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Abstract: Humoral immunity to influenza neuraminidase (NA) was evaluated among different
groups of people including patients with acute influenza infection and healthy people in different age
groups using an enzyme linked lectin assay (ELLA). The amino acid composition of NA of seasonal
influenza viruses A/Victoria/361/2011(H3N2) and A/Hong Kong/4801/2014(H3N2) differed by 2%,
while cross-reacting neuraminidase-inhibiting (NI) antibodies to them in the same serum samples
were detected in 10% of cases. Middle-aged patients born from 1977 to 2000 had a high level of
hemagglutination-inhibiting (HI) antibodies to A/Hong Kong/4801/2014(H3N2), but almost no
NI antibodies, which may indicate that in the case of a change in the hemagglutinin (HA) subtype,
this age group will be susceptible to influenza A/H3N2 viruses. Therefore, it could mean there is a
need for priority vaccination of this age group with a vaccine against the appropriate strain. It was
shown that after intranasal administration of live influenza vaccine (LAIV) for the 2017–2018 season,
serum antibody response was not lower compared to that during natural infection. In older people,
antibodies to archival A/H2N2 viruses were detected more often than to modern A/H3N2. Since
the conversion of antibodies to HA and NA often did not coincide, antibodies to NA can serve as an
additional criterion for assessing the immunogenicity of influenza vaccines.

Keywords: influenza; neuraminidase; antibodies; live influenza vaccine

1. Introduction

The influenza viruses cause annually about 3 to 5 million cases of severe illness, and
about 290,000 to 650,000 influenza-related deaths [1]. Due to widespread complications
and their severity, influenza poses a significant threat to public health. Influenza A and
B viruses circulate among humans, causing seasonal epidemics and pandemics. Because
of the high variability, variant influenza viruses appear each year. The main antigens of
the influenza virus are surface glycoproteins –hemagglutinin (HA) and neuraminidase
(NA). A total of 18 HA subtypes and 11 NA subtypes have been characterized [2]. Upon
entering the human respiratory tract, the influenza virus attaches to the mucosa, while HA
binds to receptors containing sialic acid. NA enzymatically cleaves mucosal sialic acids
and thereby makes it easier for the virus to reach the epithelium of the respiratory tract [3].
Similarly, NA releases newly formed virions that are associated with the host cell and with
each other [4].

HA is the dominant antigenic component of the influenza virus, and antibodies
directed against HA serve as the main criterion for assessing the post-infection or post-
vaccination humoral immune response to influenza. Anti-NA antibodies reduce the severity
of the infection and may provide protection [5,6]. When creating vaccines against influenza
viruses with a new HA subtype, researchers discovered that when assessed by the formation
of HI antibodies, immunogenicity often did not correspond to the protective efficacy of
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the vaccine [7]. Therefore, it is important to study the putative contribution of antibodies
against NA to the heterologous protection against viruses with a new HA subtype. There
are few studies of the cross-protection of anti-NA antibodies, and they were carried out
mainly for the NA subtype N1 of the pandemic H1N1 strain [8–11]. In 2009, a new influenza
A/H1N1 pandemic was caused by a virus that included a unique combination of gene
segments not previously seen in any of the viral isolates. Genetic sequence analysis showed
that this pandemic virus resulted from several reassortments of avian, swine, and human
viruses and likely circulated among pigs in North America for 10 years [12]. In this regard,
there is a clear need to study the state of herd immunity to pandemic influenza viruses
in high-risk patients in order to identify the most vulnerable target groups for priority
vaccination. At the same time, one should not forget about another strain, the influenza A
virus-H3N2, which may be more virulent than H1N1 [13].

Moreover, the detection of antibodies to NA may be used to provide data on popu-
lation immunity in cases when new antigenic variants of influenza viruses emerge, since
subjects often do not have antibodies to the modified HA. For example, there are no
HI antibodies to viruses A/H5N1 in the population, but there are cross-reactive anti-
bodies to NA [8]. The evaluation of anti-NA antibodies can also be used to study the
immunogenicity of influenza vaccines. To date, the most specific method for detecting
anti-NA antibodies is the enzyme-linked lectin assay (ELLA) which utilizes high-molecular
substrates—glycoproteins containing neuraminic acid. ELLA directly measures the yield of
the enzymatic reaction product in the presence/absence of a blood serum sample. The use
of a high molecular weight substrate, such as fetuin, reveals the steric effects of shielding
the catalytic site by antibodies bound to the antigen, while low molecular weight substrates
can reach the enzymatic pocket even in the presence of inhibitory NA antibodies.

