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Abstract: The green and versatile character of deep eutectic solvents (DES) has turned them into
significant tools in the development of green and sustainable technologies. For this purpose, their
use in polymeric applications has been growing and expanding to new areas of development. The
present review aims to summarize the progress in the field of DES applied to polymer science and
engineering. It comprises fundamentals studies involving DES and polymers, recent applications
of DES in polymer synthesis, extraction and modification, and the early developments on the
formulation of DES–polymer products. The combination of DES and polymers is highly promising in
the development of new and ‘greener’ materials. Still, there is plenty of room for future research in
this field.
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1. Introduction

Deep eutectic solvents were first described by Abbot in 2002 [1], referring to the liquid formed just
by mixing quaternary ammonium salts with metal salts, at ambient temperature. The term ‘eutectic’
was first introduced at the end of the 19th century (1884). By definition, it refers to the minimum
freezing/melting temperature achieved by a mixture of two or more compounds at a particular molar
ratio [2]. However, the deep eutectic solvents (DES) concept is often not restricted to a unique ratio
of compounds, being commonly defined as a mixture of two or more compounds with a lower
freezing/melting point lower than the pure components. This concept opens a larger spectrum of DES
options with tunable properties [3]. The mechanism of DES formation is not yet well understood but
it most probably occurs through hydrogen bonding, electrostatic interactions and/or Van der Waals
interactions [4–8]. Since there is no consensual definition for DES in the scientific community, all the
papers reporting the use of DES, under their own definition, were considered in this review.

The exponential concern with environmental issues highly motivated the development of
green technologies. DES have emerged as green solvents due to their low toxicity and volatility,
biodegradability, biocompatibility, easy production, high yields and purity, and the fact that they are
widely available precursors [9,10]. This type of solvent can fulfill the principles of green chemistry [11,12]
while being highly tunable for several distinct areas. Good examples of DES that “fully represent green
chemistry principles” are natural DES (NADES), a subclass of DES formed by compounds from natural
origin [13–15].

Throughout the last decade, an exponential interest has been given to the research on DES,
a rate expected to maintain if not to increase (Figure 1a). Up until now, deep eutectic solvents
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have already been reported for several applications, primarily for electrochemistry, synthesis and
extraction [14,16,17].
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Figure 1. Number of published articles per year on (a) deep eutectic solvents and (b) deep eutectic
solvents and polymers. Data from Web of Knowledge [18].

Within all the reported studies, ~8% correspond to the use of DES in polymeric applications [18].
The investigation on this field largely increased in the recent years (Figure 1b), including solubilization,
extraction, synthesis, or modification of polymers. The most recent studies report DES incorporation
in the formulation of polymeric products. The current relative incidence of the different areas herein
explored is represented in Figure 2.
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Figure 2. Graphical representation of the relative incidence of the subareas explored within deep
eutectic solvents (DES)–polymer field [18].

Still, it seems that the DES versatility regarding polymers seems to be broadening. This review
summarizes the explored applications of DES and polymers, aiming to consolidate current achievements
and to promote further developments.

2. Fundamental Studies Involving DES and Polymers

The investigation of deep eutectic solvents for several applications has been growing at a fast
pace. The fundamental knowledge of their properties for those applications is hence crucial for their
optimization and development. Although DES are frequently fully characterized as individual systems,
the intra- and inter-interactions in the application context are essential. The fundamental studies
involving DES and polymers are scarce, as expected of novel applications, hence we present here
studies reported within this topic in the last 3 years.

In 2016, Sapir et al. studied the molecular solvation of poly(vinyl pyrrolidone) (PVP) polymer
in choline chloride:urea 1:2 (molar ratio) DES, in comparison to water, through conformational and
thermodynamic analysis. Despite the similarity of DES and water as solvents for PVP, the authors
reported different intermolecular interactions between PVP-DES and PVP–water. According to
Flory−Huggins Solution Theory, the PVP individual interactions are more similar to the DES’ than
water interactions, favoring PVP-DES interaction. Their results supported this DES as a “close-to-ideal”
solvent for PVP [19]. Similar studies were carried out for poly(ethylene oxide) (PEO) polymer
in 1:2 (molar ratio) DES of ethylammonium bromide (EABr):glycerol, EABr:ethylene glycol, or
butylammonium bromide (BABr):glycerol. The results characterize the tested DES as moderately good
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solvents for PEO with higher quality for ethylene glycol than glycerol-based DES [20]. Moreover,
they postulate that the higher density of hydrogen bonds per unit volume and the availability of such
interactions improves the DES solvation capacity. Fundamental data on the influence of the DES
hydrogen networking in its 3D structure can be acquired to predict its solvation capacity and used as a
preselection parameter for certain applications. An example is the work of Hammond et al. on neutron
diffraction and atomistic modelling to acquire the probable liquid structure of choline chloride–urea
DES [21]. Considering DES–polymer systems, this type of preliminary information for several DES
systems and/or different component ratios could be used to select or adjust suitable DES for polymer
solvation. However, the DES–polymer systems are more complex than DES in its isolated form. It is
then necessary to study the combined system to have more accurate information on their interaction.
In this context, Stefanovic and his coworkers performed a systematic quantum chemical investigation
on the PEO solvation in DES of choline chloride (ChCl) mixed with urea, ethylene glycol, or glycerol.
The solvation conformation of PEO was correlated with the type of hydrogen bond donor, the density
of hydrogen bonds in DES and the influence of PEO in the hydrogen network. ChCl:urea had the
strongest and denser hydrogen network, whereas ChCl:glycerol presented the weakest and less dense.
Interestingly, the PEO ChCl:urea disrupted the weaker hydrogen bonds, strengthening the robust ones,
which caused a highly structured solvation environment, ‘imprisoning’ the PEO in a static and coiled
conformation. On the contrary, in the least structured environment of ChCl:glycerol, the polymer
presented a free conformational structure [22].

