
Send Orders for Reprints to reprints@benthamscience.net

328 Current Genomics, 2021, 22, 328-338

1389-2029/21 $65.00+.00 © 2021  Bentham Science Publishers

REVIEW ARTICLE

Chemogenomic  Approaches  for  Revealing  Drug  Target  Interactions  in
Drug Discovery

Harshita Bhargava1,*, Amita Sharma1 and Prashanth Suravajhala2,3,4

1Department of Computer Science & IT, IIS (Deemed to be University), Jaipur, India; 2Bioclues.org, Kukatpally, Hy-
derabad,  500072,  India;  3Department  of  Biotechnology  and  Bioinformatics,  Birla  Institute  of  Scientific  Research,
Jaipur, India; 4Amrita School of Biotechnology Amrita University, Amritapuri, Kerala 690525, India

A R T I C L E  H I S T O R Y

Received: August 24, 2020
Revised: May 30, 2021
Accepted: June 25, 2021

DOI:
10.2174/1389202922666210920125800

Abstract: The drug discovery process has been a crucial and cost-intensive process. This cost is
not only monetary but also involves risks, time, and labour that are incurred while introducing a
drug in the market. In order to reduce this cost and the risks associated with the drugs that may re-
sult in severe side effects, the in silico methods have gained popularity in recent years. These meth-
ods have had a significant impact on not only drug discovery but also the related areas such as drug
repositioning, drug-target interaction prediction, drug side effect prediction, personalised medicine,
etc. Amongst these research areas predicting interactions between drugs and targets forms the basis
for drug discovery. The availability of big data in the form of bioinformatics, genetic databases,
along with computational methods, have further supported data-driven decision-making. The re-
sults  obtained through these methods may be further validated using in vitro  or  in vivo  experi-
ments. This validation step can further justify the predictions resulting from in silico approaches,
further increasing the accuracy of the overall result in subsequent stages. A variety of approaches
are used in predicting drug-target interactions, including ligand-based, molecular docking based
and chemogenomic-based approaches. This paper discusses the chemogenomic methods, consider-
ing drug target interaction as a classification problem on whether or not an interaction between a
particular drug and target would serve as a basis for understanding drug discovery/drug reposition-
ing. We present the advantages and disadvantages associated with their application.

Keywords: Chemogenomic approaches, drug target, drug discovery, in silico methods, chemogenomic methods, personalised
medicine.

1. INTRODUCTION
Drug  discovery  and  drug  development  is  basically  a

time-taking activity that involve several stages such as target
identification,  target  validation,  lead compound identifica-
tion, lead compound optimisation, preclinical trials, and clin-
ical  evaluation  followed  by  approval  and  post-marketing
stages [1]. The earlier stages in drug development may start
screening from a large set of compounds which is then fil-
tered  at  each  stage  resulting  in  approval  of  a  single  drug.
Hence  drugs  failing  early  in  the  initial  stages  of  develop-
ment can decrease the cost considerably. Thus the time tak-
en from the initial to final stage involving a high amount of
investment  at  each  stage,  gets  wasted  if  the  drug  is  with-
drawn from the market or if it fails for approval. The study
[2] conducted using data from 50 pharmaceutical companies
over a specific time period shows that the clinical success
rate of approval was only 19% as compared to the expected
success rate. As the drug discovery process starts with target
identification hence, this needs to be accurate and reliable.
With the substantial increase in open source databases and
the relevant datasets, the computational in silico approaches
are used as opposed to the conventional wet-lab experiments
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in  predicting  targets  for  drugs  or  vice  versa.  The  targets
range from RNA, DNA, proteins, biological pathways, dis-
ease-associated microRNAs, lncRNAs, biomarkers, crucial
nodes of biological networks to molecular functions [3-5].
The study [6] revealed that the majority of the drug targets
are  proteins;  hence  in  this  paper,  we  have  only  included
studies that consider proteins as targets.

The  prediction  of  drug-target  interactions  reduces  the
drug/target  search  space,  which  indirectly  reduces  the  in-
curred cost, time, and labour in the drug discovery pipeline.
This paper includes five sections; section 1 discusses the ba-
sic stages of the drug discovery process; section 2 discusses
the problem of drug-target interaction prediction considering
proteins as targets; section 3 lists the different in silico ap-
proaches used for predicting drug-target interactions while
discussing the related advantages and disadvantages associat-
ed with each approach (Table 1); section 4 discusses the dif-
ferent open source databases used for predicting drug-target
interactions; section 5 concludes this paper.

1.1. Drug Discovery Process
Drug  development  follows  the  drug  discovery  process

where the latter includes target identification; target valida-
tion; lead compound identification; lead compound optimisa-
tion,  while  the  former  includes  preclinical  trials;  clinical
trials followed by approval of the drug [7] (Fig. 1).
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Initially, a disease is selected for which drug needs to be
developed while studying the conditions such as the number
of people affected across the globe, probable revenue to be
generated, funding available, etc. The next step is to conduct
thorough  research  about  the  disease.  A  conventional  ap-
proach  is  to  study  the  physiological  effects  using  animal
models or patient models. With the growth of next-genera-
tion  sequencing  (NGS),  a  comparative  analysis  between
gene sequences of healthy and unhealthy tissues may help in
gaining  insights  into  the  disease  pathways.  This  helps  to
identify the genes that may be targeted by drugs to produce
the intended effect even though the current studies show that
genomics,  proteomics,  and gene association studies play a
key role in identifying targets [8]. Generally, many targets
are  involved  in  disease,  but  not  all  of  the  targets  have  an
equal role in the disease pathway. Once the target is identi-

fied,  it  needs  to  be  validated  to  determine  the  operational
role  of  the  target  with  respect  to  the  selected  disease.
Though the true validation can be done only through clinical
trials in the early phases, it is carried out using assay devel-
opment,  small  interfering  RNA (miRNA),  animal  models,
etc. [9].

The drug targets are either known targets characterised
by their functions and interactions with specific drugs, or th-
ese are potential targets whose functions are not known and
no interactions have been reported with the drugs [10], with
the latter class is often taken up for completely new drug re-
search  or  for  those  proteins  whose  function  is  not  ascer-
tained,  also  known  as  “hypothetical  proteins”  [11,12].  As
the next step in the drug discovery process,  the lead com-
pound needs  to  be  identified  with  the  use  of  conventional
high throughput screening (HTS) techniques that filter the

Table 1. Overall advantages and disadvantages of each category of methods from the Chemogenomic class.