2. Results

A phylogenetic analysis of NA subtype N2 of human influenza vaccine strains iso-
lated in different years, in particular strains A/17/Hong Kong/4801/2014 (H3N2) and
A/Victoria/361/2011(H3N2), was carried out.

The results of the phylogenetic analysis of NA amino-acid sequences of A/H2N2 and
A/H3N2 influenza viruses are shown in Figure 1A.

The NA of the influenza virus A/Victoria/361/2011(H3N2) had a high degree of amino
acid sequence homology (96–98%) with other A/H3N2 strains isolated from the human
population from 2004 to 2018, as well as strain A/Hong Kong/4801/2014(H3N2). The most
distant strains were isolated before 1968 (the degree of homology was 83–85%). The strains
A/Victoria/361/2011(H3N2) and A/Hong Kong/4801/2014(H3N2) were 98% identical
in amino acid composition. The strains differ by only 5 amino acid substitutions: E221D
(Glu-Asp), V231I (Val-Ile), K258E (Lys-Glu), T329N (Thr-Asn), I392T (Ile-Thr). Amino acid
substitutions were located in the NA “head” region outside the active sites. Using the
Chimera software [16], a spatial model of the globular part of NA (AA 83-469) was created.
In Figure 1B, the amino acids that are different in the A/Hong Kong/4801/2014(H3N2)
and A/Victoria/361/2011(H3N2) strains are shown.

We assessed antibody conversions in pared sera of the patients with PCR confirmed
influenza A infection. First, we evaluated the conversion of antibodies to the surface anti-
gens of the A/Victoria/361/2011(H3N2) and A/Hong Kong/4801/2014(H3N2) influenza
viruses in paired sera of patients hospitalized in the 2017–2018 flu season. In the 2017–2018
flu season, the mean levels of HI antibodies to both A/H3N2 viruses at the beginning of
hospitalization were similar (p > 0.05), but the levels of NI antibodies were significantly
higher to A/Victoria/361/2011(H3N2) than to A/Hong Kong/4801/2014(H3N2) virus
(Figure 2A,B). The increase in mean antibody titers in the second blood sample was sta-
tistically significant only for antibodies to NA of A/Hong Kong/4801/2014(H3N2) virus
(Figure 2B). This may indicate antigenic divergence between the NA of these two viruses,
despite minor genetic differences.
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Figure 1. Phylogenetic analysis of NA of A/H2N2 and A/H3N2 influenza viruses. (A). The evolu-
tionary history was inferred using the Neighbor-Joining method [14]. The optimal tree with the sum 
of branch length = 0.39463486 is shown. The tree is drawn to scale, with branch lengths in the same 
units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary 
distances were computed using the Poisson correction method [15] and are in the units of the num-
ber of amino acid substitutions per site. This analysis involved 33 amino acid sequences. All ambig-
uous positions were removed for each sequence pair (pairwise deletion option). There was a total 
of 469 positions in the final dataset. (B). Spatial model of the globular part of NA (AA 83-469). Amino 
acids that are different in strains A/Hong Kong/4801/2014(H3N2) and A/Victoria/361/2011(H3N2) 
were noted. 
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Figure 1. Phylogenetic analysis of NA of A/H2N2 and A/H3N2 influenza viruses. (A). The evolutionary
history was inferred using the Neighbor-Joining method [14]. The optimal tree with the sum of branch
length = 0.39463486 is shown. The tree is drawn to scale, with branch lengths in the same units as
those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were
computed using the Poisson correction method [15] and are in the units of the number of amino acid
substitutions per site. This analysis involved 33 amino acid sequences. All ambiguous positions were
removed for each sequence pair (pairwise deletion option). There was a total of 469 positions in the final
dataset. (B). Spatial model of the globular part of NA (AA 83-469). Amino acids that are different in
strains A/Hong Kong/4801/2014(H3N2) and A/Victoria/361/2011(H3N2) were noted.