A different study, conducted by Hillman et al. observed the intrinsic composition of DES and the
extrinsic coupled conditions needed for electrochemical deposition of polyaniline (PANI) in aqueous
media and DES of ethylene glycol:choline chloride or oxalic acid:choline chloride. Furthermore, the
influence of DES as electrolytes in the electroactivity of the produced PANI-based films was studied
and evaluated in terms of film longevity and charge storage stability after successive redox cycles. The
oxalic acid-based DES electrolyte was better for PANI electrodeposition, with no further additives,
whereas ethylene glycol-based DES required the addition of sulfuric acid as a protic source [23].

Thermodynamic investigation of phase equilibrium involving DES:polymer:water systems was
carried out by Baghlani and Sadeghi. DES of choline chloride with urea, ethylene glycol or glycerol 1:2
molar ratio and the water-soluble polymers polypropylene glycol400 (PPG400), polyethylene glycol400
(PEG400), and polyethylene glycol10000 (PEG10000) were used to prepare different DES/polymer/water
ternary systems. Their water activity was determined through the isopiestic method. The authors
observed that the DES:PPG:H2O mixture formed two immiscible aqueous phases, called aqueous
biphasic systems (ABS), due to the incompatibility of both polymer and DES to form hydration
complexes. Specifically, the choline chloride and glycerol caused soluting-out of the polymer. This
mechanism was depended on the competition between hydrogen bonding and hydration. Similar
studies on ABS have been reported by Freire et al. for ionic liquids, also contemplating polymer-based
ABS [24].

3. Polymeric Synthesis Using DES

The first article identified reporting polymerization using an eutectic mixture was published
in 1985 [25], 100 years after Guthrie published the eutectic definition [2]. In that study, Genies and
Tsintavis compared the preparation of the polyaniline polymer by electrochemical polymerization in a
eutectic mixture of NH4F-HF to other media (aqueous and organic). By that time, they could already
identify the eutectic solvent as an advantage over the use of other solvents. The polyaniline polymers
produced in the eutectic mixture presented better nucleation and polymerization process, with almost
100% yield, as opposed to other media. Additionally, it was also better in terms of adherence and
electrochemical properties for all the preparation conditions studied. Over the years, other studies
were conducted on the synthesis of natural and synthetic polymers evolving eutectic mixtures [26–28],
but only in 2011 the term ‘deep eutectic solvent’ was used by Mota-Morales et al. for polymerization
studies [29].
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3.1. DES as Functional Monomers

In the study of Mota-Morales et al., the authors used mixtures of choline chloride with acrylic
acid or methacrylic acid monomers to form DES, providing both media and functional monomer
for frontal polymerization. From their knowledge in similar works using ionic liquids, they could
tailor the ratio of DES components to enhance polymer conversion through a suitable content of
double bonds and by stabilizing the reaction temperature and velocity through the high viscosities
of the prepared DES. Moreover, once the monomer units contained in the DES were polymerized,
it was possible to reutilize the choline chloride component. The mentioned process allowed the
utilization of the DES as a medium and functional monomer for polymerization while demonstrating
an enhanced performance in comparison to conventional organic solvents and ionic liquids [29]. DES
enhanced the polymerization process at four different levels: (i) through the reduction of components
for reaction, (ii) by acting as an alternative solution to organic solvents with improved performance,
(iii) minimization of the waste produced, and (iv) recycling of the remnant compounds. These features
highly enrich the “green” value of DES.

Additional studies about the use of DES as a functional monomer for polymerization were published.
The groups of Xu, Wang J. and Wang R. reported the polymerization of choline chloride:itaconic acid
(ChCl:IA), using IA as a monomer unit, for the preparation of solid extraction matrices [30,31] or
stationary phase for chromatographic separation [32]. Xu et al. noticed unique benefits of DES polymer
incorporation in the extraction system in terms of its stability, surface area, and moldable structure [30].
In turn, Wang J. et al., mentioned the potential of different monomer compositions in DES to produce
tuned-sorbents for extraction [31]. In another work, Isik et al. produced poly(ionic liquids) for CO2

sorption by photopolymerization of DES monomer units formed by 2-cholinium methacrylate bromide
monomer and natural carboxylic acids, amidoximes, or amine [33]. A more recent paper described
a novel DES of 3-acrylamidopropyl trimethylammonium chloride (APTMACl):d-sorbitol 2:1 (molar
ratio) as a monomer for polymerization on the surface of amino magnetic metal–organic framework
(Fe3O4-NH2@HKUST-1-MOF). This DES was designed for the functionalization of Fe3O4-NH2@HKUST-1,
not only through polymerization but also by coordination of DES-nitrogen and HKUST-1. The
functionalization with DES incorporated hydrogen and ionic interactions on the surface of the MOF
sorbent, which improved its function in the extraction of cationic dyes [34].

3.2. Electrochemical Polymerization

Electropolymerization was also mentioned in Mota-Morales and coworkers’ review. It consists
in the polymerization of monomers through electrochemical induction that leads to the formation of
conductive polymers, normally in the form of electrodeposited films [35]. An interesting feature of
using DES as media for electropolymerization is its influence in the polymer formation and its final
characteristics [36,37]. This type of polymerization is one of the first applications of DES, reported in
the 1980s, as stated by Fernandes et al. in their article about polyaniline (PANI) electrosynthesis in DES.
PANI electropolymerization rates in DES of choline chloride with ethylene glycol, urea or glycerol
showed to be determined by the viscosity and conductivity of those solvents [38]. Using the same
DES systems, Prathish et al. published the electropolymerization of poly(3,4-ethylenedioxythiophene)
(PEDOT), with better results of stability and sensitivity for the PEDOT prepared from choline
chloride:urea DES. The shape, size, surface, electrocatalytic, and sensing properties of the PEDOT films
were highly influenced by the DES used [37,39]. The most recent study reported on this topic, from
Zou and Huang, also focused the electrodeposition of PANI from DES. The novelty of their work is the
electropolymerization without exogenous acid as a proton source, by using newly synthesized DES, of
proton-functionalized anilinium hydrochloride ([HANI]Cl) or anilinium nitrate ([HANI]NO3) with
glycol. The authors tailored the ratio of anilinium salt:glycol in terms of conductivity and obtained
a final DES with high conductivity and low viscosity, highly suitable for electropolymerization [40].
Table 1 resumes the polymers synthesized through electropolymerization, the DES used for that
purpose, their function, and the potential applications of the produced products.
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Table 1. Summary of DES and their function in electropolymerization, polymers produced, and their potential applications.