Chemogenomic
Category Advantages Disadvantages

NBI series methods

The network-based methodsdo not require three-dimension-
al structures of the targets as in the case of molecular dock-
ing-based methods, nor do they require negative samples,

which is a basic requirement in the case of supervised learn-
ing approaches.

These methods suffer from the cold start problem of drugs ie. are unable
to predict targets for new drugs, and are biased in prediction towards high
degree drug nodes. This issue has also been highlighted while using NBI

as the recommendation technique. These methods do not consider the
side information in the form of drug and target features while predicting

targets for drugs.

Similarity inference
methods

Since these methods are based on “wisdom of crowd” prin-
ciple, hence interpretability is one of the key advantages in

order to justify the predictions.

Drugs(targets) having similar structure, fingerprint, or side effect (se-
quence)_may bind to different targets(drugs). Hence such similarity prin-

ciples may not produce serendipic results.
Secondl, none of these methods consider the continuous binding affinity
scores that are more indicative than the binary values of the interaction

matrix.

Random walk based
methods

Were able to address the problem of cold start with respect
to drugs The transitive relationships could be traversed in
the sparse DTI network to find the vicinity of the query

drug/target with all other targets/drugs.

These methods do not consider the continuous binding affinity scores be-
tween the drugs and targets. These methods are computationally inten-

sive and hence may take time for convergence.

Local community
paradigm(LCP)

methods

These methods depend only on the topology of the bipar-
tite network and do not require the similarity information

of drug/target nodes.

These methods cannot address the cold start problem with respect to
drugs or targets. These methods do not consider the continuous binding

affinity scores between the drugs and targets.

Feature based methods

The benefit of such methods is that they can handle new
drugs and targets without considering any similar informa-
tion of chemical drugs and target sequences. Since the fea-
tures can always be extracted for both drugs and proteins
hence even in the case of new drugs/new targets, the ma-

chine learning model can predict the interactions by study-
ing the dependence on features.

The feature selection is a difficult and crucial task as the interaction may
be a function of only a subset of drug and target features. Secondly, in

the case of supervised classification, based techniques class imbalance re-
mains an issue.

Bipartite local models
These supervised models do not require negative samples
as in the case of a general supervised machine learning ap-

proach.

The computational cost is too high in terms of training a classifier/regres-
sor for each drug target pair in question from both drug and target sides,

respectively.

Matrix factorization
methods

They do not require negative samples, as in the case of su-
pervised learning machine learning approaches.

The matrix factorization-based techniques are good at modeling linear re-
lationships, but in the case of non-linear relationships, as in the case of

drug target entities, neural networks can be a good choice.

Deep learning
methods

The manual feature extraction can be surpassed with the
use of deep learning models, which is a labor-intensive

task in the case of feature-based machine learning models.

The reliability of the automatically learned feature representations is one
of the issues which may not match the manually extracted drug or target
features based on chemical structure/sequence information, respectively.
Secondly, the interpretability of the deep learning classifier/regressor is
low, and it is difficult to justify the model results. Thirdly when we use
images as input, then the quality of such data is a matter of concern for

identifying the underlying relationships.
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Fig. (1). Drug discovery and drug development process. (A higher resolution / colour version of this figure is available in the electronic copy
of the article).

leads from the available compound libraries for a specific tar-
get.  As  an  alternative  to  HTS,  many  other  computational
methods are being employed in order to reduce the time tak-
en by traditional approaches. For example, virtual screening
is one of the computational techniques to identify the active
compounds  that  are  likely  to  bind  to  a  specific  target  that
may substitute the costly HTS technique. After the lead com-
pounds are identified, they are optimized through iterative
modifications to improve the ADME characteristics of the
drug. In the next step, preclinical studies are carried out to
check  the  safety  and  effectiveness  of  the  drug  before  the
drug is tested on humans in clinical studies. These studies
deal with the pharmacodynamic and pharmacokinetic proper-
ties of the drug with minimum toxicity and side effects. Phar-
macodynamics  gives  the  relationship  between  the  drug
dosage and its  intended biological  effect  while  addressing
the potency issues and the side effects. On the other hand,
pharmacodynamics identifies the effect of drugs on the body
in contrast to pharmacokinetics which identifies the effect of
the body on the drug [13]. Since the drug dosage is in turn re-
lated to absorption, distribution, metabolism, excretion(AD-
ME) properties of a drug and hence,  it  plays an important
role  in  studying  the  biological  effect  of  the  drug  at  this
stage. This is usually done using in vitro, in vivo models, but
now in silico approaches are also being used to support pre-
clinical studies/trials.

Clinical trials are taken up to further validate the results
from prior preclinical trials, which involve the testing on hu-
mans through four  different  phases  [14].  Phase  I  trials  in-
clude testing approximately 10-100 healthy individuals with
a minimum dose of the drug to study pharmacodynamics as
well  as  pharmacokinetics.  Phase  II  trials  include  a  wider
group  of  infected  individuals  from 50-500,  examining  the

safety and effectiveness of the drug. The dose is increased
successively to determine the best dose and the relevant ad-
verse effects on individuals.  Phase III  trials are conducted
on a larger group of patients at different geographical loca-
tions ranging from hundreds to thousands to confirm the effi-
cacy of the drug while uncovering the rare side effects. The
various  statistical  tests  performed  on  data  from  multiple
groups of individuals further confirm the frequency and the
best drug dosage. Phase IV trials are conducted on the large
diversified real  world  population to  monitor  the  effective-
ness of the drug and any rare adverse effects. Phase IV trials
are  done  only  for  the  drugs  that  were  approved  in  earlier
phases.  After  clinical  trials,  the  post-marketing  research
studies are generally carried out to discover new indications
for  existing  ones  or  abandoned/market  withdrawn  drugs
[15].