Next, we assessed the formation of antibodies to HA and NA of A/Hong Kong/4801/
2014(H3N2) virus in patients hospitalized with influenza in the 2018–2019 influenza sea-
son. Figure 2C shows that in these serum samples the average level of antibodies to the
A/Hong Kong/4801/2014(H3N2) virus HA at the first point of the study was the same
as in 2017–2018, but the level of antibodies to NA slightly increased. Despite the fact that
the differences were not statistically significant, none of the patients in 2017–2018 had
NI antibody levels exceeding 1:10, while in the 2018–2019 season five patients out of 20
examined already had NI antibody levels ≥1:10 and two ≥1:20.

Data in Table 1 suggest that seroconversions of antibodies to HA and NA of A/H3N2
influenza viruses occurred in 13–33% cases and GMT was 32–64 among those who re-
sponded with HI seroconversions, and 28–67 with seroconversions of NI antibodies.
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Figure 2. Antibodies to HA and NA of A/H3N2 influenza viruses in paired sera of patients with PCR
confirmed influenza A infection. S1-sera obtained upon admission to the hospital, S1-sera obtained on
days three to eight of hospital stay. (A)—antibodies to HA and NA of A/Victoria/361/2011(H3N2) in
the sera obtained in 2017–2018 flu season (n = 15), * p < 0.05. (B)—antibodies to HA and NA of A/Hong
Kong/4801/2014(H3N2) in the sera obtained in 2017–2018 flu season (n = 15), * p < 0.05; ** antibody
levels at the start of hospitalization to A/Victoria/361/2011(H3N2) virus were significantly higher
than to A/Hong Kong/4801/2014(H3N2) virus, p < 0.01. (C)—antibodies to HA and NA of A/Hong
Kong/4801/2014(H3N2) in the sera obtained in 2018–2019 flu season (n = 20), * p < 0.05.

Table 1. Seroconversion to antigens of A/Victoria/361/2011(H3N2) and A/Hong Kong/4801/2014(H3N2)
in paired sera of influenza patients.

Flu Season Virus

HI Antibodies NI Antibodies

% of ≥4-Fold
Conversions

GMT among
Seroconverters

% of ≥4-Fold
Conversions

GMT among
Seroconverters

2017–2018
(n = 15)

A/Victoria/361/2011(H3N2) 33 31.74 13 57.25

A/Hong
Kong/4801/2014(H3N2) 27 45.79 33 66.71

2018–2019
(n = 20)

A/Hong
Kong/4801/2014(H3N2) 15 63.5 30 27.6

The levels of antibodies to surface antigens of the A/Hong Kong/4801/2014(H3N2)
strain were assessed in the sera collected from healthy persons of different ages examined in
2017–2018 flu season. For this, we used HI test with the A/17/Hong Kong/2014/8296(H3N2)
vaccine strain and ELLA with A/H6N2 virus. The highest average level of HI antibodies
was found among younger patients and the lowest among middle-aged patients (Figure 3).

The highest mean anti-NA antibody titers were found in the group of volunteers born
between 1924 and 1956, while the lowest mean antibody titers were noted in the group of
patients born between 1977 and 2000 (Figure 3).
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Figure 3. Serum antibody titers to the HA and NA of A/Hong Kong/4801/2014(H3N2) strain in
healthy persons in 2017–2018 flu season, * p < 0.05.

‘Herd’ immunity was assessed by the proportion of individuals with protective HI
antibody titers ≥1:40 [11]. For NI antibodies, protective titers have not been precisely
established. Considering that the titers of antibodies to A/Hong Kong/4801/2014(H3N2)
NI were generally low, we used NI antibody titers of 1:20 in this particular case (Table 2).
Among the oldest and youngest patients there were similar proportions of individuals with
HI antibody titers to A/Hong Kong/4801/2014(H3N2) (41.3% and 37%, respectively), and
the geometric mean titers (GMT) of HI antibodies among the younger group were 22.7,
and among the older they were 17.3. This may indicate that these age groups met with
the A/Hong Kong/4801/2014(H3N2) influenza virus with the same frequency. However,
among the youngest patients, NI antibody titers ≥1:20 were not detected (Table 2).

Table 2. The level of herd immunity to antigens to HA and NA of A/Hong Kong/4801/2014(H3N2)
in 2017–2018 flu season.

Years of Birth
HI Antibodies NI Antibodies

GMT % with Titers ≥1:40 GMT % with Titers ≥1:20

1924–1956 (n = 29) 17.3 41.3 7.2 13.7

1957–1976 (n = 30) 13.5 20 5.9 10

1977–2000 (n = 27) 22.7 37 5.5 0

The lowest level of protective HI antibody titers to A/Hong Kong/4801/2014(H3N2) virus
was in the group of middle-aged patients, while 10% of them had NI antibody titers ≥1:20.