DES (molar ratio) Function Polymer synthesized Application Ref.

ChCl:ethylene glycol 1:2
ChCl:urea 1:2

ChCl:glycerol 1:2

Solvent
Electro-modifier Polyaniline Electrochromic devices,

supercapacitors [38]

ChCl:ethylene glycol 1:2
ChCl:urea 1:2

ChCl:glycerol 1:2

Solvent
Influence in PEDOT properties

Poly(3,4-ethylenedioxythiophene)
(PEDOT) Sensing of biomarkers [37,39]

ChCl:ethylene glycol 1:2 Solvent Poly(methylene blue) Electrochemical sensors
biomarkers [41,42]

Proton-functionalized anilinium
hydrochloride ([HANI]Cl) or anilinium
nitrate ([HANI]NO3) with glycol 1:10

Solvent Polyaniline Capacitors [40]
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3.3. Polycondensation

Polycondensation occurs in polymer synthesis by condensation reactions through molecular
combination with liberation of small molecules (byproduct), normally forming polymeric matrices [43].
This type of polymer synthesis is commonly used for the production of carbon-based materials. The
review of Carriazo et al. from 2012, refer some polycondensation studies with DES [44], however
the investigation on this topic is still scarce. In the last 5 years, three representative studies of
polycondensation in DES were published [45–47]. Lopéz-Salas et al. reported resorcinol:urea
(3.5:1 molar) and resorcinol:urea:choline chloride (3.5:0.5:1, 3.5:1:1, and 3.5:2:1 molar, respectively)
DES for tailoring the structure of hierarchical porous carbons. In their study, the urea content in DES
allowed controlling the pore dimensions of the produced matrices [47]. Patiño et al. used DES of
resorcinol:3-hydroxypyridine (1:2:1 molar) or resorcinol:tetraethylammonium bromide (1:3:1.75 molar)
as polycondensation solvent to produce hierarchical nitrogen-doped carbon molecular sieves [45].
Chen et al. published the use of 1:2 (molar ratio) choline chloride:urea DES as a solvent for the two-stage
polymerization from phenol and formaldehyde, to produce porous carbon xerogels [46]. Interestingly,
in both Chen and Patiño works, DES act as a homogenization medium, structure-directing agent and
as a nitrogen source for carbons [45,46].

3.4. Molecular Imprinted Polymers with DES

Molecular imprinted polymers (MIPs) are molds made by polymerization around template
molecules, for its specific recognition. By molding specific structures and size in the polymeric
matrix, the MIPs are able to specifically recognize and hold the molded template by complementary
match [48,49]. These polymer molds are used for recognition and separation, purification, production
of artificial antibodies, target delivery and/or electrochemical sensors [48].

One of the most recent applications of DES is its use for the production of MIPs, either as medium
or solvent [50,51], as MIPs modifier [51–63], as MIPs functional monomer [48,53,54,64–72], and even as
MIPs template [67,69] (Table 2). From the whole publications involving DES and polymers, more than
15% correspond to DES and MIPs, reported just in the last four years [18]. In 2016, Li et al. described
for the first time the use of DES for the modification of MIP. The authors postulated that the interaction
of DES with the functional monomer, and/or the surface of MIP, improved affinity, selectivity and
adsorption of chlorogenic acid [53]. In the same year, Liu et al. reported the use of DES as a functional
monomer for MIPs polymerization: DES-MIP. The produced DES-MIPs have shown to be stable,
reusable, have a high imprinting factor, fast binding kinetics, and high adsorption capacity. The
authors described the produced DES-MIPs as ‘outstanding’ for the specific and selective recognition of
bovine hemoglobin from protein mixtures or real samples [64]. All the following works showed similar
features, supporting DES-MIPs as highly efficient and selective in the recognition of the template
molecules. Some authors also reported the advantages of the produced DES-MIPs in comparison with
MIPs from conventional monomers [52,53,56,66]. According to Li G. et al., Li X. et al. (2017), and
Xu et al., DES have an advantage over conventional monomers due to their high content in available
functional groups, allowing unique interactions with the template molecules, which translates into
higher affinity and selectivity for the respective DES-MIPs [48,52–54,57,62]. Li G. and its coworkers also
postulated that increasing DES-MIPs rigidity can prevent its shrinkage or swelling [53–56]. Moreover,
the liquid character of DES may also be an advantage by including the monomer in the bulk of DES or
by substituting the need of media or solvent when used as an additive.

The most recent paper reported on DES-MIPs showed some innovative features. Fu and coworkers
prepared DES-MIPs in a 2D material as a surface, using a 1:2 molar ratio mixture of choline chloride
and acrylic acid DES, as functional monomer. The use of this technique avoids the immersion of the
template during polymerization, facilitating its removal. The produced polymeric matrix presented the
required biomolecule recognition and showed to be renewable. Additionally, it presented antibacterial
activity, a high added value feature for analyzing or delivering additives to biosamples while preserving
them [72].
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Table 2. Summary of the work reported in the literature regarding DES-molecular imprinted polymers (MIPs).

DES (molar ratio) Function Application Description Ref.

