet higher 
at the molecular level compared to the phenotypic level.

Assessment of morphological diversity with Gower distance matrix revealed low variability among the acces-
sions studied, as shown by the copious pink dots in Fig. 3A. Conversely, genetic variation was high among the D. 
rotundata accessions with the dissimilarity matrix emanating from the SNP data, as shown by the high number 
of blue dots in Fig. 3B. The hierarchical cluster generated from the phenotypic information was compared to 
that originating from the genotypic data (Fig. 4). Out of the 173 accessions evaluated, only two maintained the 
same cluster position across the two hierarchical cluster dendrograms (Fig. 4).

Genetic diversity using joint analysis for morphological and molecular data.  The 173 D. rotun-
data accessions were partitioned into three distinct clusters using the combined dissimilarity matrix of pheno-
typic and molecular marker information. Cluster membership ranged from 16 to 141 accessions. Cluster three 
(blue) was composed of 141 accessions, including 80 breeding lines, 51 genebank accessions, and ten farmers’ 
varieties (Fig. 5). Cluster two (green) contained 16 clones that included ten genebank accessions and six breed-
ing lines. Cluster one (red) was made up of 16 genebank accessions. Accessions in cluster three generally had 
higher tuber yielding potential with late flowering, late maturing, high flowering intensity, thicker stems, more 
prone to yam mosaic virus disease, and low tuber dry matter content (Table 4). Accessions in cluster two were 

Figure 2.   Hierarchical cluster representing the genetic relationships among the 173 D. rotundata accessions 
based on the Identity by state (IBS) dissimilarity matrix obtained from the 136,429 SNP markers. Each color 
represents a different cluster.

Table 3.   Genetic diversity indices based on phenotypic and SNP data in the D. rotundata accessions.

Shannon–Wiener Index 
(H′) Inverse Simpson’s (HB) Simpson’s Index (λ) Pilou evenness (J) Fixation index (Fst)

Phenotypic 5.11 160.0 0.9937 0.1933 NA

Genotypic 5.14 169.7 0.9941 0.1933 0.15783
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early to flower and mature with negligible tuber flesh oxidation, low tuber yield, and high tuber dry matter 
content. Accessions in cluster two were also characterized by multiple stems, low flowering intensity, high tuber 
cracks, and less susceptible to yam mosaic virus disease (compared to those in clusters 1 and 3). For most of 
the traits evaluated, accessions in cluster one showed moderate performance in comparison to clusters two and 
three. Accessions categorized in the first cluster had average yield with longer tuber length, broader in size as 
well as high tuber flesh oxidation.

A comparison of the cluster memberships, however, revealed that 72 accessions (42%) were clustered into the 
same groups by the three methods (Fig. 6). The genotypic and phenotypic clustering grouped 84 accessions into 
the same groups. In comparison, 125 accessions were clustered in the same groups by the phenotypic and the 
combined analysis, and 99 accessions appeared in the same genetic groups across the genotypic and combined 
clusters (Fig. 6).

Minor allele frequency, as well as the observed and expected heterozygosity, showed very low variation across 
the three genetic groups identified by the combined analysis (Table 4). In contrast, polymorphism information 
content showed high variation across the genetic groups.

The Mantel correlation assay between the phenotypic and genotypic dissimilarity matrices was negligible 
(r = − 0.048) (Fig. 7). However, such correlation was high (r = 0.82) between the genotypic and the combined 
matrices, and moderate (r = 0.47) between the phenotypic and combined dissimilarity matrices.

Discussion
Assessment of genetic diversity is an integral aspect of all crop breeding and plant genetic resources manage-
ment and utilization undertakings; hence, many approaches have been developed to evaluate and quantify the 
extent of genetic variability in plant populations. This study assessed the variation in a panel of 173 D. rotundata 
accessions using 23 most discriminant morphological traits and 136,429 SNP markers from the whole-genome 
resequencing genotyping platform. The dissimilarity coefficient, as well as clustering method used for genetic 
diversity analysis, have implications on the results23,25, hence the choice of an appropriate coefficient and hier-
archical clustering method is critical for determining the accuracy of the genetic variability among individuals.