Antibodies to NA of A/Hong Kong/4801/2014(H3N2) influenza virus were also eval-
uated in individuals vaccinated with trivalent live influenza vaccine (LAIV) in the fall of
2017. LAIV included vaccine strains A/17/New York/15/5364(H1N1)pdm09, A/17/Hong
Kong/2014/8296(H3N2), and B/60/Brisbane/08/83 (antigenic lineage B/Victoria). The dis-
tribution of serum antibody titers to NA and HA strain A/Hong Kong/4801/2014(H3N2)
among 18 vaccinated patients is shown in Figure 4.

In Figure 4, it can be seen that the increase in the average titers of anti-HA antibodies
to the vaccine strain A/17/Hong Kong/2014/8296 (H3N2) was significant, and the titers
of antibodies to NA increased significantly (Figure 4). Among the 18 vaccinated persons,
three (16%) responded to the vaccination with HI antibody seroconversions and nine (18%)
with NI antibody seroconversions. Simultaneous conversion of antibodies to HA and NA
occurred in only one case. Thus, antibodies to NA may serve as an additional criterion
for assessing the immunogenicity of influenza vaccines. The GMTs among those who
responded to vaccination were 56.6 for HI antibodies and 20.2 for NI antibodies, that is,
they were not lower than after infection.
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Figure 4. The results of the study of the immunogenicity of the A/H3N2 component of the
trivalent LAIV (A/Hong Kong/4801/2014(H3N2)) during the 2017–2018 epidemic season, n = 18.
A/17/Victoria/2011/89 (H3N2) virus was used for HI antibody detection, A/H6N2 virus was
used for ELLA. S1–sera collected before vaccination, S2–sera collected three weeks after vaccination.
* p < 0.05, ** p < 0.01.

And finally, we wanted to compare the effect of age on the level of NI antibodies to
N2 of the A/H2N2 and A/H3N2 viruses. To do this, we used archival samples of patients
of different ages left over from routine laboratory tests conducted in 2013.

The levels of serum HI antibodies to A/Leningrad/134/17/1957(H2N2), A/California
/1/1966(H2N2) and A/Victoria/361/2011(H3N2), shown in Figure 5A, differed signifi-
cantly in elderly patients ≥65 years old (Friedman ANOVA: p < 0.0001). The highest main
titer of HI antibodies was detected against the 1966 strain A/California/1/1966(H2N2),
while the level of HI antibodies to A/Victoria/361/2011(H3N2) was four times lower
(Wilcoxon Matched Pairs test: p = 0.0002). HI antibodies to A/Leningrad/134/17/57(H2N2)
were not detected. The levels of anti-N2 antibodies to the influenza viruses of 1957, 1966 and
2011 were also statistically significantly different (Friedman ANOVA; n = 56, p < 0.00001) in
the examined patients over 50 years of age (Figure 5A). The maximum mean titers of NI an-
tibodies in this age group were detected against the strain A/Leningrad/134/17/57(H2N2).
The level of serum antibodies to NA of A/California/1/1966(H2N2) was 1.6 times lower
(Wilcoxon Matched Pairs test: p = 0.013). The study included six sera from adults aged
21–38 years which did not have HI antibodies to A/H2N2 viruses. Mainly antibodies to
the HA and NA of seasonal influenza virus A/Victoria/361/2011(H3N2) were detected
among these patients. Certain levels of NI antibodies to A/Leningrad/134/17/1957(H2N2)
may be attributed to the cross-reactivity of antibodies to N2 of A/H3N2 viruses with which
these patients may have previously been in contact.