2. DRUG TARGET INTERACTION PREDICTION
The drugs inhibit or activate the specific targets to pro-

duce the intended therapeutic effect. RNA, DNA, or proteins
form the targets, but the majority of targets are proteins [15].
The rapid increase in bioinformatics data is majorly due to
the use of  open-source genetic  databases,  NGS HTS tech-
niques [16]. The stored data in these open source databases
can  be  harnessed  to  support  drug  discovery  and  develop-
ment processes in the form of data-based predictions. These
predictions  may  include  drug-target  associations,  side  ef-
fects of drugs, protein-protein associations, drug-drug associ-
ations, gene-disease associations, etc. The resultant predic-
tions can support not only drug discovery but also the com-
plex process of drug repositioning. Drug repositioning is the
reuse of existing/abandoned drugs for the disease other than
the one for which it was intentionally developed. Detecting
novel targets for existing drugs through drug target interac-
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Fig. (2). A basic framework for DTI prediction. (A higher resolution / colour version of this figure is available in the electronic copy of the
article).

tion prediction can act as a stepping stone for drug repurpos-
ing. The task of predicting drug-target interactions (DTI) al-
so assists polypharmacology, wherein a drug may have mul-
tiple associated targets [17]. As indicated in the previous sec-
tion, the traditional drug discovery process takes a single tar-
get identified for a particular disease while testing specific
drugs. However, the polypharmacology concept stresses that
drugs have multiple targets. Amongst these multiple targets,
some off-targets are either involved in side effects/toxic ef-
fects, while some may have unintended therapeutic effects,
which may be further taken up for repositioning of existing
drugs. A basic framework for DTI prediction consists of in-
puts in the form of drug data, target data, and the drug target
association/interaction matrix, which can be in binary(1 or
0) or continuous form. The prediction model takes these in-
puts and produces outputs in the form of ranked lists, predic-
tion score matrix, or classification results as interactions or
non-interactions as depicted in Fig. (2)

3.  IN  SILICO  METHODS  FOR  DRUG-TARGET  IN-
TERACTION PREDICTION

The drug-target interactions are quantified through exper-
imental approaches, which specify the binding affinity be-
tween  the  drugs  and  the  targets.  These  affinities  are  mea-
sured using the “inhibition constant (Ki)”, “dissociation cons-
tant (Kd)”, “half-maximal inhibitory concentration (IC50)” or
“half-maximal  effective  concentration  (EC50)”  values  be-
tween drugs and target, wherein a high numerical value indi-
cates a lowe binding affinity. One can treat the problem of
drug-target/drug-protein interaction prediction as either clas-
sification, regression, or a link prediction problem. The bio-
logical databases record the associations/interactions result-
ing from experiments in a continuous/binary format which
can be further modelled using an interaction/association ma-
trix. The substantial cost and time reductions are a major ad-
vantages of using in silico methods compared to the routine
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wet-lab experiments for predicting drug-target interactions.
These  methods  typically  include  ligand-based,  molecular
docking based and chemogenomics-based methods [18]. Lig-
and-based methods work by matching the query ligand with
the known ligands of the drug target. The matching principle
includes similarity on the basis of physicochemical proper-
ties  or  structural  similarity,  indicating  that  similar  ligands
map  to  similar  drug  targets  [19].  The  downside  of  this
method is that it generates poor results for the targets having
only a few known ligands [20]. In addition, there are many li-
gands that may differ in structure or physicochemical proper-
ties but still have a common drug target. A similar argument
applies to ligands that have a similar structure or physico-
chemical properties need not bind to a common target.

Molecular  docking  is  a  target-based  method  involving
the use of three-dimensional protein structures extracted us-
ing nuclear magnetic resonance (NMR) spectroscopy, X-ray
crystallography,  or  cryo-electron  microscopy  (cryo-EM).
The basic disadvantage of this method is that the three-di-
mensional structure is either not known for all proteins or is

too  difficult  to  be  derived  particularly  for  membrane  pro-
teins [21]. This is further complicated if the role of hypotheti-
cal proteins (HPs) is considered with respect to the drug in
question. The available number of three-dimensional struc-
tures  of  proteins  in  Protein  Data  Bank(PDB)  compared  to
the actual number of known proteins as targets in the human
body  further  conforms  to  the  stated  disadvantage  of  the
molecular  docking-based  approach.  The  chemogenomic-
based methods use both the information related to drug and
target  space  at  the  same  time  for  inferring  the  drug
target/drug-protein interactions(DTIs/DPIs).  The chemoge-
nomic  methods  can  be  further  categorised  as  machine
learning-based  and  network-based  methods.  The  machine
learning-based method can be further classified as feature-
based and similarity-based methods. In this review, we clas-
sify them differently as feature-based methods, non-feature-
based methods. If explainability is the evaluation parameter
of DTI prediction results, then the similarity-based inference
from the network-based category and feature-based methods
from  the  machine  learning  category  rank  higher  than  all
other methods (Fig. 3) [22].

Fig. (3). Computational methods for DTI/DPI. (A higher resolution / colour version of this figure is available in the electronic copy of the ar-
ticle).
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3.1. Network-based Methods
The  network-based  methods  utilize  an  underlying  net-

work for predicting drug-target interactions. These methods
can be further classified as network-based inference (NBI)
methods, similarity-based inference methods, random walk-
based  methods,  and  local  community  paradigm  methods
[23].

The NBI methods originally developed for recommender
systems were used for predicting the missing/unknown sub-
sequent ratings of users for the items. A known binary inter-
action matrix is used to represent the interaction/non-interac-
tion between drugs and targets. An entry of 1 indicates an in-
teraction, while 0 indicates a non-interaction/unknown/unde-
tected interaction in this known interaction matrix. With the
basic NBI method, the interaction matrix can be modeled as
a  bipartite  graph.  The  drugs  and  targets  serve  as  nodes,
while  the  known interactions  serve as  edges.  This  method
generally  utilises  a  concept  of  two-step resource diffusion
process.The diffusion process initiates once from target to
drug and then from drug to target, resulting in a scored list
of targets for a given drug [24]. “EWNBI” and “NWNBI”
[25] were proposed as the edge-weighted and node-weighted
versions  of  the  NBI  method.  In  EWNBI  (Edge  weighted
NBI), edges were weighted using the affinity score of the re-
spective drug and target;. In contrast, NWNBI(Node weight-
ed NBI) used the degree of nodes as node-weights followed
by the resource diffusion process as suggested by the regular
NBI method. If these methods are compared in terms of ac-
curacy, then NBI ranked higher than EWNBI while NWNBI
achieved comparable performance after optimising the asso-
ciated  parameter.  Another  method,  “SDTNBI”  (substruc-
ture-drug-target NBI), was proposed in order to predict tar-
gets even for new compounds [26]. The differentiating fea-
ture was the use of a tripartite network as opposed to a bipar-
tite  network to represent  the interactions/associations with
the drugs,  their  substructures,  and targets  as  nodes.  It  was
able to solve the cold start  problem with respect  to drugs,
but the cold start problem with respect to targets remained
unaddressed.  Another  parameterised  version  of  SDTNBI
termed “bSDTNBI”(balanced substructure drug target NBI)
was proposed to realize higher performance [27]. In this se-
quence,  another  NBI  based  method,  DT-hybrid,  was  pro-
posed, which used the protein-protein and drug-drug similari-
ty information along with the interaction information [28].
This method also suffered from the cold start problem but
ranked higher than the NBI & Hybrid methods.