High cophenetic correlation coefficients were observed for most of the hierarchical clusters constructed using 
the different dissimilarity matrices and clustering methods with a few exceptions for both morphological and 
molecular data. The UPGMA method was observed to give high cophenetic correlation coefficients for most of 
the dissimilarity matrices across the molecular, morphological, and combined data, demonstrating that there is 
a good representation of the dissimilarity matrices and distances in the form of dendrograms. The cophenetic 
correlation coefficient has been widely employed as a measure for evaluating the efficiency of various clustering 
techniques since its introduction by Sokal and Rohlf28 and provides estimates of how precisely a dendrogram 
preserves the pairwise distances between the original data points29. In consonance with the findings of the present 
study, the UPGMA method of clustering was reported to give high cophenetic correlation coefficients for genetic 

Figure 3.   (A) Gower’s dissimilarity matrix from the phenotypic data and (B) IBS dissimilarity matrix generated 
from the genotypic data of the D. rotundata accessions. The color gradient graphically expresses the dissimilarity 
between the white yam accessions. Pink indicates the most similar accessions, while the blue color indicates 
the most dissimilar accessions. The dissimilarity matrices were symmetric, and values below the diagonal are 
equivalent to those above the diagonal.
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Figure 4.   Comparison of hierarchical clustering dendrograms of the 173 D. rotundata accessions from 
phenotypic (left) and the genotypic (right) data. The black lines in between the two dendrograms represent 
mismatched accessions while the purple lines are accessions in the same position from phenotypic to the 
genotypic cluster.
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diversity studies in sweet potato18, soyabean30, and maize31 indicating the viability of using dendrograms from 
the UPGMA to summarize the information of dissimilarity matrices in genetic diversity studies. Furthermore, 
Padilla et al.25 and Krzanowski32 observed high internal affinity within clusters and large variability among 
clusters generated by the UPGMA compared to the other methods.

Using the 23 morphological traits identified by the first ten principal components as most discriminatory, the 
UPGMA clustering based on the Gower dissimilarity matrix grouped the 173 white yam accessions into three 
clusters irrespective of their countries of geographical origin (genebank accessions) and pedigree (breeding lines). 
Many authors assert that genetic diversity assessment using morphological markers is less reliable due to the 
strong influence of the environment and plant growth stage on their expression33–36. Nevertheless, phenotypic 
characterization is instrumental in defining the plant population and forms the basis for selecting accessions 
with desirable traits for crop improvement.

Our analysis of the genetic diversity using the Identity by state (IBS) dissimilarity matrix generated from 
136,429 SNP markers partitioned the 173 D. rotundata accessions into three groups. The low genetic variability 
observed among the accessions using the morphological markers could be because variation in phenotypic 
traits may result from one or few mutations in the genome and epigenetic origin. In contrast, the SNP markers 
consider variations across the entire genome. The SNP markers, therefore, revealed valuable information about 
the genetic relationships among the D. rotundata accessions enabling the identification of genetically divergent 
parents helpful for the yam breeding program. Our results suggest the reliability of SNP markers in dissecting the 
depth of genetic diversity among white Guinea yam accessions, as also reported by Girma et al.16 and Scarcelli 
et al.37. Plants showing similar morphological characteristics could be very divergent at the molecular level and 
vice versa34,38. This phenomenon, in addition to the negligible correlation observed between the phenotypic and 
genotypic dissimilarity matrices in this study, could explain the changing and regrouping observed in compar-
ing the membership of the hierarchical cluster dendrograms emanating from the morphological and molecular 
characterization. The inconsistency between the clusters identified by the genotypic and phenotypic information 
could also be attributed to the enormous genotype-by-environment interaction effects generally observed for 
quantitatively inherited morphological and agronomic traits. The lack of correlation between the molecular and 
the morphological diversity matrices further emphasizes the non-overlapping and complementarity between the 
genotypic and the phenotypic information to dissect the nature and extent of genetic diversity in crops39,40. Sev-
eral studies have also reported inconsistencies between phenotypic and genotypic distances in different crops41–43.