The herd immunity to influenza viruses A/Leningrad/134/17/1957(H2N2), A/
California/1/1966(H2N2) and A/Victoria/361/2011(H3N2) as assessed by antibody
levels ≥1:40, are presented in Table 3. Despite the fact that there were no HI antibod-
ies to A/Leningrad/134/17/1957(H2N2) influenza virus in the elderly, more than half
of the examined patients had NI antibodies in titers ≥1:40. 34.3% of the examined el-
derly persons were seropositive to A/California/1/1966(H2N2) possessing HI antibody
in titers ≥1:40 (Table 3). The same proportion of patients had antibody titers ≥1:40 to NA
of A/California/1/1966(H2N2). In four out of 35 examined sera (11.4%), antibodies to
HA and NA of A/California/1/1966(H2N2) were detected in titers ≥1:40 simultaneously.
A medium-strength relationship was found between the titers of HI and NI antibodies
(Spreaman’s correlation coefficient rs = 0.525).
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Figure 5. HI and NI antibody titers to A/Leningrad/134/17/1957(H2N2), A/California/1/1966(H2N2)
and A/Victoria/361/2011(H3N2) in the sera of adults and elderly examined in 2013. (A). The elderly,
≥65 years old (n = 35). (B). Adults, 21–38 years old (n = 6). * p < 0.05, ** p < 0.01.

Table 3. The levels of ‘herd’ immunity to antigens to HA and NA of A/Leningrad/134/17/1957(H2N2),
A/California/1/1966(H2N2) and A/Victoria/361/2011(H3N2) among elderly patients examined in
2013 (n = 35).

Influenza Virus
HI Antibodies (≥1:40) NI Antibodies (≥1:40)

# % # %

A/Leningrad/134/17/1957(H2N2) 0 0 20 57.1 1

A/California/1/1966(H2N2) 12 34.3 2 12 34.3

A/Victoria/361/2011(H3N2) 3 8.6 0 0
1 Proportion of patients with NI antibody levels ≥40 to A/Leningrad/134/17/1957(H2N2) significantly higher
compared to A/California/1/1966(H2N2) (Fisher’s exact test, p = 0.045). 2 Proportion of patients with HI antibody
levels ≥40 to A/California/1/1966(H2N2) significantly higher compared to A/Victoria/361/2011(H3N2) (Fisher’s
exact test, p = 0.009).

The percentage of seropositive elderly individuals to the A/Victoria/361/2011(H3N2)
strain according HI test was only 8.6%, although none of examined elderly individuals had
a titer of NI antibodies to seasonal influenza virus A/Victoria/361/2011(H3N2) ≥1:40.
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3. Discussion

Although antibodies to influenza NA are neutralizing, antibodies to the second anti-
genic component–NA-can also provide protection, especially against viruses with novel
HA variants. The most clear and substantiated results indicating the protective effect of NA
antibodies were obtained during the flu pandemic in 1968 on a group of people with obvi-
ously absent or low levels of antibodies to the influenza virus A/Hong Kong/1/68(H3N2).
Among the observed group of 274 people aged 20 to 45 years, the frequency of infection
with the A/H3N2 influenza in November 1968–January 1969, detected by HI seroconver-
sions, as well as severity, were inversely related to the level of antibodies to N2 [17]. It was
then shown that NI antibodies with a titer ≥1:16 were associated with a 46.7% protective
efficacy against infection. The relatively low level of herd immunity to NA strains A(H2N2)
in the population explains the unhindered spread of the virus of the new subtype A(H3N2)
in 1968; however, it could still result in moderate severity of the pandemic in question in
comparison with the consequences of the expansion of the “Asian” flu in 1957 [18,19]. De-
spite an almost equal percentage of people infected in the pandemic seasons of 1968–1969
and 1969–1970, more than two-thirds of severe diseases and lethal outcomes accounted for
the second epidemic wave caused by the pandemic strain with a significant drift of NA,
but not HA. This involved the accumulation of 11 amino acid substitutions, three of which
were localized in the NA antigenic sites [19].

