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Abstract

There is growing interest in the development of interventions (e.g., drugs, diets, dietary 

supplements, behavioral therapies, etc.) that can enhance health during the aging process, prevent 

or delay multiple age-related diseases, and ultimately extend lifespan. However, proving that such 

‘geroprotectors’ do what they are hypothesized to do in relevant clinical trials is not trivial. We 

briefly discuss some of the more salient issues surrounding the design and interpretation of clinical 

trials of geroprotectors, including, importantly, how one defines a geroprotector. We also discuss 

whether emerging surrogate endpoints, such as epigenetic clocks, should be treated as primary 

or secondary endpoints in such trials. Simply put, geroprotectors should provide overt health and 

disease prevention benefits but the time-dependent relationships between epigenetic clocks and 

health-related phenomena are complex and in need of further scrutiny. Therefore, studies that 

enable understanding of the relationships between epigenetic clocks and disease processes while 

simultaneously testing the efficacy of a candidate geroprotector are crucial to move the field 

forward.
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INTRODUCTION

The development of drugs, diets, activities, etc. that sustain health throughout the aging 

process, increase vitality and ultimately enhance longevity has been on the minds of 

This is an open access article distributed under the terms and conditions of CreativeCommonsAttribution4.0InternationalLicense.
*Correspondence: Nicholas J. Schork, nschork@tgen.org. 

CONFLICTS OF INTEREST
All of the authors are affiliated with net.bio, a company devoted to implementing more efficient clinical trials to assess the health 
effects of interventions. NJS, SS and LG are founders of net.bio and have stock in the company. WL and BBJ are consultants to net.bio 
and receive payments for their services.

HHS Public Access
Author manuscript
Adv Geriatr Med Res. Author manuscript; available in PMC 2022 April 21.

Published in final edited form as:
Adv Geriatr Med Res. 2022 ; 4(1): . doi:10.20900/agmr20220002.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


humans for centuries [1–3]. Not only is this interest rooted in an innate individual desire 

to live a long and healthy life, but, more generally, there is a growing consensus among 

biomedical scientists that by identifying interventions that modulate some basic mechanisms 

of aging, a number of age-related diseases can be prevented, or at least have their onset 

slowed. Interventions that do indeed slow the aging rate have the potential to prevent or 

mitigate damage to the body, which, accumulated over time, creates vulnerability to disease, 

thereby creating unprecedented opportunities for achieving healthcare efficiency. A number 

of approaches to the development of such ‘geroprotectors’ have been proposed, including 

those that seek to mimic the beneficial molecular effects of caloric restriction [4], ‘senolytic’ 

approaches which attempt to clear out senescent cells and the deleterious age-related debris 

that they secrete [5,6], reprogramming approaches exploiting insights into stem cell biology 

and cellular rejuvenation [7–13], and approaches based on the identification of circulating 

factors associated with healthy youth that can be literally infused into older individuals 

[12,14]. However, despite this interest and the growing number of emerging approaches to 

the development of geroprotectors, testing and proving their value are complicated and raise 

a number of important questions.

In this brief review we describe some issues of fundamental importance to the development 

and testing of geroprotectors. We raise a number of questions that, if addressed, could 

help set a framework within which geroprotectors can be evaluated. Primary among these 

questions are concerns about the use of surrogate measures such as epigenetic clocks 

as primary endpoints in relevant clinical trials. We also consider the mechanistic links 

between epigenetic clocks (and other biological clocks) and disease processes which, by 

definition, a geroprotector should mitigate. These mechanistic links bear on, for example, 

the length of time one would need to be on a geroprotector before its beneficial effects 

take hold and whether the beneficial processes that come with the positive modulation of 

an epigenetic clock are independent of processes associated with widely accepted clinical 

and subclinical measures of disease, such as cholesterol, memory loss and obesity level. 

Ultimately, these questions and considerations should motivate greater discussion about the 

design of appropriate clinical trials for geroprotectors.