An approach that combines the phenotypic and genotypic dissimilarity matrices into a single matrix for 
genetic diversity assessment was suggested to capture the entire genetic variability in plant populations40,44. 
The application of joint analysis for phenotypic and molecular information identified three genetic groups in 

Figure 5.   Hierarchical clustering of the 173 D. rotundata accessions based on the combined phenotypic (Gower 
matrix) and molecular data (IBS) using the UPGMA method. Each color represents different cluster.
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Table 4.   Phenotypic and genotypic parameter variation across the genetic groups identified by the combined 
analysis.

Phenotypic traits

Cluster 1 Cluster 2 Cluster 3

Average SD Average SD Average SD

Days to start senescence 226.15 10.11 177.98 38.44 229.58 4.43

Days to flower 139.88 41.67 81.03 32.45 136.92 18.27

Days maturity 254.10 22.75 202.82 39.16 249.27 4.41

No. of stems 1.45 0.57 2.12 1.66 1.13 0.16

Stem diameter 3.96 0.77 3.70 1.03 3.47 0.62

YMV (AUDPC value) 350.03 30.53 268.33 86.06 330.13 19.89

Plant vigor 1.83 0.33 1.76 0.52 1.75 0.22

Plant sex 0.93 0.65 0.47 0.62 0.54 0.49

Flower intensity 3.17 2.40 2.21 1.55 2.55 2.54

Number of tubers per plant 1.38 0.45 1.38 0.44 1.08 0.17

Tuber weight (kg plant−1) 1.13 0.48 0.69 0.44 1.00 0.35

Tuber weight (t ha−1) 11.15 4.68 6.65 4.39 9.88 3.49

Average tuber weight 1.00 0.44 0.63 0.47 0.98 0.37

Tuber appearance 1.85 0.65 1.37 0.61 2.07 0.62

Tuber cracks 0.50 0.45 1.27 1.02 0.23 0.28

Leaf density 5.02 0.72 4.48 1.16 4.76 0.54

Inflorescence type 1.23 0.35 1.16 0.25 1.08 0.10

Stem color 1.64 0.69 1.43 0.48 1.76 0.70

Tuber length 22.34 5.31 18.78 7.10 26.12 2.11

Tuber width 9.43 2.32 7.61 2.19 10.16 2.48

Tuber area 0.44 0.10 0.46 0.18 0.40 0.10

Oxidation 1.75 1.27 0.09 0.85 2.29 1.55

Dry matter 33.61 3.38 37.96 3.38 35.30 4.78

Minor allele frequency 0.26 0.26 0.22

Observe heterozygosity 0.42 0.43 0.44

Expected heterozygosity 0.35 0.34 0.25

Polymorphism information content 0.26 0.65 0.56

Figure 6.   Venn diagram showing the concordance of cluster memberships across the phenotypic, genotypic 
and combined clusters of the 174 D. rotundata accessions.
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the current set of materials highly valuable for genetic improvement in white Guinea yam. This has significant 
implications for yam improvement in that new breeding populations can be developed by hybridization among 
these three divergent genetic groups, thereby broadening the genetic base of the breeding program. Superior 
accessions with desirable end-user attributes from these diverse genetic groups are a source of rare alleles for 
incorporation into elite breeding lines thereby maximizing heterosis in the progenies. The high and moderate 
correlations observed between the combined matrix and the genotypic and phenotypic dissimilarity matrices, 
respectively agree with the findings of Alves et al.19,22 who dissected genetic diversity in their studies using pheno-
typic, genotypic and combined distances. These correlations suggest that genetic diversity assessment employing 
the combined matrix could be an essential tool to capture phenotypic and genotypic information cumulatively. 
Adequate knowledge about the genetic relationships among accessions is essential to preserve genetic diversity 
besides identifying superior parental combinations to create segregating populations in a breeding program45. 
Superior clones from the three distinct clusters identified by the combined distances could serve as trait pro-
genitors for hybridization to maximize genetic variability and heterosis in the D. rotundata breeding program.