Our study showed that minor changes in the structure of N2 can lead to changes in anti-
genic properties. We identified five amino acid substitutions located in the NA “head” differed
between NA of viruses A/Hong Kong/4801/2014(H3N2) and A/Victoria/361/2011(H3N2).
One such substitution at position 221 was described earlier. It was previously reported
that an asparagine residue at position 221 changed to histidine when analyzing A/H2N2
and A/H3N2 influenza viruses isolated between 1957 and 1975 [20]. In our case, there
was a substitution of the glutamic acid residue with aspartic acid. Viruses A/Hong
Kong/4801/2014(H3N2) and A/Victoria/361/2011(H3N2) differed in antigenic properties,
as was shown in the study of antibodies to these viruses in the sera of patients with influenza
infection. Thus, in the same sera, NI antibody titers ≥1:20 to A/Victoria/361/2011(H3N2)
and A/Hong Kong/4801/2014(H3N2) viruses occurred simultaneously in only 10% of
cases. In our early studies, it was shown that changes in several amino acids affected the en-
zymatic activity and antigenic properties of N1 of A/California/07/2009(H1N1)pdm09 and
A/South Africa/3626/13(H1N1)pdm09 [21]. Interestingly, the A/Victoria/361/2011(H3N2)
virus has lysine (K) in position 258, and A/Hong Kong/4801/2014(H3N2) virus and
other epidemic viruses have glutamic acid (E). Lysine at position 258 is also found in
the A/Ann Arbor/6/60(H2N2) strain and has recently been described in the A/New
York/PV190/2017(H3N2) influenza virus. This substitution is reported to reduce the sensi-
tivity of escape mutants to H2-specific monoclonal antibodies [22]. It is possible that the
presence of this substitution could affect the difference in the antigenic properties of the
analyzed strains A/Victoria/361/2011(H3N2) and A/Hong Kong/4801/2014(H3N2).

The fact that groups of patients had a high level of antibodies to A/Hong Kong/4801/
2014(H3N2) HA but almost no NI antibodies may indicate more frequent contacts with viruses
of this subtype. The lack of formation of antibodies to N2 can be explained by the probable
primary contact with the A/H1N1 viruses that caused the 1977 pandemic and continue to
circulate until now. In the case of a change in the HA subtype, the group of those born in from
1977 to 2000 will be susceptible to influenza A/H3N2 viruses. Therefore, it could mean a need
for priority vaccination of this age group with the appropriate vaccine strain.

It was shown that the intensity of serum antibody response after intranasal adminis-
tration of trivalent LAIV was not lower compared to natural infection with the influenza A
virus. It should have been taken into account that during immunization with LAIV, three
vaccine viruses are introduced at once, to which an immune response is formed. Influenza
infection, on the other hand, is supposed to be caused most often by one virus, but given
the phenomenon of antigenic ‘sin’, antibodies may also form against previous variants
with which the body has previously contacted. It was previously reported that the immune
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response to NA and HA differs between infection and vaccination. Thus, it has been shown
that more NA-reactive than HA-reactive B cells are activated during H3N2 infection [23].
This is consistent with the data that NA is the most immunogenic influenza protein in
terms of molar composition [24]. The presence of conserved epitopes in the NA molecule
also provides for cross-reactivity with earlier isolates [25]. After vaccination, in contrast, the
ratio of activated NA plasmablasts was very low. This was related only to the inactivated
vaccine and was attributed to the inefficient presentation of immunogenic epitopes in the
inactivated vaccine and the fact that the content of HA in the vaccine has not yet been
standardized [23].

Seasonal strains of the A/H3N2 subtype, having significant antigenic differences in
hemagglutinin with A/H2N2 strains that have left the circulation since 1968, represent the
same NA subtype–N2. Influenza viruses of the A/H2N2 subtype are considered as poten-
tially pandemic, since the majority of the population does not have immunity to them. This
is also shown in our study in regard to HI antibodies. Thus, the presence of a group of
people vaccinated with a seasonal trivalent live influenza vaccine (LAIV) of the composi-
tion A (H1N1) + A (H3N2) + B, or those who had a natural infection caused by A/H3N2
influenza, may be protected against the A/H2N2 pandemic strain at the initial stage until
mass vaccination of the population is deployed. Previously, it was shown that the antibody
titers against N2 and influenza B virus NA were moderately high compared to N1, which
may be due to differences in stability between N1 and N2 [25]. The fact of immunological
imprinting was also described, when middle-aged people had high titers of N2 antibodies to
the A/H3N2 strain, which had long since left circulation, with which they could have come
into contact in their youth. This phenomenon, also called primary antigenic ‘sin’, has been
widely described for HA, but has not been sufficiently studied for NA [25].

Our data on high levels of antibodies to the A/California/1/1966(H2N2) virus in the
elderly may suggest that a significant part of older people was in direct contact with the
A/H2N2 virus isolated in 1966, in addition to similar viruses. The formation of a high
level of NI antibodies to the A/California/1/1966(H2N2) in a large number of volunteers
may also point to repeated contacts with other A/H2N2 viruses during the 1957 to 1968
circulation period. The cross-reaction of anti-N2 antibodies acquired during this period can
explain the high percentage of individuals with a detectable titer of antibodies to the NA
strain A/Leningrad/134/17/57(H2N2) in the absence of HI antibodies.