THE GEROSCIENCE HYPOTHESIS

The development of geroprotectors is rooted in the ‘geroscience hypothesis’ which posits 

that interventions that target and ultimately modulate or slow down very basic mechanisms 

of aging could reduce susceptibility to many age-related diseases simultaneously [1–

3,15,16]. Such a hypothesis is consistent with the belief that the set of genes contributing 

to the aging process may be different from the set of genes contributing to any one age-

related disease, since some aspects of an age-related disease are a consequence of aging 

itself. As such, genes implicated in aging have broad effects, rather than being disease 

specific [17,18]. Blockbuster drugs such as atorvastatin or lisinopril, which were designed 

specifically to reduce cholesterol and blood pressure level, respectively, and thereby only 

prevent heart disease and hypertension without having broader effects on multiple age-

related conditions, are not by definition geroprotectors. A number of very compelling reports 

have been published that expose and characterize basic mechanisms or hallmarks of aging 

that, if amenable to, e.g., pharmacological modulation, could lead to the development of 
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geroprotectors [2,3,19]. In addition, as noted, many candidate geroprotectors have been 

proposed that actually appear to modulate some of these hallmarks [4–14,20–22]. Despite 

this, there is consensus that more sophisticated studies are needed in order to truly test 

the geroscience hypothesis for any given candidate geroprotector [2,3,19]. The reasons for 

this are somewhat obvious in that appropriate studies would have to focus on the impact 

that a candidate geroprotector has on multiple age-related diseases and not just one, per 

the definition of a geroprotector. This can be complicated and take a considerable amount 

of time. For example, tracking individuals receiving a geroprotector and those receiving a 

comparator intervention or placebo over a long enough period of time to show that rates 

of different diseases are reduced among individuals receiving the geroprotector could take 

years [23].

The consideration of multiple disease endpoints in the evaluation of a geroprotector is not 

unprecedented however, as it is essentially the strategy to be exploited in the expensive 

and lengthy, ‘Targeting Aging with Metformin’ (TAME) trial focusing on metformin as a 

candidate geroprotector [24,25]. As an alternative to the use of multiple disease incidence 

measures that may take a long time to gather appropriately, it has been argued that the use 

of biomarkers that capture various aging hallmarks, as well as general measures of the aging 

rate, could be used in relevant trials. Thus, these measures, if shown to be modulated by an 

intervention, could provide evidence that something fundamental and relevant to the aging 

process is affected by that intervention. Proof that an intervention modulated these measures 

would at the very least qualify that intervention as a candidate geroprotector that could 

be evaluated in longer-term disease incidence-based trials [3,16,21,22,26,27]. The current 

pool of relevant biomarkers, which includes transcript [28,29] and protein profiling [30,31] 

as well as telomere length measures [32–34], are being complemented by various DNA 

methylation-based (or epigenetic) clocks designed to specifically measure the aging rate 

[35–41]. However, epigenetic clocks and related measures of the aging rate need a great deal 

more scrutiny before they should be considered as a primary endpoint in at least early-stage 

clinical trials of candidate geroprotectors.

BIOMARKERS AND AGING CLOCKS

DNA methylation-based or epigenetic clocks consider measuring individual aging rates by 

more or less counting changes in CpG sites (gains or losses in methylation) that occur as 

one ages [38]. A number of epigenetic clocks have been proposed, with the differences 

between them reflecting the use of different numbers and configurations of methylation 

target (CpG) sites in the genome, different cell types, and different methods/data for training 

and ultimately scoring them from a statistical analysis perspective (e.g., how chronological 

age is factored in to the measure) [38,40–44]. Importantly, as discussed in detail below, the 

differences in the way epigenetic clocks have been constructed have led to differences in the 

strength of the correlations between them, as well as with independent measures of aging 

and health and disease.

As noted, it has been suggested that potential geroprotectors could be tested to see if they 

reverse or slow an epigenetic clock and hence the aging rate in a clinical trial and thus save 

the trial from having to collect complicated health measures and disease onset outcomes 
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[15,16,23]. In fact, a few very recent trials of potential geroprotectors have found evidence 

for positive changes in specific epigenetic clocks, suggesting there is potential for this 

approach [45–48]. We note that there is considerable research exploring epigenetic clocks 

in non-human species that also makes the case for their use in studies of the effects of 

geroprotectors [41], but we confine our attention to studies of humans.