ChCl:glycerol 1:2 MIPs modifier: interaction with
a functional monomer

Selective recognition and separation
of chlorogenic acid from honeysuckle

DES-MIPs are more rigid, preventing shrinking or swelling;
DES-MIP showed higher adsorption capacity than MIP [53]

ChCl:methacrylic acid 1:2 Functional monomer
for polymerization

Selective recognition and separation
of bovine hemoglobin (BHb) protein

DES-MIPs showed a much higher adsorption capacity, rapid
binding kinetics, and high imprinting factor for the BHb,

compared with the magnetic DES-NIPs (NIP =
nonimprinted polymers);

Magnetic DES-MIPs presented highly recognition, specificity
and selectivity

[64]

ChCl:ethylene glycol 1:3
ChCl:glycerol 1:3, 1:2, 1:4, 1:6

ChCl:1,4-butanediol 1:3

MIPs modifier: interaction with
a functional monomer

Selective recognition and extraction
of rutin, scoparone, and quercetin

from Herba Artemisiae Scopariae

DES-MIPs of ChCl:glycerol 1:3 showed the best results, in
comparison to other DES and MIPs [54]

ChCl:ethylene glycol 1:2 Solvent Recognition of clorprenaline and
bambuterol in urine

The polymeric resins prepared in DES had higher adsorption
capacity than the ones prepared in alcoholic solvents;

100% DES used as a polymerization solvent
[50]

ChCl:glycerol 1:2 MIPs modifier: interaction with
a functional monomer

Purification of chloromycetin and
thiamphenicol from milk

Higher extraction recoveries for DES-MIPs, than for MIPs
and NIPs [57]

ChCl:ethylene glycol 1:1
ChCl:glycerol 1:1

ChCl:propylene glycol 1:1

MIPs modifier: interaction with
a functional monomer Screening chloramphenicol in milk

Adsorption capacity of DES-MIPs better than MIPs;
ChCl:EG-based DES-MIPs had the best adsorption ability and

higher recoveries than MIPs and C18
[62]

Betain:ethylene glycol:water 1:2:1 MIPs modifier: interaction with
a functional monomer

Adsorption of levoflaxacin or
tetracycline from a millet extraction
with a mixture of other antibiotics

The DES-MIPs showed better efficiency in recognition and
specific adsorption than MIPs [52]

Betaine:ethylene glycol:water 1:2:1 MIPs modifier: interaction with
a copolymer

Recovery of levofloxacin from green
bean extract, through SPE

DES-MIPs showed better adsorption capacity and higher
recoveries of levofloxacin than MIPs, NIPs, Mesoporous

Siliceous Material (MSM), DES-MSM, and C18
[58]

ChCl:ethylene glycol 1:2
ChCl:glycerol 1:2

ChCl:1,4-butanediol 1:2
ChCl:formic acid 1:2
ChCl:acetic acid 1:2

ChCl:propionic acid 1:2
ChCl:urea 1:2

MIPs modifier: interaction with
a functional monomer

Purification of alkaloid isomers
(theobromine and theophylline) from

green tea

DES-MIPs of ChCl-urea 1:2 showed the best results, in
comparison to other DES and ionic liquid modified-MIPs [55]
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Table 2. Cont.

DES (molar ratio) Function Application Description Ref.

Formic acid:
methylltriphenylphosphonium

bromide: chalcone
(FA:Mtpp:Chal)

1:0.5:0.04, 1:0.5:0.05, 1:0.5:0.06,

Functional monomer and
dummy template

Selective recognition of rutin and
quercetin from molecular mixtures 1:0.5:0.05-based DES-MIP had the best adsorption capacity [73]

Caffeic acid: ChCl:Formic acid
(CA:ChCl:FA)

1:3:1.5, 1:4:2, 1:6:3

Functional monomer
for polymerization

Adsorption of levofloxacin from
millet extract

DES-MIPs of 1:3:1.5 CA:ChCl:FA more selective for detection
and purification of levofloxacin [65]

ChCl:ethylene glycol 1:3
ChCl:glycerol 1:3

ChCl:1,4-butanediol 1:3
ChCl:urea 1:3

ChCl:formic acid 1:3
ChCl:acetic acid 1:3

ChCl:propionic acid 1:2

MIPs modifier
Recognition of fucoidan and alginic

acid from seaweed by magnetic
solid-phase extraction

Best recovery using the ChCl:urea based DESs-magnetic MIPs
The best DESs-magnetic MIPs was better than the respective

MIPs and NIPs
[60]

ChCl: caffeic acid:ethylene glycol 1:0.1:1,
1:0.2: 1, 1: 0.3:1, 1:0.4:1

Template and
functional monomer Recognition of polyphenols

1:0.4:1-based DES-MIPs had the best adsorption capacity;
DES-MIPs had better specific recognition and larger

adsorption abilities than NIP, C18, and C8;
Recognition of CA from polyphenol mixtures and in a

real sample

[69]

ChCl:ethylene glycol 1:2
ChCl:glycerol 1:2

ChCl:1,4-butanediol 1:2
ChCl:urea 1:2

ChCl:formic acid 1:2
ChCl:acetic acid 1:2

ChCl:propionic acid 1:2

MIPs modifier
Purification of D-(+)-galactose,

L-(−)-fucose, and D-(+)-mannose
from seaweed, though SPE

Best recovery for the ChCl:urea-based
DESs-Fe3O4@hybridMIPs;

The best DESs-Fe3O4@HMIPs system was better than the
respective Fe3O4@HMIPs, DES-HMIPs, and DES-NIPs

[59]

Allyltriethylammonium
Chloride ([ATEAm]Cl):glycerol 1:1

Functional monomer
for polymerization Adsorption of lysozyme

DES-MIPs showed a good adsorption capacity, with a higher
imprinting factor and higher specificity than other MIPs for

lysozyme purification;
4 times recyclable

[66]

ChCl:urea 1:2
ChCl:ethylene glycol 1:2
ChCl:1,4-butanediol 1:2

ChCl:glycerol 1:2

MIPs modifier

Extraction of tanshinone I, IIA, and
cryptotanshinone from Salvia

miltiorrhiza bunge; glycitein, genistein,
and daidzein from Glycine max (Linn.)

Merr; and epicatechin,
epigallocatechin gallate, and

epicatechin gallate from green tea

Multiple template DES-MIPs reduced the experimental steps;
The DES-MIPs tested were better than NIPs and MIPs, except

for the ChCl-urea-based DES-MIP;
Best extraction recoveries for ChCl-glycerol-based DES-MIP;

DES-MIPs can be reused

[61]
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Table 2. Cont.

DES (molar ratio) Function Application Description Ref.