Data on the low antibody levels to the A/Victoria/361/2011(H3N2) in the elderly
in 2013 may indicate a not very frequent contact with such viruses. A/H2N2 viruses
isolated between 1957 and 1968 differ significantly from each other both antigenically
and genetically [26]. The most significant deviations of antigenic characteristics from the
properties of the 1957 pandemic pathogen occurred in strains isolated from 1965–1967. On
the other hand, the antigenic differences accumulated in N2 over the past decades may
lead to reduced cross-reactivity of N2 antibodies formed to influenza strains of 1957–1968
with the recent seasonal A/H3N2 influenza.

This study has potential limitations. We used ELLA to detect functional NA-inhibiting
antibodies, while not taking into account non-NI antibodies that may potentially participate
in Fc-mediated reactions.

4. Materials and Methods
4.1. Ethics Statement

In this retrospective study we examined blood sera from patients at the “IEM” Medical
Research Center collected in 2018–2019 (n = 86), as well as paired sera from 18 healthy
adults vaccinated with seasonal live influenza vaccine (LAIV) in the fall of 2017. Written
informed consent was obtained from each subject. Also, in this study we used 15 pairs of
sera from patients hospitalized during 2017–2018 flu season with PCR confirmed type A
influenza. Additionally, we used 41 archive sera from healthy adults collected in 2013. All
sera were left after routine lab tests. The study was approved by the Local Ethics Committee
at Institute of Experimental Medicine (protocol dated 25 April 2019). After obtaining the
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approval of the local ethical committee, the sera were transferred to the researchers, none
of whom had access to the personal data of the patients.

4.2. Viruses

To determine neuraminidase inhibiting (NI) antibodies in human sera, we used in-
fluenza A/H7N2 viruses that contained HA from A/horse/Prague/1/57(H7N7) and NA
from A/Leningrad/134/17/1957(H2N2), A/California/1/1966(H2N2) or A/Victoria/361/
2011(H3N2). One more virus was A/H6N2, which contained HA from A/herring gull/
Sarma/51c/2006 (H6N1) and NA from A/Hong Kong/2014/8296(H3N2). To determine
serum anti-HA antibodies, strains A/Leningrad/134/17/1957(H2N2), A/17/California/
66/395(H2N2), A/17/Victoria/2011/89 (H3N2) and A/17/Hong Kong/2014/8296 (H3N2)
obtained from the collection of the Institute of Experimental Medicine were used. All
viruses were propagated in developing chicken eggs at 33 ◦C.

4.3. Determination of NA Inhibitory Antibodies

The levels of antibodies to NA of the A/H3N2 strains were evaluated using enzyme-
linked lectin assay (ELLA) after determining the optimal conditions for the enzymatic
reaction. For this, reassortant viruses A/H7N2 and A/H6N2 were purified by ultracentrifu-
gation on a stepwise sucrose gradient. The working concentration of the virus was defined
as 128 hemagglutinating units (HAU) in 50 µL. This dose provides a signal level when
reading the results on a spectrophotometer in the range of optical density (OD) at 450 nm
(OD450) from 0.45 to 0.70. The titer of serum NA inhibiting (NI) antibodies was calculated
as the reciprocal of the dilution of the sample giving 50% inhibition of NA activity, i.e., a
two-fold decrease in OD compared with the viral control when reading the results on the
ELx800 spectrophotometer (BIO-TEK INSTRUMENTS, INC., Winooski, VT, USA).

4.4. Hemagglutination Inhibition Test (HI)

HI was performed according to the previously described method [27] in 96-well poly-
mer plates for immunological reactions with a U-shaped bottom with a suspension of
0.75% human erythrocytes of the 0-group. The sera were pretreated with Vibrio cholerae
neuraminidase extract (RDE, Denka Seiken, Japan). The reaction results were taken
into account after erythrocyte sedimentation in control wells without virus. Serum anti-
hemagglutination antibody titer was defined as the highest dilution that resulted in the
inhibition of erythrocyte agglutination.

4.5. Assessment of Evolutionary Changes in Amino Acid Sequences and Molecular Phylogeny

Alignment of amino acid sequences taken from the database of influenza viruses of
the National Center for Biotechnology Information (The Influenza Virus Resource at the
National Center for Biotechnology Information) was performed using the UGENE program
from UniPro (version 1.19.0) [28]. The designations of the strains used for the analysis of
NA provided in Table 4. Evolutionary analyses were conducted in MEGA X [29].

