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Antimicrobial-resistant (AMR) commensal Escherichia coli is a major reservoir that
disseminates antimicrobial resistance to humans through the consumption of
contaminated foods, such as retail poultry products. This study aimed to control AMR
E. coli on retail chicken using a broad host range phage cocktail. Five phages (JEP1,
4, 6, 7, and 8) were isolated and used to construct a phage cocktail after testing
infectivity on 67 AMR E. coli strains isolated from retail chicken. Transmission electron
microscopic analysis revealed that the five phages belong to the Myoviridae family. The
phage genomes had various sizes ranging from 39 to 170 kb and did not possess
any genes associated with antimicrobial resistance and virulence. Interestingly, each
phage exhibited different levels of infection against AMR E. coli strains depending on
the bacterial phylogenetic group. A phage cocktail consisting of the five phages was
able to infect AMR E. coli in various phylogenetic groups and inhibited 91.0% (61/67) of
AMR E. coli strains used in this study. Furthermore, the phage cocktail was effective in
inhibiting E. coli on chicken at refrigeration temperatures. The treatment of artificially
contaminated raw chicken skin with the phage cocktail rapidly reduced the viable
counts of AMR E. coli by approximately 3 log units within 3 h, and the reduction was
maintained throughout the experiment without developing resistance to phage infection.
These results suggest that phages can be used as a biocontrol agent to inhibit AMR
commensal E. coli on raw chicken.

Keywords: bacteriophage, cocktail, antimicrobial-resistant Escherichia coli, raw chicken, phage cocktail

INTRODUCTION

Escherichia coli is the most common enteric bacteria inhabiting the gastrointestinal tract of
a wide range of animals and humans (Kaper et al., 2004). Due to the ubiquitousness in the
intestines, commensal E. coli is likely to be exposed to orally ingested antibiotics and develops
antimicrobial resistance in food-producing animals and may act as a donor and a recipient
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of antimicrobial resistance genes (Poirel et al., 2018).
Antimicrobial-resistant (AMR) commensal E. coli is frequently
isolated from food-producing animals and their meat products
(Szmolka and Nagy, 2013). Although commensal E. coli does
not cause AMR infection in humans, AMR commensal E. coli
is considered a major reservoir for disseminating antimicrobial
resistance to humans. For instance, extended-spectrum β-
lactamases (ESBL)-producing E. coli is highly prevalent in retail
poultry (Saliu et al., 2017). ESBL are β-lactamase enzymes
conferring resistance to all β-lactam drugs except carbapenem
and mainly located on conjugative plasmids, enhancing their
rapid spread in E. coli populations and pathogenic bacterial
species in the Enterobacterales order (Rupp and Fey, 2003).

AMR bacteria in food-producing animals can be transmitted
to foods during processing and subsequently to humans
through the consumption of contaminated foods. According
to the Centers for Disease Control and Prevention (CDC),
approximately 1 in 5 AMR infections in the United States are
associated with food and animals (CDC, 2013). Since meat and
poultry are the major food commodity implicated in 35% of
foodborne illnesses in the United States (Painter et al., 2013;
Dewey-Mattia et al., 2018), antimicrobial resistance originating
from food-producing animals poses a serious public health
concern. Particularly, AMR bacteria are frequently isolated from
retail raw chickens (do Monte et al., 2017; Schrauwen et al., 2017;
Wang et al., 2017). Our previous studies also showed that ESBL-
producing E. coli is highly prevalent in retail poultry (Park et al.,
2019). In addition, we isolated from retail chicken a pan drug-
resistant E. coli possessing a plasmid harboring mcr-1, which
confers resistance to colistin, one of the last resort antibiotics to
treat Gram-negative infections (Liu et al., 2016; Kim et al., 2019).