Similaritybased inference methods mimic the underlying
concepts from collaborative filtering algorithms used in de-
veloping recommendation systems. They utilize the similari-
ty information defined in terms of chemical structural simi-
larity, protein sequence similarity [25], therapeutic similari-
ty,  or  drug side effect  similarity [29] to derive the predic-
tions. In drug-based similarity inference (DBSI), the drugs
having  similar  structures  are  considered  to  have  similar
kinds of probable targets. In the same way, target-based simi-
larity inference (TBSI) was based on the concept that targets
having similar sequences are likely to be acted upon by simi-

lar  kinds  of  drugs.  A  similar  argument  was  used  for  drug
side effect similarity inference (DSESI) and drug therapeutic
similarity inference (DTSI) to predict targets for drugs.

The random walk-based methods not only detect the di-
rect linkages between the nodes of a graph but also the indi-
rect/transitive linkages, which are inherently found in sparse
graphs  [30].  A  random  walk-based  method  NRWRH  was
proposed for a heterogeneous network while considering a
network of drug-drug similarity, target-target similarity, and
drug-target  interactions  [31].  The  method  was  improvised
with parameter optimization while experimenting with differ-
ent  similarity  fingerprints,  including  ECFP,  2D  pharma-
cophore fingerprints, etc. The local community paradigm (L-
CP) methods used the Cannistraci variations extended to bi-
partite networks: “cannistraci–alanis–ravasi (CAR)”, “can-
nistraci jaccard (CJC)”, “cannistraci preferential attachment
(CPA)”, “cannistraci–adamic–adar (CAA)”, and “cannistra-
ci  resource  allocation  (CRA)”  [32].  These  link  prediction
methods rely only on the topology information of the known
DTI network of drugs and targets.

3.2. Machine Learning-based Methods
These  methods  can  be  classified  as  feature-based  and

non-feature-based methods. The feature-based methods em-
ploy  a  set  of  features  from  each  of  the  drug  and  target
spaces,  respectively,  while  non-feature-based  methods  in-
clude  bipartite  local  models,  matrix  factorisation  models,
and deep learning models. As per the review [33], machine
learning has been the most researched category with respect
to DTI, indicated by the increase in publications.

3.2.1. Feature-based Methods
The feature-based methods consider the features of the

drugs and targets by forming the drug target pair feature vec-
tors. These drug-target pair feature vectors are fed as input
to a machine learning model that is trained with the labelled
data to predict the DTI interactions. In general, the problem
of  drug-target  interaction  is  modelled  as  a  classification
problem. The supervised learning classification models in-
clude SVM [34] and RVM [35]. The supervised classifica-
tion approach requires not only the positive samples but also
negative samples in order to generate unbiased results. On
the basis of this intuition, the authors [36] used the random
forest  as  a  classification  model  while  utilizing  molecular
docking  to  validate  the  proposed model.  The  negative  da-
taset was constructed using BindingDB and BioLip databas-
es  by  considering  the  measured  bioactivity  data  above  a
threshold and removing the redundant entries. Similarly, the
positive dataset was constructed using DrugBank and Yamin-
ishi data, and the redundant entries were removed. Finally,
each instance from the negative dataset was randomly added
to  either  of  the  constructed  positive  datasets  until  all  ins-
tances are exhausted.

The ensemble methods also have recently been proved
to be more accurate as compared to a single classifier [37].
They implemented the homogeneous ensemble of classifiers
while proposing the use of heterogeneous ensembles as fu-
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ture work for predicting DTI. Apart from random forest or
rotation  forest  used  as  ensemble  methods,  boosting  algo-
rithms were used specifically for  handling the imbalanced
nature of available datasets. The minority class of the DTI
dataset included the known positive samples of drug-target
interactions, while the negative or unknown samples formed
the  majority  class.  The  authors  [38]  proposed  cluster-
ing-based  under-sampling  technique  with  boosting  (CUS-
Boost)  and compared the same with the previous methods
such  as  random  under-sampling  combined  with  boosting
(RusBoost) [39], synthetic minority oversampling technique
combined with boosting (SMOTEBoost) [40] and ensemble-
based learning without sampling the given data. The basic
drawback of this method was that since k-means clustering
was used with the majority subset. Another method, viz. cu-
mulative feature subspacing with boosting (CFSBoost), was
proposed, which used a subset of features to train the weak
learners and an ensemble of classifiers obtained as the final
prediction model [41]. The feature set was formed using the
drug features in each subset while incrementally adding pro-
tein-related features in each subset. The dimensionality re-
duction and selection of best features from drug space and
target space are too closely related. However, DTI predic-
tion issues occur differently in both spaces. The dimensional-
ity issue has also been studied by using SVD [42], thereby
reducing the underlying complexity while building machine
learning models. The feature evaluation followed by feature
selection was used in [43] to select the best features for DTI
prediction problems.

3.2.2. Non-Feature Based Methods

3.2.2.1. Bipartite Local Models
Bipartite  local  models  (BLM) use a graph of  drug and

target nodes with an edge indicating the known interaction
between these nodes. BLM works on the premise that it pre-
dicts targets for a given drug (drug side) and then for a given
target (target side) before finally producing the score by ag-
gregating the two predictions [44].To establish if drug d in-
teracts with target t, all targets engaging with the given drug
are labelled as +1, while others are labelled as -1, with the
exception of target t. The SVM classifier is then trained with
labelled data of targets with the sequence similarity informa-
tion  as  kernel  to  find  the  prediction  score  between drug d
and target t. Similarly, from the target side, all drugs interact-
ing with the given target t are labelled as +1 while others are
as -1, excluding drug d. Again the SVM classifier is trained
with labelled data of drugs with the chemical similarity infor-
mation as kernel to find the prediction score between drug d
and target t. The final prediction is obtained by using a maxi-
mum or an aggregate function. The main drawback of this
method is the prediction for new drugs or new targets with-
out any prior interactions. This problem is addressed by in-
troducing BLM-NII(BLM with neighbour-based interaction
profile inferring), which considers not only the local interac-
tion profile of drug (or target) but also the similarity informa-
tion of drugs(or targets) with the new drug [45]. This was a
prime advantage in the case of new drugs or targets with no

prior interactions. The local models,  i.e.,  Classifiers or re-
gressors used can be experimented with further to improve
the predictions.