The remote nearest neighbor method (neighbor joining) was used to reconstruct
phylogenetic trees. The stability of the tree topology was assessed using bootstrap analysis
based on the results of building and matching phylogenetic trees for 1000 new sets of amino
acid sequences generated based on the original alignment.
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Table 4. Influenza virus strains used for NA phylogenetic analysis.

Strain NCBI Code Strain Name Subtype

1 L37330 A/Leningrad/134/17/1957 H2N2

2 AB296075 A/Singapore/1/1957 H2N2

3 AAO46219 A/Ann Arbor/6/1960 H2N2

4 AAO46235 A/California/1/1966 H2N2

5 KP098442 A/England/12/1962 H2N2

6 ACF54392 A/Georgia/1/1967 H2N2

7 KY321929 A/Hong Kong/01/1968 H3N2

8 AAA43419 A/Udorn/1972 H3N2

9 ABE12548 A/Port Chalmers/1/1973 H3N2

10 BAD16646 A/Texas/1/1977 H3N2

11 ABF21324 A/Bangkok/1/1979 H3N2

12 ADJ41808 A/Philippines/2/1982 H3N2

13 AAB06966 A/Mississippi/1/1985 H3N2

14 ABF21327 A/Leningrad/360/1986 H3N2

15 AAB06967 A/Shanghai/11/1987 H3N2

16 ABF21325 A/Beijing/353/1989 H3N2

17 ACF41859 A/Beijing/32/1992 H3N2

18 ACL12132 A/Shandong/9/1993 H3N2

19 AAB06998 A/Wuhan/359/1995 H3N2

20 CAC19707 A/Sydney/5/1997 H3N2

21 ABE73101 A/Moscow/10/1999 H3N2

22 AFH00640 A/California/7/2004 H3N2

23 ACF54579 A/Wisconsin/67/2005 H3N2

24 ACI26321 A/Brisbane/10/2007 H3N2

25 ACS71643 A/Perth/16/2009 H3N2

26 AIE52659 A/Ohio/02/2012 H3N2

27 ATV83197 A/Brisbane/1/2012 H3N2

28 AIE52623 A/Victoria/361/2011 H3N2

29 ATV84691 A/South Australia/55/2014 H3N2

30 EPI1868574 A/Hong Kong/4801/2014 H3N2

31 AQY20927 A/Texas/50/2017 H3N2

32 AQW37036 A/Colorado/06/2017 H3N2

33 AVG71505 A/Kansas/14/2017 H3N2

4.6. Statistical Analysis of Results

The results were processed using the statistical package “Statistica” (version 6.0). The
geometric mean titers (GMT), arithmetic mean (m) and standard deviation (σ) were used
to describe the obtained data. For statistical analysis, antibody titers were expressed as
log2 reciprocals of the final dilution. Checking the normality of the distribution was carried
out using the Shapiro-Wilk test. If the assumptions about the normal distribution of the
dependent variable within each group and the homogeneity of the variance were not met,
Kruskal-Wallis rank analysis of variance was used. The comparison of dependent samples
was carried out using the Wilcoxon test. To compare multiple independent groups, we
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used a Kruskal-Wallis analysis of variance (ANOVA) with subsequent multiple pairwise
comparisons based on Kruskal-Wallis sums of ranks (Dunn test). For nominal data, Fisher’s
exact two-tailed test was used. The presence of a statistical relationship between the
variables was estimated using correlation analysis by the Spearman’s method. Criteria-
tested null hypotheses were rejected at p < 0.05.

5. Conclusions

In this work, we analyzed the molecular and antigenic changes in NA subtype N2 with
influenza infection and vaccination. The formation of NI antibodies in patients with acute
influenza infection was studied. Using ELLA, antibodies to N2 were detected in patients
of various ages. The lowest levels of antibodies to NA subtype N2 were noted in the
group of volunteers born between 1977 and 2000, which may indicate the need for priority
vaccination of this age group with the appropriate vaccine strain. In the group of patients
vaccinated with LAIV, there was a significant increase in the average titers of NI antibodies
to A/Hong Kong/4801/2014(H3N2). Thus, when evaluating the immunogenicity of an
influenza vaccine, the increase in anti-NA antibodies should be taken into account.
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