To mitigate the public health risk of antimicrobial resistance,
it is important to control the sources that are involved in the
spread of antimicrobial resistance. Especially, AMR commensal
E. coli in chickens is an important target to control because
it is highly prevalent and capable of transferring antimicrobial
resistance to pathogenic bacteria, such as pathogenic E. coli and
Salmonella (Nhung et al., 2017). Among non-antibiotic-based
intervention measures for the control of AMR commensal E. coli,
bacteriophages (phages) are considered an ideal antimicrobial
alternative because phages specifically infect only target bacteria
with completely different antimicrobial mechanisms from those
of existing antibiotics (Sulakvelidze et al., 2001; Skurnik and
Strauch, 2006; Endersen et al., 2014). Whereas antibiotics affect
bacteria other than pathogens, moreover, phages can selectively
infect only the target bacteria (Altamirano and Barr, 2019;
Nogueira et al., 2019). However, the strict host specificity
of phage infection is rather a disadvantage because the host
range is generally too narrow to inhibit bacteria with wide
genetic diversity (Bert et al., 2010; Talukdar et al., 2013; Park
et al., 2019). To overcome the limitations, phages are generally
used in a cocktail by mixing phages capable of infecting a
range of different hosts (Nilsson, 2014). In this study, we
isolated phages that preferentially infect the major phylogenetic
groups of E. coli isolates from retail chickens and developed
a phage cocktail that effectively inhibited AMR E. coli on
chicken carcasses.

MATERIALS AND METHODS

Phage Isolation and Stock Preparation
Sixty-seven AMR E. coli strains (E1–E67) were isolated from
retail raw chicken in our previous study (Park et al., 2019). The
AMR E. coli strains and E. coli MG1655 were routinely cultured
at 37◦C in Luria-Bertani (LB) media (Difco, United States).
Phages were isolated from food (retail chicken and duck
carcasses), sewage, and animal (chicken and pig) feces as
described previously (Kim and Ryu, 2011). Briefly, the samples
were homogenized by vortexing in sodium chloride-magnesium
sulfate (SM) buffer (100 mM NaCl, 8 mM MgSO4

.7H2O, and
50 mM Tris.HCl, pH 7.5). After centrifugation at 10,000 × g
for 5 min, the supernatant was filtered through a 0.22 µm pore
sized filter (Millipore, United States). Five milliliters of filtered
samples were mixed with the equal volume of 2 × LB broth
and 100 µl overnight culture of the AMR E. coli strains. After
incubation at 37◦C overnight, the culture was centrifuged and
filter-sterilized. To confirm the presence of phages, supernatants
were serially diluted and spotted on 0.4% LB soft top agar
containing an overnight culture of AMR E. coli strains. After
incubation at 37◦C overnight, a single plaque was picked and
eluted with 1 ml SM buffer. This step was repeated at least three
times for each plaque.

To propagate phages, the incubation time was determined
based on the lysis activity of each phage. The purified lysate was
added to the culture of exponentially grown propagation host
strains (JEP1: E. coli MG1655, JEP4: E. coli E15, JEP6: E. coli
E55), and the mixture was incubated at 37◦C for 4 h (JEP1, 4, and
6) in LB broth. Also, the purified lysates of JEP7 and JEP8 were
incubated with the overnight culture of propagation host strains
(JEP7: E. coli E61, JEP8: E. coli E63) overnight in LB broth. Phage
propagation was performed with three different culture volumes
(4, 40, and 250 ml LB broth), and then the culture was centrifuged
and filtered. Phage particles were precipitated by mixing with
polyethylene glycol (PEG) 6000 (Junsei Chemical Co. Ltd., Japan)
and 1 M NaCl. Finally, CsCl density gradient ultracentrifugation
(Himac CP 100b, Hitachi, Japan) with CsCl step densities (1.3,
1.45, 1.5, and 1.7 g/ml) at 78,500 × g was conducted at 4◦C for 2 h.
After centrifugation, a blue band of viral particles was collected
and dialyzed twice for 1 h in 1 L of SM buffer. The concentrated
phage stocks were stored at 4◦C until used.

Determination of Phage Host Range
A total of 67 strains of AMR E. coli were used to assess the
host ranges of eight phage infections. Each strain was incubated
at 37◦C overnight with shaking (200 rpm), and then 100 µl of
each bacterial culture was added to 5 ml of 0.4% LB soft agar
and mixed. The mixture was overlaid on a 1.5% LB agar plate
and dried at room temperature for 20 min. Subsequently, 10-
fold serially diluted by SM buffer of each phage lysates were
spotted onto a prepared bacterial lawn and incubated at 37◦C
for 12 h. After incubation, the formation of single plaques was
recorded to determine the phage sensitivity of each strain. The
efficiency of phage infection of each strain was compared to that
of the host strain.
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Transmission Electron Microscopy
Analysis
The CsCl-purified phages were morphologically characterized
with transmission electron microscopy (TEM) analysis. Briefly,
10 µl of purified phage (ca. 1 × 1010 PFU/ml) was placed on
carbon-coated formvar/copper grids (200 mesh) and negatively
stained with 2% aqueous uranyl acetate (pH 4.0) for 10 s.
The phages were observed with energy-filtering TEM (LIBRA
120, Carl Zeiss, Germany) at 120-kV accelerating voltage
at the National Instrumentation Center for Environmental
Management (Seoul, South Korea). The phages were identified
and classified using the International Committee on Taxonomy
of Viruses (ICTV) classification (King et al., 2011).