ChCl:methacrylic acid (MAA) 1:2
Betaine/MAA/H2O 1:2:1 Functional monomer

Separation of (+)-catechin,
(−)-epicatechin, and

(−)-epigallocatechin gallate from
black tea

Higher recoveries with DES-MIPs than MAA-MIPs or NIPs;
The ChCl-MAA bases DES-MIP had slightly better results [70]

ChCl:oxalic acid:ethylene glycol 1:1:1,
1:1:2, 1:1:3

ChCl:oxalic acid:glycerol 1:1:3
ChCl:oxalic acid:propylene glycol 1:1:1
ChCl:caffeic acid:ethylene glycol 1:1:1

Functional monomer

Selective recognition and separation
of theophylline, theobromine,

(+)-catechin hydrate, and caffeic acid
from green tea

The ChCl:OA:PG based DES-MIPs has the best recovery
results and was better than the respective DES-NIP, MIP, NIP,
and MIPs made from conventional monomers (MAA and AM)

[68]

ChCl:acrylic acid 1:2 Additive functional monomer Isolation of transferrin from
human serum Selective adsorption over protein mixtures [71]

ChCl:formic acid 1:2
ChCl:acetic acid 1:2

ChCl:propionic acid 1:2
ChCl:urea 1:2

MIPs modifier: interaction with
a functional monomer

Selective recognition and separation
of Fucoidan and Laminarin

DES used for modification of MIPs by interaction with the
functional monomer;

DES-MIPs of ChCl-urea 1:2 showed the best results, in
comparison to other DES, ionic liquid modified-MIPs and

nonmodified MIPs

[56]

ChCl:DHBA:EG 1:1:1, 1:1:2, 1:1:3 Template and
functional monomer

Extraction of 3,4-dihydroxybenzoic
acid (DHBA)

DES-MIPs showed higher recoveries than MIPs, NIPs, and the
corresponding DES-NIPs;

1:1:2 ChCl:DHBA:EG-based DES-MIPs showed the highest
recoveries of 3,4-DHBA and better adsorption capacity,
imprinted factor, and selectivity than the conventional

functional monomer 4-vinylpyridine

[67]

(APTMACl):urea 1:2 Functional monomer
for polymerization

Separation of bovine hemoglobin
from a complex sample

DES-MIPs separated effectively BHb from calf blood;
DES-MIPs could be recycled at least 3 times [48]

ChCl:ethylene glycol 1:2, 1:3, 1:4
Binary green solvent and MIP

modifier: porogen (mixture
with ionic liquid)

Drug delivery of Fenbufen

The binary green system was the unique solvent used for all
the polymerization reagents;

It was also a good dispersant for the single-walled
carbon nanotubes

[51]

ChCl:ethylene glycol 1:2 MIPs modifier: porogen Determination of Levofloxacin in
human plasma

DES-MIPs better than DES-NIPs;
DES-MIPs efficiently applied to examine levofloxacin from

human plasma of hospitalized patients
[63]

ChCl:acrylic acid 1:2 Functional monomer Recognition and good antibacterial
properties for β-lactoglobulin in milk

Surface DES-MIPs prepared to facilitate further
template removal;

The produced polymeric system presented good adsorption
and selectivity for β-lactoglobulin, was reusable, and showed

antibacterial activity

[72]
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3.5. Other Types of Polymer Synthesis

Free radical polymerization is one of the most common types of polymerization. Mota-Morales et al.
(2017) published a very complete review of polymerization using DES focusing on the ‘free radical
polymerization’ of and in ‘deep eutectic solvents’. Herein, we make a brief summary of the main
outcomes mentioned in their work and recommend the consultation of their review as a complement
to this section. It states the high plasticity of DES, either in terms of composition, molar ratios and
the broad range of interactions. The authors describe the use of DES as inert solvent and/or reactive
component, focusing the ‘all-in-one’ systems when both functions are combined. They summarize the
polymerizable DES, the polymer resulted from their free radical polymerization and their application.
Their review highlights the green character of DES, its ‘greening’ impact in the polymerization process
and in the product formed. In addition, it presented the potential of DES as a broadener of the
synthetic conditions (e.g., temperature and vacuum) in comparison to other solvents, creating new
polymerization strategies [74]. After this comprehensive review, innovative work has been developed
in the field.

Ferreira et al. synthesized chondroitin sulfate mesoporous materials by using DES for biopolymer
dissolution and mesoporous templating. Despite the lack of knowledge about the exact templating
mechanism, the authors suggested that DES can act as a capping agent and/or as filler. Mesoporosity
was effectively obtained by including DES in this biopolymer composite synthesis, while a stable
structure was maintained after DES removal [75].

In turn, Maximiano and coworkers published the first article reporting the use of DES as cosolvent
in ethanol for supplemental activator and reducing agent atom transfer radical polymerization (SARA
ATPR) [76]. Following this new development, Wang et al. and Mendonça et al. published the first
studies on the use of different DES as ligand [77], as 100% solvent for SARA ATPR [78] or both [77].
Other studies also reported the use of DES as solvent medium for polymer synthesis [46,79–90].
In particular, the communication of Park and Lee on the polymerization of 3-octylthiophene in DES
presented interesting features regarding the use of DES as a solvent in polymerization. DES of choline
chloride:urea improved polymerization yield and duration in comparison to chloroform and the best
ionic liquids for that purpose. The hydrogen bond basicity of the DES used showed to be preeminent
for the effective polymerization of that polymer [81]. Furthermore, a more recent work published the
use of ChCl:glycerol 1:2 molar ratio DES as reaction media for oleofin anionic polymerization [90]. The
authors highlighted the advantages of the protic and polar character of DES for the polymerization
and reported that the selective use of glycerol as hydrogen bond donor instead of urea, lactic acid, or
oxalic acid increased the polymerization performance. These examples emphasize, once again, the
potential of DES versatility to be tailored for specific applications. The substitution of organic or other
toxic solvents by green DES and its role in additional functions, simultaneously to solvent, is a great
development in green chemistry.

4. Extraction of Polymers with DES

Within the DES applications already reported, its use for the extraction of polymers has been
widely explored. A recent review of Zdanowickz et al. (2018) reviewed the work developed regarding
DES for extraction of polysaccharides, namely, lignin, cellulose, starch, agar, agarose, chitin, chitosan,
xylan, pectin, and inulin. It summarizes the DES used for the extraction of these polymers from different
biomasses, either for separation from the raw materials or for polysaccharides recovery/purification,
through solubilization or induction of fibrillation or crystallization. It also addresses the use of DES
for obtaining low molecular products from polymers degradation or saccharification [4]. Moreover,
several reviews address polymer extraction with DES from lignocellulosic biomass, one of the most
explored raw materials regarding processing with DES [91–93].