3.2.2.2. Matrix Factorization
The implementation  of  matrix  factorization  techniques

in recommendation systems motivated the application of th-
ese techniques to DTI prediction problems.  They consider
the interaction matrix of drugs and targets and are approxi-
mated by the product of low-rank matrices for predicting the
blank or missing entries. The variants include probabilistic
matrix factorization(PMF) [46], kernelized bayesian matrix
factorization  with  twin  kernels  (KBMF2K)  [47],  multiple
similarities  collaborative  matrix  factorization
(MSCMF)[48], graph regularised matrix factorization(GRM-
F) and weighted graph regularised matrix factorization (W-
GRMF) [49], neighbourhood regularised logistic matrix fac-
torization  (NRLMF)  [50],  and  triple  matrix  factoriza-
tion(TMF) [51]. These methods provide a mathematical ap-
proximation  of  the  original  interaction  matrix.  The  distin-
guishing feature of MSCMF among all other matrix factor-
ization-based methods is that it considers multiple similarity
matrices of drugs and targets simultaneously while approxi-
mating these matrices along with the original interaction ma-
trix.

3.2.2.3. Deep Learning Models
Deep learning approaches have found applications in big

data analytics ranging from pattern recognition, natural lan-
guage  processing,  speech  recognition  to  recommendation
systems. The feature selection is an essential and important
preprocessing step in feature-based methods to know which
feature contributes the most in predicting DTIs. Hence deep
learning models eliminate this step by learning these repre-
sentations from the raw data input. A deep neural network-
based  model  was  proposed  with  input  compound  protein
pairs to study the nonlinear relationship between drugs and
targets [52] with an appropriate set of hyperparameters, and
the model was evaluated on both balanced and imbalanced
datasets.  DeepDTI [53] used the drug fingerprint informa-
tion  and  protein  sequence  composition  descriptor  to  form
concatenated drug-target pair feature vectors. These features
were then fed into a deep belief network to classify the input
drug-target pair. DeepCPI [54] was proposed to address the
high  dimensionality  issue  of  feature  vectors  used  in  the
DeepDTI method by learning the low dimensional  feature
representations  as  feature  embeddings.  DeepDTA[55]  and
DeepConv-DTI [56] were proposed for predicting the affini-
ty  scores  between  the  drug-target  pair.  The  advantage  of
DeepConv-DTI over DeepDTA or DeepDTI was the ability
to learn the local residue patterns in protein sequences which
are the key entities contributing to interactions. Collabora-
tive deep learning-based DTI predictor (CoDe-DTI) was pro-
posed to address the cold start problem that exists in the case
of  new  drugs  with  no  prior  interaction  information  [57].
This  method  was  based  on  deep  collaborative  learning,
which itself uses a combination of probabilistic matrix fac-
torization and denoising autoencoder. The latent features are
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learned from the autoencoder and then used as input to ma-
trix factorization.  The cold start  problem of a new drug is
well addressed using this method while considering the com-
mon substructures interacting with similar targets. The draw-
back of this method is that it did not address the cold start
problem of new targets. Autoencoders have been used as a
dimensionality reduction technique and using the same char-
acteristic, a stacked version of autoencoders was used to in-
fer the hidden features [58]. The inferred features were then
fed to the rotation forest classifier to determine an interac-
tion or noninteraction. Another deep learning solution to fea-
ture extraction was provided using a Least Absolute Shrink-
age and Selection Operator (LASSO) based models [59]. Th-
ese models were used for the drug features and protein fea-
tures separately in order to receive the most significant fea-
tures. The retrieved features were concatenated as drug tar-
get pairs and then used as input to the deep neural network
model. The distinguishing property of this model was that in-
stead of using raw sequences and structures as done in most
deep learning models, it used a selective feature set of drugs
and proteins, respectively. DEEPScreen [60] used a collec-
tion of  deep convolutional  networks trained separately for

each target protein. The system was experimented with dif-
ferently sized 100 by 100 pixel, 200 by 200 pixel or 400 by
400 pixel two-dimensional images of drugs. Each target pro-
tein out of a total of 704 proteins has been considered, has at
least 100 interacting drugs, and the performance for each tar-
get protein with respect to different CNN architectures was
evaluated.

Some methods belong to the hybrid category, which can
combine  any  of  the  above  methods  from  different  cate-
gories.  DTiGEMS+  [61]  was  one  of  these  methods  that
utilised machine learning, graph mining, and graph embedd-
ing  by  considering  a  heterogeneous  graph  derived  from
drug-drug similarity,protein-protein similarity, and drug-tar-
get interaction graph. The key idea was to integrate multiple
similarity information from various sources while perform-
ing a forward similarity selection and keeping only the reli-
able ones. Two heterogeneous weighted graphs were used,
one  extracted  using  integrated  similarity  information  of
drug-drug and protein-protein pairs and the other built using
cosine  similarity  of  drug-drug  and  protein-protein  feature
embeddings. Graph mining was further used to extract path-
based score features for each graph in order to be fed into a
machine learning classifier.

Table 2. A gist of databases for DTI

Database Description URL

DrugBank [62]

It is an online database that combines the information about drugs (including approved, ex-
perimental (phase I/II/III) & biotech drugs), targets (including DNA, RNA, proteins, and
other macromolecules) along with their mechanisms and interactions. The latest release

DrugBank 5.0, has proven to be a comprehensive resource for researchers, pharmacists, the
pharmaceutical industry, and educators.

https://www.drugbank.ca/

Pubchem [63]
It is an online cheminformatic database providing programmatic access to its data using its

built API. It also includes data related to substances, compounds, targets, bioassays and path-
ways.

https://pubchem.ncbi.nlm.nih.gov/

BindingDB [64]
It is an online database containing binding affinity scores between small molecule drugs and
protein targets. The regression-based datasets can be sourced from this database with affini-

ty scores in terms of Ki, Kd, IC50, or EC50.
https://www.bindingdb.org/bind/index.jsp

SuperTarget [65]
It is a web-based online repository for analysing 195770 drugs,6219 targets, and 332828

drug-target interactions in the form of binary as well as continuous binding affinity data. It
contains information derived from DrugBank, BindingDB, and SuperCyp databases.

http://bioinformatics.charite.de/supertarget/

ChEMBL [66] It is a chemical database having drug-like like properties with bioactivity data in terms of
Ki, Kd, IC50, EC50 against the targets collected from literature, patents, etc. https://www.ebi.ac.uk/chembl/