DNA Purification and Whole-Genome
Sequencing of Phages
To extract genomic DNA from phages, bacterial nucleic acids
were removed by DNase I and RNase A (1 µg/ml each) at
room temperature for 30 min. The virions were then lysed
by incubating with a mixture [final concentration of 50 µg/ml
proteinase K, 20 mM ethylenediaminetetraacetic acid (EDTA),
0.5% sodium dodecyl sulfate (SDS)] at 56◦C for 1 h. After
lysis, DNA was purified by phenol-chloroform extraction and
precipitated by ethanol. The library was constructed with the
Illumina TruSeq DNA library prep kit using purified genomic
phage DNA. It was sequenced using the Illumina Miseq
platform (300 bp paired ended) and assembled with GS de
novo assembler software (Roche, Switzerland) at Sanigen Inc.,
South Korea. Prediction of open reading frames (ORFs) was
performed using the combination of Glimmer3 and GeneMarkS2
software. The complete genome sequences of JEP1, 4, 6, 7, and
8 were deposited in GenBank with the accession numbers of
MT740314, MT740315, MT764206, MT764207, and MT764208,
respectively. The presence of genes associated with antimicrobial
resistance and virulence in the phage genomes was examined with
ResFinder 4.11 and VirulenceFider 2.02, respectively.

Phylogenetic Analysis of Phages
Phylogenetic analysis of the five phages was performed in
comparison with sixty E. coli phages in the Myoviridae
family, which were reported in a previous study (Korf et al.,
2019) using VICTOR3 that performs based on genome-BLAST
Distance phylogeny (GBDP) method. The phage sequences were
obtained through the NCBI nucleotide databases4. All pairwise
comparisons of the amino acid sequences were conducted using
the GBDP method (Meier-Kolthoff et al., 2013) under the
settings recommended for prokaryotic viruses (Meier-Kolthoff
and Göker, 2017). The resulting intergenomic distances were
used to infer a balanced minimum evolution tree with branch
support via FASTME including SPR postprocessing for formulas
D4 (Lefort et al., 2015). The branch support was inferred from

1https://cge.cbs.dtu.dk/services/ResFinder/
2https://cge.cbs.dtu.dk/services/VirulenceFinder/
3https://victor.dsmz.de
4http://www.ncbi.nlm.nih.gov/nuccore

100 pseudo-bootstrap replicates each. Trees were rooted at the
midpoint (Farris, 1972) and visualized with FigTree (Rambaut,
2006). The taxon boundaries at the species, genus, and family
levels were estimated with the OPTSIL program (Göker et al.,
2009) using the recommended clustering thresholds (Meier-
Kolthoff and Göker, 2017) and an F value (fraction of links
required for cluster fusion) of 0.5 (Meier-Kolthoff et al., 2014).

Phage Inhibition Assays
The infection efficiency of the phage cocktail was evaluated with
mixed cultures of E. coli strains which were randomly selected
from the major phylogenetic groups (A, B1, B2, and D), including
mixed culture 1 (E20, E41, E55, and E59), mixed culture 2 (E3,
E43, E55, and E59), mixed culture 3 (E17, E41, E52, and E59),
and mixed culture 4 (E20, E45, E52, and E59). The each strain was
incubated at 37◦C with shaking (200 rpm) overnight. The mixed
culture of the E. coli strains was prepared by transferring 1% (v/v)
of each strain to fresh LB broth. Then, a single phage or the phage
cocktail was added to the bacterial suspension at a multiplicity
of infection (MOI) of 1. The optical density at 600 nm (OD600)
was measured with the SpectraMax i3 multimode microplate
reader (Molecular Devices, Sunnyvale, CA, United States) for
12 h. The infection assay was also performed at 4 and 25◦C.
After cultivation to an OD600 of 0.5, the mixed culture of AMR
E. coli strains (E20, E41, E55, and E59) was diluted in LB broth
and added to 4 ml of LB broth at 105 CFU/ml. The infection
was initiated by adding the 10 µl phage cocktail (approximately
108 PFU/ml; MOI 103), and the SM buffer was used as a control.
The cultures were incubated with shaking (200 rpm) at food
storage and handling temperatures (4 and 25◦C), and samples
were taken at 3, 6, and 24 h postinfection for bacterial counting.
Viable counts were determined by 10-fold serial dilution in PBS
and plating on LB agar plates.