As a result of the intense investigation on the topic, the discoveries are steadily uncovered. In the
present review, recently published works involving DES in polymer extraction are listed in Table 3,
summarizing the DES composition, the polymers extracted, the raw material used for extraction and
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some additional information about the cited papers. Some previously reported studies on this topic
are available in the review of Zdanowickz et al. [4].

In a paper of Saravana et al., they tested 14 different DES for chitin extraction from shrimp waste.
All the DES presented higher yields than the conventional extraction method and ChCl:malonic acid
was the more selective DES for pure chitin. Additionally, films from the extracted chitin were efficiently
produced, with similar characteristics to films from commercial chitin [94].

In terms of the parameters influencing polymer extraction using DES, Bai et al., and Mammilla et al.
reported the DES acidity, viscosity, and the content in free hydrogen proton as main features influencing
their extraction efficiency [95,96]. Moreover, the solubility of the target polymer in the DES is obviously
crucial for the extraction efficiency. The reviews of Melro et al. and Duan et al. summarized DES found
to be suitable for the dissolution of lignin [97] and chitin [98], the most commonly extracted polymers
with DES. Additional features regarding the DES mechanisms for extracting polymers are normally
not referred, probably by assuming to be basic extraction principals. Herein, we present some of those
basic concepts, focusing polymer extraction with DES and infer some unique possible contributions of
the DES for this application. The diffusion of DES into the matrix containing the extractable polymer
and the mass transfer interactions of DES–matrix–polymer are decisive factors. The ionic content
and hydrogen bonding capacity of DES is highly promising for mass transfer improvement and for
rupturing conformational chemical bonds of the matrix, facilitating solvent diffusion. Furthermore, as
referred in the previous sections for other applications, DES can establish hydrogen and electrostatic
interactions with the functional groups of a target molecule, conferring them higher affinity to each
other. This principle is applicable to polymers extraction with DES. The knowledge of the molecular
structures involved in the extraction and their possible interactions can be used to tailor the extraction
yield and/or extraction selectivity of target polymer(s).

Table 3. Summary of some reported studies on polymer extraction with DES, from 2017 to 2019.

DES (molar ratio) Polymer extracted Raw material Description Ref.

ChCl:urea (U) 1:2
ChCl:ethylene glycol (EG) 1:2

ChCl:glycerol (GOH) 1:2
ChCl:lactic acid (LA) 1:2

ChCl:acetic acid (HAc) 1:2
ChCl:oxalic acid (OA) 1:1,

1:0.8, 1:0.6, 1:1.2

Collagen Cod skin

Extraction abilities: ChCl:OA > ChCl:HAc
> ChCl:La > ChCl:EG > ChCl:GOH

> ChCl:U;
Better extraction efficiency for 1:1

ChCl:oxalic acid;
Extraction influenced by the DES viscosity,

acidity, and free hydrogen protons

[95]

1:2 of ChCl with lactic acid,
1,4-butanediol, ethylene

glycol, urea, 1,6-hexanediol,
glycerol, oxalic acid, malonic
acid, citric acid, malic acid,

propylene glycol,
L-(+)-tartaric acid, maleic

anhydride, or thiourea

Chitin
Shrimp shells
(Marsupenaeus

japonicas)

Highest yield obtained for the DES of
ChCl:oxalic acid, but the most selective

(purest chitin) was ChCl:malonic acid DES;
Higher yields than conventional extraction

for all DES tested;
Extracted chitin formed films with similar
properties to films from commercial chitin

[94]

ChCl:oxalic acid 1:2 Keratin Wool Extraction assisted with dialysis
High solubility of wool in the DES [99]

ChCl:oxalic acid 1:2 Keratin Rabbit Hair
Efficient dissolution and extraction of

keratin from rabbit hair;
Extraction assisted with dialysis

[100]

ChCl:malic acid 1:1 Chitin Shrimp shells Efficient extraction of chitin,
demineralized and deproteinized [101]

ChCl:lactic acid (LA) 1:2
ChCl:urea (UA) 1:2

ChCl:oxalic acid (OA) 1:1, 1:2
ChCl:potassium

hydroxide 1:4

Lignin and
cellulose

Wood sawdust
of beech

(Fagus sylvatica)

Oxalic acid and urea-based DES (acidic)
were selective for lignin extraction, while

ChCl:KOH (alkaline) was selective for
extracting cellulose

[96]

ChCl:lactic acid 1:9 Lignin Wood Lignin 80% pure [102]
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5. DES as Polymer Modification Agents

In the previous sections, the use of DES was mentioned as a modifier agent, for example, in the
synthesis of DES-MIPs as porogen or by incorporation of DES properties into the MIPs, conferring
unique interactions to recognize target compounds. These unique interactions can occur through
derivatization of the polymeric structures, either by derivatizing their own functional groups or by
incorporating DES in the structure.

5.1. Derivatization

Several studies were conducted on the use of DES as a derivatization agent by its inclusion
in a polymeric material. We present here some examples. Wang and the coworkers reported the
incorporation of DES into a polymer monolithic cartridge (DES-M), which could improve the affinity
and selectivity of the solid-phase extraction of quercetin from Ginkgo biloba. The observed advantages
were attributed to the strong hydrogen bond network of the DES as a source of electrostatic and ionic
interactions introduced in the surface of the DES-M during polymerization [103]. Gan et al. also
introduced DES (ChCl:glycerol 1:2 molar) as a modifier in the polymeric synthesis of anionic-exchange
resins, and as porogen and derivatization agent by its inclusion into the resin [104]. Moreover, Li and
Row incorporated aqueous DES of betaine mixed with glycerol, glucose, ethylene glycol or urea into
mesoporous materials, improving their efficiency for dextrans separation [105].