SIDER [67]
A side effect resource containing the reported side effects of drugs or adverse drug reactions

with respect to marketed medicines. It also provides the ATC code based classification
along with the respective frequency of the side effect for each drug.

http://sideeffects.embl.de/

MATADOR
[68]

Manually Annotated Targets and Drugs Online Resource(MATADOR) captures both the di-
rect and indirect interactions between chemicals and proteins either using text mining or

manual collection.
http://matador.embl.de

STITCH [69]

Search Tool For Interaction of Chemicals (STITCH)is a database that integrates chemical
protein interaction information from several databases, texts, and other experiments. The

chemical protein interactions can also be visualised as a network with labelled edges indicat-
ing the type of action.

http://stitch.embl.de/

ZINC [70]
One of the largest ligand databases containing more than 230 million purchasable com-
pounds in docking specific 3D formats. It provides an easy-to-use interface for querying

over 750 million purchasable compounds.
http://zinc.docking.org

BioLip [71]
It is a weekly updated database for studying protein-ligand binding interactions for available
protein structures in the Protein data bank database. It can be used to derive continuous da-

tasets with binding affinity data between proteins and ligands.
https://zhanglab.ccmb.med.umich.edu/BioLiP/

https://www.drugbank.ca/%22%20%5Ch%20
https://pubchem.ncbi.nlm.nih.gov/
https://www.bindingdb.org/bind/index.jsp
http://bioinformatics.charite.de/supertarget/
https://www.ebi.ac.uk/chembl/
http://sideeffects.embl.de/%22%20%5Ch%20
http://matador.embl.de/%22%20%5Ch%20
http://stitch.embl.de/%22%20%5Ch%20
http://zinc.docking.org/%22%20%5Ch%20
https://zhanglab.ccmb.med.umich.edu/BioLiP/
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4.  OPEN  SOURCE  DATABASES  FOR  DRUG-TAR-
GET INTERACTION PREDICTION

The availability of public databases has paved the way to
design better predictors for DTI. The major concern lies in
the frequency of updation of these source databases, which
directly influences the accuracy of prediction. These databas-
es  may contain  overlapping  information  that  has  been  ex-
tracted from patents, research papers, etc., or has been col-
lected from a subset  of these databases.  The datasets used
are extracted from these databases depending upon the mod-
elling of the DTI problem, either as classification or regres-
sion. Hence the datasets can be binary or continuous for de-
signing the respective predictors.  The following table lists
the available databases used for DTI (Table 2).

CONCLUSION
This paper presents the basic drug discovery and drug de-

velopment process, followed by an overview of the chemoge-
nomic  approaches  used  for  drug-target  interaction  predic-
tion. We have also discussed the associated advantages and
disadvantages of each method while considering drug-target
interaction prediction as  a  classification problem.  This  re-
view clearly indicates that no single approach can be a feasi-
ble  solution,  but  a  new  method  can  be  designed  that
achieves the accuracy of  the deep learning models  and,  at
the same time, is also capable of explaining the classified in-
teractions. The non-linear relationship between drugs and tar-
gets can be further justified with the proper selection of fea-
tures. Hence feature selection methods may be redesigned to
get significant features that play a key role in these non-lin-
ear relationships. We firmly believe that in the near future,
the imbalance of datasets would be addressed while develop-
ing machine learning models which tend to generate biased
results.

AUTHORS' CONTRIBUTIONS
HB ideated the concept and wrote the first draft with AS

contributing to Figures. PS wrote abstract and conclusions
and proofread the manuscript.

CONSENT FOR PUBLICATION
Not applicable.

FUNDING
None.

CONFLICT OF INTEREST
The authors declare no conflict of interest, financial or

otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES

Pharmaceutical  Medicine and Translational  Clinical  Research;[1]
Vohora, D.; Singh, G., Eds.; Academic Press, 2018.

DiMasi, J.A.; Feldman, L.; Seckler, A.; Wilson, A. Trends in risks[2]
associated with new drug development: success rates for investiga-
tional drugs. Clin. Pharmacol. Ther., 2010, 87(3), 272-277.
http://dx.doi.org/10.1038/clpt.2009.295 PMID: 20130567
Agamah, F.E.;  Mazandu, G.K.;  Hassan, R.;  Bope, C.D.;  Thom-[3]
ford, N.E.; Ghansah, A.; Chimusa, E.R. Computational/in silico
methods  in  drug  target  and  lead  prediction.  Brief.  Bioinform.,
2019, 21(5), 1663-1675.
http://dx.doi.org/10.1093/bib/bbz103 PMID: 31711157
Chen, X.; Guan, N.N.; Sun, Y.Z.; Li, J.Q.; Qu, J. MicroRNA-s-[4]
mall  molecule  association  identification:  from experimental  re-
sults  to  computational  models.  Brief.  Bioinform.,  2018,  21(1),
47-61.
http://dx.doi.org/10.1093/bib/bby098 PMID: 30325405
Wang, C.C.; Zhao, Y.; Chen, X. Drug-pathway association predic-[5]
tion:  from experimental  results  to  computational  models.  Brief.
Bioinform., 2020.
http://dx.doi.org/10.1093/bib/bbaa061 PMID: 32393976
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bolo-[6]
ga, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.;
Overington, J.P. A comprehensive map of molecular drug targets.
Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
http://dx.doi.org/10.1038/nrd.2016.230 PMID: 27910877
Patwardhan, B.; Vaidya, A.D. Natural products drug discovery:[7]
accelerating  the  clinical  candidate  development  using  reverse
pharmacology approaches., 2010.
Renaud, J.P. The evolving role of structural biology in drug dis-[8]
covery., 2020, p. 1-122.
Jain, K.K. RNAi and siRNA in target validation. Drug Discov. To-[9]
day, 2004, 9(7), 307-309.
http://dx.doi.org/10.1016/S1359-6446(04)03050-8  PMID:
15037229
Umashankar, V.G.; Gurunathan, S. Drug discovery: An appraisal.[10]
Int. J. Pharm. Pharm. Sci., 2015, 7, 59-66.
Suravajhala, P.; Burri, H.V.; Heiskanen, A. Combining aptamers[11]
and in silico interaction studies to decipher the function of hypo-
thetical proteins. Eur. Chem. Bull., 2014, 3(8), 809-810.
Ijaq, J.; Malik, G.; Kumar, A.; Das, P.S.; Meena, N.; Bethi, N.;[12]
Sundararajan, V.S.; Suravajhala, P. A model to predict the func-
tion  of  hypothetical  proteins  through a  nine-point  classification
scoring schema. BMC Bioinformatics, 2019, 20(1), 14.
http://dx.doi.org/10.1186/s12859-018-2554-y PMID: 30621574
Honek, J. Preclinical research in drug development. Med. Writing,[13]
2017, 26, 5-8.
Friedman,  L.M.;  Furberg,  C.;  DeMets,  D.L.;  Reboussin,  D.M.;[14]
Granger,  C.B.  Fundamentals  of  clinical  trials;  Springer:  New
York, 2010.
http://dx.doi.org/10.1007/978-1-4419-1586-3
Chen,  X.;  Yan,  C.C.;  Zhang,  X.;  Zhang,  X.;  Dai,  F.;  Yin,  J.;[15]
Zhang,  Y.  Drug-target  interaction  prediction:  databases,  web
servers and computational models. Brief. Bioinform., 2016, 17(4),
696-712.
http://dx.doi.org/10.1093/bib/bbv066 PMID: 26283676
Pareek, C.S.; Smoczynski, R.; Tretyn, A. Sequencing technologies[16]
and genome sequencing. J. Appl. Genet., 2011, 52(4), 413-435.
http://dx.doi.org/10.1007/s13353-011-0057-x PMID: 21698376
Reddy, A.S.; Zhang, S. Polypharmacology: drug discovery for the[17]
future. Expert Rev. Clin. Pharmacol., 2013, 6(1), 41-47.
http://dx.doi.org/10.1586/ecp.12.74 PMID: 23272792
Moumbock, A.F.A.; Li, J.; Mishra, P.; Gao, M.; Günther, S. Cur-[18]
rent computational methods for predicting protein interactions of
natural  products.  Comput.  Struct.  Biotechnol.  J.,  2019,  17,
1367-1376.
http://dx.doi.org/10.1016/j.csbj.2019.08.008 PMID: 31762960
Bender, A.; Glen, R.C. Molecular similarity: a key technique in[19]
molecular  informatics.  Org.  Biomol.  Chem.,  2004,  2(22),
3204-3218.
http://dx.doi.org/10.1039/b409813g PMID: 15534697
Luo,  Y.;  Zhao,  X.;  Zhou,  J.;  Yang,  J.;  Zhang,  Y.;  Kuang,  W.;[20]
Peng, J.; Chen, L.; Zeng, J. A network integration approach for
drug-target interaction prediction and computational drug reposi-
tioning  from  heterogeneous  information.  Nat.  Commun.,  2017,
8(1), 573.