Inhibition of AMR E. coli on Raw Chicken
Skin by Phage Cocktail
Raw chicken skin samples were purchased from retail stores, and
the skin was cut into a 2 cm × 2 cm square with a sterilized razor.
For decontamination, the chicken skin samples were immersed in
70% ethanol overnight and UV-treated on both sides for 30 min
in a biosafety cabinet. Mixed culture 1 (E20, E41, E55, and E59),
which was used in the phage inhibition assay, was prepared as
mentioned above and diluted to 8 × 106 CFU/ml in PBS. Then
50 µl of the mixed culture of the E. coli strains was spotted onto
a 2 cm × 2 cm chicken skin to achieve the final inoculum level
of approximately 5 log CFU/cm2 on a chicken skin sample. The
same volume of PBS was added as a negative control. Samples
were dried in a biosafety cabinet for 30 min. Then 100 µl of the
phage cocktail (MOI = 103) or SM buffer (control) were spotted
onto chicken skin samples and incubated at 4 and 25◦C. At 3,
6, and 12 h of incubation, each sample was mixed with 10 ml
0.1% buffered peptone water (BPW) and vortexed for 2 min in
a 50 ml tube. After removal of the chicken skin, the mixture was
centrifuged at 10,000 × g for 5 min, and pellets were resuspended
with 10 ml of BPW. Viable counts were determined by 10-fold
serial dilution in PBS and plating on LB agar plates.
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RESULTS

Determination of the Host Range of
Phages Infecting AMR E. coli Isolates
From Raw Chicken
A total of eight E. coli phages were isolated from meat, sewage,
and animal fecal samples (Table 1 and Supplementary Table 1)
and used in phage infection assays with 67 AMR E. coli isolates
from retail chicken (Figure 1A and Supplementary Tables 2, 3).
Among the eight E. coli phages, five phages (JEP1, 4, 6, 7, and 8)
were selected for the construction of a cocktail mainly because of
their host range (Figure 1A and Table 2). Importantly, the design
to construct a phage cocktail was mainly based on the differential
infection frequencies depending on the phylogenetic group of
E. coli (Figure 1B). For instance, JEP4 phage infected 73.7%
(28/38) of AMR E. coli strains in phylogroup A, whereas JEP1
and JEP7 phages effectively infected the strains in phylogroups
B1 [69.3% (9/13) and 76.9% (10/13), respectively] (Figure 1 and
Table 2). The three phages (JEP1, JEP4, and JEP7) showed similar
inhibition frequencies against E. coli strains in phylogenetic
group D (Figure 1 and Table 2). A cocktail was constructed
to target various phylogenetic groups of E. coli based on the
infection pattern dependent on the phylogenetic group. E. coli
isolates in phylogenetic groups A, B1, B2, and D could be
inhibited by JEP4, JEP1 & 7, JEP6, and JEP1, 4 & 7, respectively
(Figure 1B and Table 2). In addition, JEP8 was included in
the cocktail to inhibit E. coli isolates in the minor phylogenetic
groups (i.e., E and F) (Figure 1B and Table 2). The cocktail
consisting of the five phages infected 91.0% (61/67) of AMR
E. coli strains isolated from retail chicken (Figure 1 and Table 2).

Characterization of the Five E. coli
Phages
The morphology and genome sequences of JEP1, 4, 6, 7, and 8
phages were analyzed. Based on the TEM analysis, the five phages
exhibited the typical morphological features of the Myoviridae
family, such as a big head and an inflexible/contractile tail
(Figure 2A and Table 1). The phages had various genome
sizes ranging from 39 kb (JEP4) to 170 kb (JEP6) (Table 1),
and genes associated with antimicrobial resistance and virulence
were not found in the phage genomes (data not shown). The
phylogenetic association of the five phages was analyzed with
previously reported E. coli phages in the Myoviridae family

(Korf et al., 2019). JEP1 & JEP4 and JEP6 & JEP8 belonged to
the same genus clusters, and JEP7 belonged to a different genus
cluster (Figure 2B). At the species level, the five phages were
clustered into different groups, indicating that the five phages are
phylogenetically distinct from each other.