Conclusion
Genetic diversity analysis of the D. rotundata accessions in this study has provided valuable insights to inform 
breeding strategies and to identify promising parents for the development of improved white Guinea yam vari-
eties with acceptable end-user qualities. High genetic variability was revealed among the white Guinea yam 
accessions by the SNP makers than the morphological markers, whereas the combined distance showed a high 
and moderate correlation with the genotypic and phenotypic distances, respectively. Hence quantification of 
genetic diversity using the combined matrix of phenotypic and genotypic distances explores the synergy of the 
two approaches, thereby cumulatively capturing the phenotypic and genotypic information to provide a com-
prehensive outlook of the entire diversity in the population. Clustering of accessions by different dissimilarity 
coefficients as well as hierarchical clustering methods without careful consideration of these approaches could 
affect the results. The Gower and IBS dissimilarity matrices presented relatively high cophenetic correlation coef-
ficients using different hierarchical clustering methods; hence, they are more appropriate for genetic diversity 
studies using phenotypic and genotypic data, respectively.

Methods
Plant materials and phenotypic characterization.  One hundred and seventy-three D. rotundata 
accessions, including 86 breeding lines, 77 genebank accessions, and ten farmers’ varieties, were used for the 
study. Details of these accessions, including countries of origin and pedigree information, are provided in Supple-

Figure 7.   Mantel correlation among phenotypic, genotypic and the combined data.
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mentary Information 1. A two-year field experiment was conducted at the experimental field of the International 
Institute of Tropical Agriculture (IITA/Ibadan Nigeria) (221 m altitude, 07° 29.639″ N, 003° 54.092″ E) during 
2017–2018 and 2018–2019 cropping seasons using augmented row–column and randomized block experimen-
tal designs, respectively. In 2017–2018, the trial was established with 43 accessions replicated four times and the 
rest non-replicated in single-row plots of two plants using inter-row and intra-row spacing of one meter in a plot 
size of 2 m2. While, the trial in 2018–2019 was established using a single plant plot arranged in a randomized 
block design replicated three times. Weeds were controlled manually to keep the experimental field free of weeds 
all through the growth period of the plants. The accessions were evaluated using thirty agro-morphological traits 
following the yam crop ontology46. The list of traits recorded, period of evaluation and data collection method is 
summarized in Supplementary Table S3.

Genotype data.  DNA extraction and SNP calling.  Lyophilized leaves were sent to Iwate Biotechnology 
Research Center (IBRC-Japan) for DNA extraction, library construction and whole-genome resequencing. For 
the whole genome sequencing, total genomic DNA was extracted from the leaf samples using a NucleoSpin Plant 
II Kit according to the manufacturer’s protocol (MachereyNagel GmbH & Co) with slight modifications.

Paired-end sequencing reads generated as fastq files were mapped to the D. rotundata reference genome ver-
sion 2 (https​://drive​.googl​e.com/drive​/folde​rs/1H5T4​xjKAE​l9Lli​R-4qK_IR6Ty​pCDe8​nj) with Hisat247. The SAM 
files were converted to BAM format and sorted by name using SAMtools48. In cases where multiple sequencing 
samples were generated from the same biological clone, the corresponding sorted BAM files for each clone were 
merged using SAMtools. Duplicates were marked and read groups added with the Picard package (https​://broad​
insti​tute.githu​b.io/picar​d/) (v2.17.5). GATK (v3.8-0)49 was used to perform indel realignment, variant calling 
(using HaplotypeCaller in the gVCF mode), and joint genotyping (using GenotypeGVCFs). The VCF file devel-
oped was filtered for MAF > 0.1, no missing data both at genotypes and SNP markers level. Only bi-allelic SNP 
markers with genotype quality > 20, read depth > 5 were retained after using vcftools50 and plink51 for filtering. 
The resulting SNPs were subjected to linkage disequilibrium (LD) pruning using the following parameters: 50 bp 
as window size in SNPs, 5 as step to shift the window and 0.5 as R square and a total of 136,429 SNP markers 
were retained for all subsequent analysis.

Data analysis.  Multivariate analysis of phenotypic data and hierarchical cluster construction.  Analysis of 
variance was performed to determine differences among the accessions for the various traits across the two years 
using the statistical analysis system software version 9.452 according to the model:

where, Y is the trait, µ is the grand mean, E is the environment effect (year), B(E) is the Block effect in environ-
ment (year), G is the genotype effect, GE is the genotype by environment interaction, e is the error.