http://dx.doi.org/10.1038/clpt.2009.295
http://www.ncbi.nlm.nih.gov/pubmed/%2020130567
http://dx.doi.org/10.1093/bib/bbz103
http://www.ncbi.nlm.nih.gov/pubmed/%2031711157
http://dx.doi.org/10.1093/bib/bby098
http://www.ncbi.nlm.nih.gov/pubmed/%2030325405
http://dx.doi.org/10.1093/bib/bbaa061
http://www.ncbi.nlm.nih.gov/pubmed/%2032393976
http://dx.doi.org/10.1038/nrd.2016.230
http://www.ncbi.nlm.nih.gov/pubmed/%2027910877
http://dx.doi.org/10.1016/S1359-6446(04)03050-8
http://www.ncbi.nlm.nih.gov/pubmed/%2015037229
http://dx.doi.org/10.1186/s12859-018-2554-y
http://www.ncbi.nlm.nih.gov/pubmed/%2030621574
http://dx.doi.org/10.1007/978-1-4419-1586-3
http://dx.doi.org/10.1093/bib/bbv066
http://www.ncbi.nlm.nih.gov/pubmed/%2026283676
http://dx.doi.org/10.1007/s13353-011-0057-x
http://www.ncbi.nlm.nih.gov/pubmed/%2021698376
http://dx.doi.org/10.1586/ecp.12.74
http://www.ncbi.nlm.nih.gov/pubmed/%2023272792
http://dx.doi.org/10.1016/j.csbj.2019.08.008
http://www.ncbi.nlm.nih.gov/pubmed/%2031762960
http://dx.doi.org/10.1039/b409813g
http://www.ncbi.nlm.nih.gov/pubmed/%2015534697


Chemogenomic Approaches for Revealing Drug Target Current Genomics, 2021, Vol. 22, No. 5   337