Inhibition of AMR E. coli With the Phage
Cocktail
Mixed cultures of AMR E. coli strains were treated with the
phage cocktail to evaluate infection efficiency because retail raw
chicken is normally contaminated by multiple strains, not a
single. E. coli strains were randomly selected from the major
phylogenetic groups A, B1, B2, and D, combined in a single
culture, and treated with each single phage or the phage cocktail.
The treatment of mixed cultures with single phages did not,
or only marginally, reduce the growth of mixed cultures of
E. coli. However, the phage cocktail substantially inhibited the
growth of the mixed cultures (Figure 3). In mixed cultures 2
(Figures 3B) and 4 (Figure 3D), for instance, single phages did
not cause any growth reduction compared to the non-treated
negative control, whereas the phage cocktail markedly reduced
the growth of E. coli strains in mixed cultures. These results
indicated the phage cocktail was effective at simultaneously
inhibiting multiple strains of E. coli belonging to different
phylogenetic groups.

Because raw chicken products are preserved normally at
refrigeration temperatures and sometimes exposed to room
temperatures during handling, we evaluated the infection
frequency at 4 and 25◦C. At 25◦C, the treatment with the phage
cocktail significantly reduced the level of AMR E. coli strains
at the beginning of infection (approximately 0.35 log CFU/ml
after 6 h; P = 0.0378), but further incubation did not make
a difference in the viable counts of E. coli compared to the
non-treated control (Figure 4A). However, the level of AMR
E. coli was significantly reduced at 4◦C within a few hours,
and the reduction was maintained during the entire course
of the experiment (Figure 4B). We examined the inhibition
efficiency of the phage cocktail on raw chicken skin. To mimic the
situation of food contamination, raw chicken skin was artificially
contaminated with the mixed culture of AMR E. coli strains.
Compared to LB media (Figures 4A,B), interestingly, the phage
cocktail reduced AMR E. coli more significantly on chicken
skin at both 4 and 25◦C (Figures 4C,D). When raw chicken

TABLE 1 | Morphological and genomic features of the five phages used in the cocktail.

Phage Isolation source Morphological features (nm; n = 3) Genomic features

Head Tail Size (bp) GC (%) ORFa tRNA Accession No.

JEP1 Retail chicken 79.6 ± 1.9 101.0 ± 3.8 143,610 43.54 223 5 MT740314

JEP4 Chicken feces 106.3 ± 5.5 102.9 ± 2.6 39,195 47.05 61 0 MT740315

JEP6 Pig feces 109.1 ± 1.7 110.3 ± 2.3 170,340 35.31 274 7 MT764206

JEP7 Retail duck 103.9 ± 5.2 95.2 ± 2.4 52,936 45.94 71 0 MT764207

JEP8 Retail chicken 96.1 ± 2.5 95.9 ± 3.5 165,295 40.47 272 0 MT764208

aOpen reading frame.
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FIGURE 1 | Host range of the five phages. (A) The phage infection of 67 strains of AMR E. coli isolated from retail chicken. The antimicrobial resistance patterns of
the E. coli strains and the infectivity of five phages are indicated. CIP, ciprofloxacin; KAN, kanamycin; GEN, gentamicin; CHL, chloramphenicol; STR, streptomycin;
TET, tetracycline; CTX, cefotaxime; AMP, ampicillin; and phylogroup U, Unknown. (B) Association of the phylogenetic groups of AMR E. coli with the infection
frequency of the five phages. The experiment was repeated three times. Statistical analysis was performed using the chi-square test with GraphPad Prism
(*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).

TABLE 2 | Infection frequencies of the five phages used in the cocktail.