Despite their potential, there are at least four issues plaguing the use of currently available 

epigenetic clocks as primary endpoints in short term trials of geroprotectors. First, the 

many available epigenetic clocks are only weakly to moderately correlated [42,43,49–54], 

suggesting that either they measure different aspects of the aging rate, or there is something 

even more fundamental than what they are capturing that could tie them together and 

ultimately better reflect the aging rate. In this light, one recent study did find evidence for 

a common set of molecular physiologic phenomena, based on gene expression patterns, that 

may be common immediate consequences or causes of many epigenetic clocks, although 

a great deal of variation among the clocks was still observed [49]. In addition, a few 

recent studies suggest that combining available epigenetic clocks may lead to more sensitive 

measures of the aging rate. However, these aggregated clocks, especially those that consider 

multiple tissues, have yet to be evaluated in independent studies and may be hard to evaluate 

given problems with tissue accessibility in living humans [43,49]. In the context of clinical 

trials of geroprotectors, it could be asked that if different epigenetic clocks truly capture 

different facets of the molecular physiologic determinants of aging and aspects of health as a 

result, then by definition should a geroprotector modulate all or at least many of them?

Second, many of the available epigenetic clocks have been shown to be predictive 

of mortality and morbidity in both case-control and retrospective longitudinal cohort 

studies. However, they do not necessarily outperform other measures of the aging rate 

in appreciable ways, such as telomere length, frailty assessments, functional indices, and 

clinical chemistry composites, and are only moderately correlated with these measures 

[44,50–56]. In addition, epigenetic clocks do not correlate well with other traditional clinical 

and subclinical measures of health [42,44], although at least one epigenetic clock has been 

designed to capture variation associated with different subclinical measures of health: the 

‘DunedinPoAm’ (‘Dunedin Pace Of Aging Methylation’) measure [57]. This raises the 

question of whether or not one should put stock in a geroproector that essentially modulates 

an aging clock but does not actually impact any of the numerous clinical and subclinical 

measures that are currently associated with health and health trajectory (e.g., blood pressure, 

lipid and glucose levels, cardiac, kidney and lung function, sleep quantity and quality, 

etc.). In addition, a study of a geroprotector could indicate that its use is indeed associated 

with positive changes in an epigenetic clock, but only with a small subset of a more 

comprehensive set of health measures. This would then suggest that either: (1) the epigenetic 

clock(s) used only captures components of the aging process as discussed previously; (2) the 

chosen health measures are not good indicators of general health and are therefore peripheral 

in some way to what is essential in preserving health in the long term; (3) the epigenetic 

clock(s) reflect or tap into health processes that are somehow more fundamental to longevity 

in a way that does not discount the value of traditional health measures but somehow renders 

the signs and symptoms associated with those traditional health measures (e.g., elevated 
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cholesterol or high blood pressure) benign; or (4) The candidate geroprotector is in fact not a 

geroprotector since it does not positively influence multiple age-related disease processes.

Third, it is likely that epigenetic clocks are the consequences of other age-related 

health processes and not contributors or the causes of those processes. Thus, the causal 
relationships between mechanistic phenomena determining epigenetic clocks and health-

preserving processes in general must be put into perspective, especially if those epigenetic 

clocks are to be used as primary endpoints in clinical trials of candidate geroprotectors 

[15,16,38,40]. It should be emphasized that if changes to health processes are accompanied 

by changes in an epigenetic clock, then important questions arise as to how long an interval 

is likely to occur between changes in health processes and those changes reflected in 

an epigenetic clock, as well as how pronounced those changes have to be before they 

are reflected in a clock. Most studies linking changes in epigenetic clocks with health 

measures have involved longitudinal cohort studies with infrequent, often inconsistent, yet 

lengthy, time intervals between them [38,40,43,44,49,56–59]. In addition, only a few small 

and probably statistically underpowered clinical trials have resulted in evidence of trends 

indicating that changes in health parameters accompany changes in an epigenetic clock 

[45–47].