The LSmeans from the genotype by year analysis was used for principal component analysis in the FactorM-
iner and missMDA R packages53. The optimal number of factors to be retained was determined using dimdesc 
function in R52. The selected traits from the above analysis were used in generating four different dissimilarity 
matrices (Gower, Euclidean, Manhattan and Mahalanobis).

Gower dissimilarity matrix was constructed using daisy function in cluster and graphics R packages54. Based 
on this, the dissimilarity matrix was estimated using the following formula:

where, dijc is a dissimilarity measure between the i-th and j-th objects by the c-th variable (c = 1, …, m), and 
wijc takes the value zero, if either the i-th or the j-th object by the c-th variable is missing; otherwise, it takes the 
value one.

Euclidean dissimilarity matrix Euclidean distance was estimated using the Cluster R package54 and defined as:

where, i and j are observations and p is the number of variables.
Manhattan dissimilarity matrix Manhattan distance, a special case of the Minkowski distance was defined as:

where, xi and yi are two vectors in n-dimensional space.
Mahalanobis dissimilarity matrix Mahalanobis distance was estimated according to the formula of 

Mahalanobis55, implemented using the “mahanalobis.dist” function in StatMatch R package56. For each vari-
able, the mean and covariance were generated and used as cofactors:

where, S is the covariance matrix of the dataset and x and y are two vectors.

Yijl = µ+ B(E)j(l) + Gi + GEij + eijl
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Analysis of molecular markers.  SNP marker data of the 173 white yam accessions were used to generate 
four dissimilarity matrices as follows:

Identity by State dissimilarity matrix was generated according to the formula of Wessel and Schork57 using 
tassel software58 and converted into a matrix using as.matrix function in R.

where, L is the number of loci considered; gli  and glj  are the genotypes of individuals i and j, respectively, at the j 
lth locus (l = 1, …, L); and Sli,j

(

gli , g
l
j

)

 is a function mapping the genotype information for individuals i and j at 
locus l.

Nei dissimilarity matrix was determined by the formula of Nei59 using the nei.dist function implemented in 
poppr R package version 2.8.360

Hs =
1
k ·

∑k
s=1 HSs =

1
k ·

∑k
s=1[1− q2s − (1− qs)

2] w h e re ,  k  =  t h e  t o t a l  nu mb e r  o f  l o c i , 
HSs = 1− q2s − (1− qs)

2 , and q2 is the frequency of one of the two alleles at the sth diallelic locus.
Jaccard dissimilarity matrix The raw vcf file with the total number of SNPs was converted to the dosage 

numeric format using plink51 and submitted to philentropy R package61 to estimate the Jaccard dissimilarity 
matrix through the following formula:

where, n is the total number of elements i in Pi and Qi.
Modified Rogers dissimilarity matrix was estimated in the cluster R package according to the relation of 

Rogers62:

where, Pij and qij are allele frequencies of the jth allele at the ith locus in the two taxonomic units under consid-
eration, ni is the number of alleles at the ith locus, and m is the number of loci.

To estimate the correlation between the underlying distance matrix and the distance between instances in the 
dendrogram using the different dissimilarity matrix, the cophenetic correlation coefficient was estimated28 for 
the different hierarchical clustering methods including ward.D2, single, average (UPGMA), median, McQuitty 
and complete. Dissimilarity matrix and the hierarchical clustering method with the highest cophenetic correla-
tion coefficient value was retained to plot the final hierarchical cluster dendrogram. Using the method of Alves 
et al.22, graphic representations of the dissimilarity matrices (phenotypic and genotypic) were generated based 
on color gradients for the expression of dissimilarity among the accessions. A Venn diagram was constructed to 
assess the agreement of cluster memberships assigned by the phenotypic, genotypic and the combined data. To 
assess the resemblance between the genotypic and phenotypic matrices and between the genetic dissimilarity 
matrices and joint dissimilarity matrix, the correlations and their significances were tested with the Mantel Z 
test with 9,999 permutations using the ade4 R package63. Additionally, the Shannon Wiener Index (H′), Inverse 
Simpson’s (HB), Simpson’s Index (λ) and Pilou evenness (J) were assessed using library vegan64, while the fixation 
index (Fst) was assessed using Weir and Cockerham Fst estimates function implemented in vcftools50.
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