Phage Phylogenetic group of ESBL-producing E. coli Total (n = 67)

A (n = 38) B1 (n = 13) B2 (n = 4) D (n = 4) E (n = 6) F (n = 1) Ua (n = 1)

JEP1 3 (7.9%) 9 (69.3%) 0 (0.0%) 3 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 15 (22.4%)

JEP4 28 (73.7%) 1(7.7%) 0 (0.0%) 3 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 32 (47.8%)

JEP6 11 (28.9%) 3 (23.1%) 3 (75.0%) 2 (50.0%) 3 (50.0%) 0 (0.0%) 1 (100.0%) 23 (34.3%)

JEP7 8 (21.1%) 10 (76.9%) 0 (0.0%) 3 (75.0%) 2 (33.3%) 0 (0.0%) 0 (0.0%) 23 (34.3%)

JEP8 7 (18.4%) 2 (15.4%) 0 (0.0%) 0 (0.0%) 3 (50.0%) 1 (100.0%) 0 (0.0%) 13 (19.4%)

Total 34 (89.5%) 12 (92.3%) 3 (75.0%) 4 (100.0%) 6 (100.0%) 1 (100.0%) 1 (100.0%) 61 (91.0%)

aunknown.

skin samples were treated with the phage cocktail at an MOI
of 103 at 25◦C, the mixed culture of AMR E. coli strains was
rapidly reduced by 2.19 log CFU/cm2 and 2.58 log CFU/cm2

after 3 h and 6 h, respectively (Figure 4C). After that, the
mixed culture of AMR E. coli strains continued to grow on
chicken skin (Figure 4C). At 4◦C, however, the treatment of
raw chicken skin with the phage cocktail significantly reduced
the level of AMR E. coli strains within 3 h and continued to
reduce the viable counts of AMR E. coli by 3.17 CFU/cm2 and
3.28 log CFU/cm2 after 6 and 24 h, respectively (Figure 4D).
The results showed that the phage cocktail is highly effective

in inhibiting AMR E. coli on chicken carcasses especially at
refrigeration temperatures.

DISCUSSION

Since bacteria develop phage resistance rapidly (Labrie et al.,
2010), phages are normally treated in a cocktail using those
that recognize different host receptors (Tanji et al., 2004; Gu
et al., 2012; Yen et al., 2017). This is because, if bacteria develop
resistance to one phage, another phage in the cocktail, which
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FIGURE 2 | The morphological and genomic features of phages. (A) Transmission electron microscopy (TEM) images of the five phages. (B) Phylogenetic analysis
showing the relationship between the five phages and 60 Myoviridae family phages that were reported in a previous study (Korf et al., 2019).
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FIGURE 3 | Phage inhibition of mixed cultures of AMR E. coli strains in LB broth at 37◦C. The four mixed cultures used in the assay included: (A) Mixed culture 1
consisting of AMR E. coli strains E20, E41, E55, and E59, (B) Mixed culture 2 consisitng of E3, E43, E55, and E59, (C) Mixed culture 3 consisiting of E17, E41, E52,
and E59, and (D) Mixed culture 4 consisting of E20, E45, E52, and E59. The reduction in the OD600 of the mixed culture of AMR E. coli strains was measured after
treatment with single phages or the phage cocktail. The data present the means and the standard errors of the mean (SEM) of the results of three experiments.
Statistical analysis was performed using a Student’s t-test compared to the control in the same sampling (12 h) with GraphPad Prism (**P < 0.01; ***P < 0.001).

recognizes a different receptor, still can infect the bacteria.
However, the identification of the host receptor of a phage
requires a series of experiments involving mutagenesis, which is
often labor-intensive and time-consuming. Without identifying
the host receptors of E. coli phages, in this study, we constructed
a phage cocktail that can effectively infect E. coli isolates
from retail chicken using phages that preferentially infect the
major phylogenetic groups of E. coli. The Clermont phylotyping
classifies E. coli into four major (A, B1, B2, and D) and
two minor groups (E and F) (Clermont et al., 2013). The
phylogenetic group of E. coli is related to certain pathotypes
and the host origin. For instance, phylogroups A and B2
normally predominate in human strains, while E. coli isolates
from chicken mostly belong to phylogroups A and B1 (Unno
et al., 2009; Kluytmans et al., 2012; Xu et al., 2014; Coura et al.,
2015). Consistently, in our previous study, AMR E. coli strains
isolated from retail chicken dominantly belonged to phylogroups
A and B1 (Park et al., 2019). In the cocktail, we included
three phages (JEP1, JEP4, and JEP7) that infected the major
phylogenetic groups of E. coli isolates from chicken (i.e., A and
B1) (Figure 1B and Table 2), and the phage cocktail infected
91.0% of the tested AMR E. coli strains (Figure 1A and Table 2).
The same approach can be used to construct phage cocktails
to target other pathogenic bacteria demonstrating unique
phylogenetic features. For example, extraintestinal pathogenic
E. coli (ExPEC) predominates phylogroups B2 and D (Picard
et al., 1999; Cortés et al., 2010). Based on this, cocktails can

be constructed using E. coli phages that preferentially infect
phylogroups B2 and D.