Other types of polymer derivatization using DES were published. Bangde et al. used ChCl:urea
and ChCl:glycerol (1:2 molar) as chitosan methylation solvent. The urea-based DES was selective
for N-methylation while glycine–DES systems also produced O-methylated chitosan. Both systems
mediated effectively chitosan methylation and presented advantages over the conventional method:
(i) reduced organic solvent, (ii) decreased reaction time, and (iii) no polymer scission [106]. A similar but
innovative study reported O-acylation of chitin, directly converted from shrimp shells by DES. The wide
versatility of these solvents, allowed for their simultaneous use for demineralization, deproteinization,
and acylation initiator, while preventing the use of acids, bases, catalysts, and other acylating agents
needed for the conventional method. Choline chloride:DL-malic acid 1:2 (molar ratio) were considered
optimal for this purpose, within other ChCl:malic acid and ChCl:lactic acid DES systems [107].

Cationic derivatization of polymers using DES has also been described [108,109]. Vuoti et al.
used a boric acid:glycidyl trimethylammonium chloride 1:3 (molar ratio) DES mixture for the
enhanced cationization of cellulose biopolymer, aimed wastewater treatment. The cationic cellulose
derivatized by DES was effectively used for water treatment, being a potential competitor to commercial
polyacrylamides [109].

5.2. Plasticization

DES have also been used as plasticizer of polymers. The review of Wong et al. comprises some
general characteristics of plasticizers and their influence in polymers properties [110], listed in Table 4.

Table 4. General characteristics of plasticizers and their influence in polymers properties.

Plasticizers characteristics Influence of plasticizers in polymers

• Inert • Decrease the melting or glass transition temperature
(Tg) of polymers

• Low molecular weight • Preservation of the polymer elasticity

• Low vapor pressure • Higher thermostability

According to these principals, deep eutectic solvents have suitable properties to be used as a
plasticizer. Table 5 compiles some DES used for the discussed purpose, the plasticized polymers, and
the properties conferred. Those properties can change for different polymers [111,112], and even for
the same polymer with variations in structure or MW [113]. In sum, the influence of DES in polymer
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plasticization depends on several factors, including DES composition, polymer type, DES:polymer
ratio [114] and, of course, their specific interactions.

An additional interesting feature also reported by Wong et al. is the possibility to use internal
or external plasticizers, where the internal type usually implies the introduction of monomers into
the polymeric matrix [110]. Within the studies of DES as a plasticizing agent, we could not find
DES as a monomer for polymer plasticization. Since the use of DES as a functional monomer was
already reported for the synthesis of polymeric structures, we would like to highlight its potential to
be explored as monomer plasticizer.

Still, within the context of the use of DES for polymer plasticization, Abbott et al. studied DES
of ChCl:glycerol, ChCl:ethylene glycol, and ChCl:urea as plasticizers of high-density polyethylene
(HDPE). Despite the improvement of polymer ductility after modification with DES, its strength and
Tg were not significantly changed. For this reason, the authors suggested that the modification of
DES in the HDPE was as a lubricant rather than a plasticizer, reveling an additional modifier function
of DES. More interestingly, the DES modified-HDPE was blended with starch plasticized with DES.
DES-modifications allowed to blend, for the first time, polyolefins (HDPE) to nonchemically modified
carbohydrates (starch) [115].

The thermal and mechanical polymer properties conferred by plasticization with DES can attribute
or influence other properties, specific of certain applications, as polymer foaming enhancement
for the production of 3D porous materials [116] or water retention capacity, for the production of
impermeabilized or hydrophilic materials [117].

Table 5. Resume of polymer plasticized using deep eutectic solvents and properties acquired by
the polymers.

Polymer plasticized DES Properties conferred Ref.

Starch

ChCl:imidazole 3:7, 2:3
Glycerol:imidazole 1:1, 3:7

Lower tendency to retrogradation
Transparent and elastic films (thermoplasticized)

[118]
Citric acid:imidazole 3:7
Malic acid:imidazole 3:7 Not suitable for starch plasticizing

ChCl:urea 1:2 ChCl:imidazole 3:7 Dependent of additive (consult article) [119]

Chitosan films

ChCl:malic acid 1:1
Tailored ductility with DES content

Lower Tg
Good solubility in water

[114]

ChCl:lactic acid 1:1

Transparent films
Lower tensile strength and Young’s modulus

(higher flexibility)
Higher water vapor permeability (WVP), water

solubility, and water sorption

[120]

ChCl:urea 1:2
Enhanced film flexibility
Reduced water uptake

Improved ionic conductivity
[112]

ChCl:malic acid 1:1, ChCl:lactic
acid 1:1, ChCl:citric acid acid 1:1,

ChCl:glycerol 1:2

Transparent films
Elasticity, tensile strength, and WVP tuned by

chitosan type and DES composition
[113]

Chitosan-carboxymethyl
cellulose membrane ChCl:urea 1:2 Higher thermal stability

Improved flexibility [121]

Agar films ChCl:urea 1:2 Good mechanical resistance and improved
elasticity in comparison to aqueous agar films [85]

Cellulose films

ChCl:glycerol 1:2
ChCl:glucose 1:2

ChCl:urea 1:2
Highly improved ductility

[111]
Tetrabutylammonium

bromide:propylene carbonate 1:2
Tetrabutylammonium

bromide:ethylene carbonate 1:2

Improved thermoformability
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Table 5. Cont.

Polymer plasticized DES Properties conferred Ref.

Blend of starch and
poly-ε-caprolactone

(SPCL)

Glucose:citric acid 1:1
ChCl:sucrose 1:1, 4:1
ChCl:citric acid 1:1
ChCl:xylose 2:1, 3:1

Glucose:tartaric acid 1:1
Citric acid:sucrose 1:1

Lower Young’s modulus and ductility
Enhancement of supercritical foaming [116]

Momordica charantia
bioactive polysaccharide

ChCl:glycerol 1.5:1, 1:1, 1:1.5,
1:2, 1:3

Improved flexibility (higher tensile stress and
Young’s modulus)

Higher thermal stability
Higher water adsorption and WVP

Antioxidant and antimicrobial activity

[117]

5.3. Other Modifications

Some DES can transform a polymer’s structure by disrupting or rearranging its chemical and/or
physical networks. Within this context, acidic DES have been used for protein denaturation [107,122].
Tan and the coauthors published the use of urea:guanidine hydrochloride DES as protein denaturant
to transform silk fibers into nanofibers [122]. The mentioned study used DES for the combined
transformation of two different biopolymers, using protein denaturation with DES as a strategy for the
modification of a more complex biopolymer matrix.