Fourth, the length of time a geroprotector needs to be administered in order for it to 

induce positive changes in health is of crucial importance for putting into perspective the 

use of epigenetic clocks as primary endpoints in clinical trials. Thus, one could ask if 

slowing of the aging rate as indicated by an epigenetic clock does not accompany immediate 

health changes (e.g., blood pressure lowering), then how does it bypass the need for these 

health changes in positively impacting longevity and how long does one need to be on 

a geroprotector before it reduces age-related disease susceptibility or severity? That is, 

can the degree of slowing or change in an epigenetic clock associated with geroprotector 

use anticipate long term health benefits? How long might it take for the geroprotector to 

essentially ‘remodel’ or positively impact an individual’s molecular and organismal-level 

physiology in a way that will sustain (better) health going forward? What can the changes 

in epigenetic clocks say about this, if anything? Also, are their situations in which damage 

to the body is so pronounced that geroprotector use is not likely to substantially change 

health despite positive changes in an epigenetic clock? Not knowing how epigenetic clocks 

and geroprotectors impact health and over what time frames calls into question the use of 

short-term trials of geroprotectors focusing on an epigenetic clock as a primary outcome 

measure. In fact, the question of how long it might take for a geroprotector to induce health 

benefits could lead to the almost comical, yet likely true, claim that one could literally die of 

age-related diseases while waiting for a geroprotector to induce its favorable effects!

MORE COMPREHENSIVE TRIALS

Given the issues with the use of epigenetic clocks as primary endpoints in clinical trials 

of geroprotectors described herein, it could be argued that alternative types of studies 

investigating geroprotectors should be pursued, at least until epigenetic clocks are proven 

to be reliable surrogate endpoints (for example, in the way that surrogate endpoints for, 

e.g., cancer and a whole host of other conditions have proven useful [60]). These could 
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include trials of geroprotectors that focus on their ability to impact multiple accepted 

clinical measures of health (e.g., blood pressure and related hemodynamic measures, 

immune function assays, muscle function tests, kidney function assays, sleep surveys, mood 

questionnaires, etc.) in addition to assays interrogating known hallmarks of aging [27]. 

Currently, regulatory standards for approving an intervention by agencies such as the US 

Food and Drug Administration (FDA) require an association of an indication or primary 

endpoint or a singular surrogate for that endpoint with an intervention. Such an association 

can allow the intervention to be placed into a broader pharmacopeia or formulary for use 

by clinicians. In this light, clinical trials with multiple endpoints are a rare exception, as 

discussions surrounding the approval of the TAME trial suggest [24,25,27]. In addition, 

trials with multiple primary phenotypes can be problematic for statistical reasons (e.g., more 

opportunities for problems with measurement reliability, greater likelihood of false positive 

results, etc.).

In addition, trials seeking to vet epigenetic clocks themselves as bona fide surrogate 

endpoints for disease predisposition should be pursued in ways that are analogous to trials 

exploring the reliability of surrogate endpoints in oncology and other settings [61]. Such 

trials would not directly benefit tests of a geroprotector, but they could be pursued to 

directly explore the relationship between multiple accepted clinical health measures, such 

as lipid levels, or blood pressure, as well as various hallmarks of aging, etc. and epigenetic 

clock measures. In this light, any interventions used (e.g., exercise, atorvastatin, lisinopril, 

senolytics, meditation, etc.) in such trials are simply meant to improve specific health 

measures (e.g., blood pressure or cholesterol level) in order to determine how changes in 

those health measures affect an epigenetic clock (or vice versa). Other trials could focus on 

multiple health measures that might be affected by a potential geroprotector. In these trials, 

the epigenetic clock measures and any other non-vetted biomarkers would be treated as 

secondary measures to be associated with the clinical measures, with the clinical measures 

themselves acting as the primary endpoints used to evaluate the effect of the geroprotector 

[62].