The association of phage infectivity with the phylogenetic
group of E. coli may be related to the prevalence of phage
receptors. Phages initiate infection by binding to host receptors
on the bacterial surface. Phage receptors in E. coli, which
have been reported thus far, include the ferrichrome outer
membrane transporter FhuA (Raya et al., 2011), the major
outer membrane protein OmpC (Morita et al., 2002), surface
glycoconjugates (Kudva et al., 1999), and the O antigen of
lipopolysaccharide (LPS) (Perry et al., 2009). Bacteria often
develop phage resistance by hindering this critical step of
infection using various mechanisms, such as the alteration of
phage receptors through spontaneous mutations (Uhl and Miller,
1996), the removal of receptor genes by an insertion sequence
(Kim and Ryu, 2011), and the interruption of phage access to host
receptors (Kim and Ryu, 2012). The prevalence of host receptors
can be related to the phylogenetic group of E. coli because
the distribution of genes encoding outer membrane proteins,
fimbriae, or capsular proteins is different depending on the
phylogenetic group (Johnson et al., 2002). Also, the phylogenetic
group of E. coli is related to the type of the core oligosaccharide
of LPS, a common host receptor for phage infection (Amor et al.,
2000; Dissanayake et al., 2008). At this stage, further studies are
required to examine this possibility.

Phages have been used for the control of foodborne pathogenic
bacteria on chicken carcasses. A previous study demonstrated
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FIGURE 4 | Phage inhibition of the viability of a mixed culture of AMR E. coli isolates (E20, E41, E55, and E59) in LB broth (A,B) and on raw chicken skin (C,D). The
viable counts of a mixed culture of AMR E. coli strains in LB broth without (control) and with the phage cocktail at 25◦C (A) and 4◦C (B). The levels of AMR E. coli
isolates on chicken skin without (control) and with the phage cocktail at 25◦C (C) and 4◦C (D). The data show the means and the standard errors of the mean (SEM)
of the results of three experiments. Statistical analysis was performed using a Student’s t-test compared to the non-treated control with GraphPad Prism (*P
< 0.05; **P < 0.01; ***P < 0.001).

that the treatment with a phage cocktail significantly reduced
the number of Listeria monocytogenes on chicken carcasses
(Cufaoglu and Ayaz, 2019). Atterbury et al. reported that
Campylobacter jejuni phages effectively infected C. jejuni on
chicken skin at 4◦C (Atterbury et al., 2003). The results in
this study showed that phages effectively inhibited E. coli on
chicken skin particularly at 4◦C (Figures 4C, and D). For the
control of bacterial contamination of food, temperatures are an
important factor affecting the efficacy of phage infection (Seeley
and Primrose, 1980; Tokman et al., 2016). The increased efficacy
of phage infection at refrigeration temperatures is probably
because low temperatures may reduce the emergence of phage-
resistant bacteria due to the reduced growth rate of E. coli at 4◦C
compared to 25◦C and the limited function of the restriction-
modification systems involved in the degradation of phage DNA
injected into the host (Dodds et al., 1987; Kim et al., 2012).
Additionally, the temperature is a critical environmental factor
that determines the viability of phages. Since phages stored at
4◦C are more stable than those stored at ≥10◦C (Olson et al.,
2004), differential phage sensitivity at different temperatures may
also affect phage infectivity at 4◦C even though the phages were
tested at refrigeration temperatures relatively for a short time
(24 h) in this study. Regardless of the underlying molecular
mechanisms, the increased lytic activity of the phage cocktail
on foods (i.e., chicken) at low temperatures may enable the

phages to inhibit AMR E. coli on raw chicken effectively because
raw chicken products are distributed in the cold chain. Given
this, the broad host range phage cocktail in this study can
be used to control AMR commensal E. coli on retail chicken
products. To achieve practical application of phages to food,
additionally, further studies are needed to develop methods
to make phages maintain their infectivity long enough in the
food supply chain.
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