Deep eutectic solvents can also be used as reactants for polymer modification. An example of this
type of modification was published by Lian et al., which used zinc chloride:urea 3:10 (molar ratio)
DES as both solvent and reactant for lignin modification. The zinc contained in DES was partially
integrated into the lignin structure by chelation with the lignin functional groups, conferring to the
modified lignin a 4-fold increased molecular weight and enhanced thermal stability [123]. Crosslinking
is another possible application of DES as a reactant, as reported by Jordan et al., which used a deep
eutectic mixture of hexaketocyclohexane octahydrate:urea to crosslink chitosan [124].

6. Formulation of DES Materials Using Polymers

In the previous sections, DES were explored mainly for polymer processing, as vehicles, additives,
modifiers, or just as solvents to achieve certain polymeric products or properties. In this section, deep
eutectic solvents are the principal agents of the envisioned product, while polymeric systems are used
as modifiers or carriers.

For this purpose, it is important to introduce the concept of therapeutic deep eutectic solvents
(THEDES). By definition, THEDES are deep eutectic solvents for which at least one of the mixture
components is an active pharmaceutical ingredient [125]. However, bioactive compounds solubilized
in DES are also commonly considered as THEDES [126].

Tuntarawongsa and Phaechamud were the first authors to describe the use of polymeric eutectic
systems for controlled delivery of active ingredients [127,128]. They used a mixture of two therapeutic
compounds—menthol and camphor—to form a therapeutic DES and designed two different delivery
systems. The addition of eudragit® polymers to the eutectic liquid up to 40% w/w, increased its
viscosity, allowing to form a gel product with potential for topic application, using as an advantage the
menthol ability to increase skin penetration [127]. Moreover, an injectable formulation was developed.
The same DES system incorporating 30% w/w of eudragit® was used for the solubilization and delivery
of an additional active ingredient, ibuprofen. The hydrophobic properties of the DES prolonged the
time of drug delivery in comparison to a pharmaceutical solvent commonly used for drug solubilization.
Additionally, the viscosity enhancement conferred by polymer addition contributed to even higher
delivery retardation [128]. The versatility of these polymeric eutectic systems has a high potential to
design delivery systems with tailored sustained drug release.

A distinct approach was presented by Aroso et al. who developed polymeric delivery systems
by impregnating THEDES of menthol:ibuprofen (3:1 molar) in a starch:poly-ε-caprolactone polymer
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blend. The produced 3D structures had higher porous and faster ibuprofen release than the polymeric
matrix produced with ibuprofen powder [129].

Furthermore, Mano et al. were the first reporting the encapsulation of THEDES in polymeric
fibers by electrospinning [9,130]. In 2015, the authors published the encapsulation of ChCl:citric acid
(1:1 molar) DES in poly(vinyl alcohol) fibers [9] and in 2017, the encapsulation of ChCl:mandelic acid
(1:2 molar) in gelatin fibers was described [130].

More recently, Liu et al. reported the use of mannose-dimethylurea-water 2:5:5 (molar) as a
loading system of lipophilic (curcumin) molecules into a hydrophilic chitosan:alginate hydrogel. The
amphiphilic nature of the produced DES could efficiently entrap curcumin in its hydrophobic core
while being easily incorporated in the hydrogel due to the hydrophilic surrounding. Moreover, the
DES external hydrophilic character promoted its spontaneous diffusion to the water phase during
washing, maintaining the curcumin encapsulated in the hydrogel. The formulation of this system
aimed to mimic naturally occurring delivery systems from natural DES (NADES) to biopolymeric
matrices, like plants (mimicked by the hydrogel). The authors confirmed similar behavior for DES
and Schisandra chinensis fruit extract regarding the transfer of lipophilic molecules to the hydrogel,
which supports the prediction that nature has unique delivery systems, by combining NADES and
biohydrogels [131]. Despite that the DES have been removed through water washing in their study, it
is possible to formulate identical systems without DES elimination from the polymeric matrix, which
might be potentially useful for THEDES delivery in aqueous based systems.

The last study on polymeric delivery of DES was published by Silva et al., which designed fatty
acid antibacterial DES with a tuned melting point for an efficient and stable load into a commercial
polymeric gauze and easy diffusion from the gauze by melting at physiologic temperature. The tailored
DES (lauric acid:myristic acid 1:1 molar) was efficiently loaded into the gauze through supercritical
dispersion, being highly potential for wound healing applications [132].

Although the delivery of THEDES from polymeric matrices is highly promising, more
DES–polymeric products integrating DES as the principal constituent can be developed. A completely
different system is now presented. Qin et al. developed a DES gel supported with gelatin biopolymer
for ionic skin applications. The gel produced from ChCl:ethylene glycol 1:2, with 22% gelatin presented
a higher stretchability and toughness than the gels formed from the isolated compounds (ChCl or
ethylene glycol), even higher than a conventional hydrogel. The incorporation of pressure and strain
sensors into the flexible ionic conductive DES gel allowed accurate monitoring of human finger bending
and multitouch stimuli. Moreover, its nonvolatile character is an advantage over common hydrogels
for a long-term duration [133]. This study opens a new platform for the development of nonvolatile
sensors based on DES materials.

7. Conclusions

Deep eutectic solvents have shown several functionalities and advantages when used in the
field of polymers. From their properties as green solvent (reusable, nontoxic, etc.), to their use as
functional components for polymer synthesis or modification, and finally their use as the main or
active component of polymer-based formulations DESs are extremely versatile. The countless possible
combinations, ratios, and properties achievable can be tailored to specific applications.

In this review, an overview of the developments involving DES and polymers was presented. Our
goal was to inform and inspire the scientific community to use, adapt and contribute to the available
knowledge and to trigger the progress in the field.
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