Two concerns with such trials might arise. First, it is arguable that most accepted clinical 

and subclinical measures are themselves blunt instruments for assessing health and disease 

risk, thus, many emerging markers derived from various ‘omic’ assays (transcriptomics, 

epigenomics, proteomics, metabolomics, etc.), imaging protocols, wireless devices, etc. 

might be better. However, these emerging assays would also have to be assessed for 

their reliability as surrogate endpoints in relevant clinical trials. Second, as noted, relevant 

statistical analyses might be complicated for a trial with multiple outcome measures. We 

do not believe this will be the case, however, as it is well known in the statistical analysis 

community that if multivariate statistical tests are used to test an omnibus hypothesis that, 

e.g., all (or most) of the health measures have changed for the better after the administration 

of a geroprotector, then the study could have greater power than a single univariate test 

focusing on one of those measures if the geroprotector does indeed work as it should [63]. 

This omnibus test, if the null hypothesis of no effect is rejected, would be consistent with 

the geroscience hypothesis, since it assumes multiple health outcomes are positively affected 

by a true geroprotector. There are many designs that could be used in the pursuit of such 

studies, but aggregated N-of-1 trials are excellent candidates [64–67].
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Finally, one could argue that a geroprotector may influence the aging rate, possibly as 

reflected in an epigenetic clock, in subtle ways that would not manifest in changes in 

standard blunt-instrument, commonly-used measures of health, such as blood pressure and 

lipid levels. However, one could ask whether someone should actually trust a geroprotector 

that supposedly prevents, e.g., stroke or heart disease, but does so with no appreciable effect 

on blood pressure or cholesterol? Could it be argued, that a particular geroprotector affects 

some cardiovascular disease-related mechanism that does not bear on blood pressure or 

lipid levels with no evidence for what this mechanism might be? Could it truly be that a 

geroprotector, as reflected in its ability to modulate an epigenetic clock and nothing else, 

renders all signs and symptoms of disease processes benign? Also, which among many 

measures might one want to consider in relevant multi-endpoint trials of geroprotectors is 

an open question [62]. However, the intuition that standard proven health measures should 

be evaluated for geroprotective effects as primary endpoints, with or without an epigenetic 

clock included in the study, even in short term trials, is a strong one.

CONCLUSIONS

The geroscience hypothesis is indeed an exciting one, and one that will likely receive 

considerable attention in the future. Geroprotectors arising from studies exploring the 

geroscience hypothesis would undoubtedly revolutionize health care and result in dramatic 

societal changes, and for these reasons should be taken extremely seriously. However, 

the biomedical science community should be very sensitive to overenthusiasm concerning 

ways in which geroprotectors are vetted, since reliance on a solitary measure of aging, for 

example an epigenetic clock, to vet candidate geroprotectors might not be necessary. If 

geroprotectors, by definition, should improve health during the aging process, and health 

can be measured in myriad ways, then relevant trials should focus on these health measures 

directly. In fact, as we have argued, it would be hard to make the case that a geroprotector 

that is only known or shown to modulate an epigenetic clock will extend health span 

or lifespan without impacting anything associated with health from traditional clinical 

perspectives. In addition, if one could show that a geroprotector actually does modulate age-

related disease processes using routine and accepted clinical measures then the mechanism 

of action of that geroprotector is likely to be a key to an underlying universal aging clock. 

Ultimately, a purported geroprotector that has either no observable effect on many available 

common sense, well-accepted measures of health and vitality, or will only have an effect on 

health via some cryptic mechanism after the many years of use during which an individual is 

at typical risk for disease, is a tough sell.

In this light, at least two obvious conclusions and directions should emerge from broader 

discussions of tests of geroprotectors. First, a new focus on testing a geroprotector’s effects 

on broadly accepted and even emerging clinically-relevant health measures is appropriate. 

If successful, that alone should compel the community to take a more serious look at the 

geroprotector in question, as well as the geroscience hypothesis more broadly, irrespective 

of accompanying changes in an epigenetic clock. Second, clinical trials such as those 

envisioned would be an ideal place to vet epigenetic clocks as secondary outcomes. This 

is the case since relevant trials could be used to assess the potential causal relationships 

between an epigenetic clock and various health measures in earnest. In other words, these 
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relationships would be explored under controlled conditions with longitudinal assessments 

and relevant hypothesized perturbations in the form of candidate geroprotectors in an 

appropriately designed and statistically powered setting.
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