http://dx.doi.org/10.1038/s41467-017-00680-8 PMID: 28924171
Opella, S.J. Structure determination of membrane proteins by nu-[21]
clear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem.
(Palo Alto, Calif.), 2013, 6, 305-328.
http://dx.doi.org/10.1146/annurev-anchem-062012-092631 PMID:
23577669
Chen,  R.;  Liu,  X.;  Jin,  S.;  Lin,  J.;  Liu,  J.  Machine  learning  for[22]
drug-target interaction prediction. Molecules, 2018, 23(9), 2208.
http://dx.doi.org/10.3390/molecules23092208 PMID: 30200333
Wu, Z.; Li, W.; Liu, G.; Tang, Y. Network-based methods for pre-[23]
diction  of  drug-target  interactions.  Front.  Pharmacol.,  2018,  9,
1134.
http://dx.doi.org/10.3389/fphar.2018.01134 PMID: 30356768
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.;[24]
Huang, J.; Tang, Y. Prediction of drug-target interactions and drug
repositioning via network-based inference. PLOS Comput. Biol.,
2012, 8(5), e1002503.
http://dx.doi.org/10.1371/journal.pcbi.1002503 PMID: 22589709
Cheng, F.; Zhou, Y.; Li, W.; Liu, G.; Tang, Y. Prediction of chem-[25]
ical-protein interactions network with weighted network-based in-
ference method. PLoS One, 2012, 7(7), e41064.
http://dx.doi.org/10.1371/journal.pone.0041064 PMID: 22815915
Wu, Z.; Cheng, F.; Li, J.; Li, W.; Liu, G.; Tang, Y. SDTNBI: an[26]
integrated network and chemoinformatics tool for systematic pre-
diction of drug-target interactions and drug repositioning. Brief.
Bioinform., 2017, 18(2), 333-347.
PMID: 26944082
Wu, Z.; Lu, W.; Wu, D.; Luo, A.; Bian, H.; Li, J.; Li, W.; Liu, G.;[27]
Huang,  J.;  Cheng,  F.;  Tang,  Y.  In silico  prediction of  chemical
mechanism  of  action  via  an  improved  network-based  inference
method. Br. J. Pharmacol., 2016, 173(23), 3372-3385.
http://dx.doi.org/10.1111/bph.13629 PMID: 27646592
Alaimo,  S.;  Giugno,  R.;  Pulvirenti,  A.  Recommendation  Tech-[28]
niques for Drug–Target Interaction Prediction and Drug Reposi-
tioning.Data Mining Techniques for the Life Sciences. Methods in
Molecular  Biology;  Carugo,  O;  Eisenhaber,  F.,  Ed.;  Humana
Press: New York, NY, 2016, Vol. 1415, pp. 441-462.
http://dx.doi.org/10.1007/978-1-4939-3572-7_23
Cheng, F.; Li, W.; Wu, Z.; Wang, X.; Zhang, C.; Li, J.; Liu, G.;[29]
Tang, Y. Prediction of polypharmacological profiles of drugs by
the integration of chemical, side effect, and therapeutic space. J.
Chem. Inf. Model., 2013, 53(4), 753-762.
http://dx.doi.org/10.1021/ci400010x PMID: 23527559
Chen, X.; Liu, M.X.; Yan, G.Y. Drug-target interaction prediction[30]
by  random  walk  on  the  heterogeneous  network.  Mol.  Biosyst.,
2012, 8(7), 1970-1978.
http://dx.doi.org/10.1039/c2mb00002d PMID: 22538619
Seal, A.; Ahn, Y.Y.; Wild, D.J. Optimizing drug-target interaction[31]
prediction based on random walk on heterogeneous networks. J.
Cheminform., 2015, 7(1), 40.
http://dx.doi.org/10.1186/s13321-015-0089-z PMID: 26300984
Durán, C.; Daminelli, S.; Thomas, J.M.; Haupt, V.J.; Schroeder,[32]
M.;  Cannistraci,  C.V.  Pioneering  topological  methods  for  net-
work-based drug-target prediction by exploiting a brain-network
self-organization  theory.  Brief.  Bioinform.,  2018,  19(6),
1183-1202.
http://dx.doi.org/10.1093/bib/bbx041 PMID: 28453640
Zhang, W.; Lin, W.; Zhang, D.; Wang, S.; Shi, J.; Niu, Y. Recent[33]
advances in the machine learning-based drug-target interaction pre-
diction. Curr. Drug Metab., 2019, 20(3), 194-202.
http://dx.doi.org/10.2174/1389200219666180821094047  PMID:
30129407
Yu, H.; Chen, J.; Xu, X.; Li, Y.; Zhao, H.; Fang, Y.; Li, X.; Zhou,[34]
W.;  Wang,  W.;  Wang,  Y.  A  systematic  prediction  of  multiple
drug-target interactions from chemical, genomic, and pharmaco-
logical data. PLoS One, 2012, 7(5), e37608.
http://dx.doi.org/10.1371/journal.pone.0037608 PMID: 22666371
Meng, F.R.; You, Z.H.; Chen, X.; Zhou, Y.; An, J.Y. Prediction of[35]
drug-target interaction networks from the integration of protein se-
quences  and  drug  chemical  structures.  Molecules,  2017,  22(7),
1119.
http://dx.doi.org/10.3390/molecules22071119 PMID: 28678206
Ezzat, A.; Wu, M.; Li, X.; Kwoh, C.K. Computational prediction[36]

of drug-target interactions via Ensemble Learning. Methods Mol.
Biol., 2019, 1903, 239-254.
http://dx.doi.org/10.1007/978-1-4939-8955-3_14  PMID:
30547446
Coelho, E.D.; Arrais, J.P.; Oliveira, J.L. Computational discovery[37]
of putative leads for drug repositioning through drug-target interac-
tion prediction. PLOS Comput. Biol., 2016, 12(11), e1005219.
http://dx.doi.org/10.1371/journal.pcbi.1005219 PMID: 27893735
Rayhan, F.; Ahmed, S.; Mahbub, A.; Jani, R.; Shatabda, S.; Farid,[38]
D.M. Cusboost: cluster-based under-sampling with boosting for
imbalanced classification. 2017, p. 1-5.
Seiffert,  C.;  Khoshgoftaar,  T.M.;  Van Hulse,  J.;  Napolitano,  A.[39]
RUSBoost:  A  hybrid  approach  to  alleviating  class  imbalance.
IEEE  Trans.  Syst.  Man  Cybern.  A  Syst.  Hum.,  2009,  40(1),
185-197.
http://dx.doi.org/10.1109/TSMCA.2009.2029559
Chawla,  N.V.;  Bowyer,  K.W.;  Hall,  L.O.;  Kegelmeyer,  W.P.[40]
SMOTE: synthetic minority over-sampling technique. J. Artif. In-
tell. Res., 2002, 16, 321-357.
http://dx.doi.org/10.1613/jair.953
Rayhan, F.; Ahmed, S.; Md Farid, D.; Dehzangi, A.; Shatabda, S.[41]
CFSBoost: Cumulative feature subspace boosting for drug-target
interaction prediction. J. Theor. Biol., 2019, 464, 1-8.
http://dx.doi.org/10.1016/j.jtbi.2018.12.024 PMID: 30578798
Ezzat, A.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target interaction[42]
prediction using ensemble learning and dimensionality reduction.
Methods, 2017, 129, 81-88.
http://dx.doi.org/10.1016/j.ymeth.2017.05.016 PMID: 28549952
Chen, L.; Huang, T.; Shi, X.H.; Cai, Y.D.; Chou, K.C. Analysis of[43]
protein  pathway  networks  using  hybrid  properties.  Molecules,
2010, 15(11), 8177-8192.
http://dx.doi.org/10.3390/molecules15118177 PMID: 21076385
Bleakley, K.; Yamanishi, Y. Supervised prediction of drug-target[44]
interactions  using  bipartite  local  models.  Bioinformatics,  2009,
25(18), 2397-2403.
http://dx.doi.org/10.1093/bioinformatics/btp433 PMID: 19605421
Mei, J.P.; Kwoh, C.K.; Yang, P.; Li, X.L.; Zheng, J. Drug-target[45]
interaction  prediction  by  learning  from  local  information  and
neighbors. Bioinformatics, 2013, 29(2), 238-245.
http://dx.doi.org/10.1093/bioinformatics/bts670 PMID: 23162055
Cobanoglu, M.C.; Liu, C.; Hu, F.; Oltvai, Z.N.; Bahar, I. Predict-[46]
ing drug-target interactions using probabilistic matrix factoriza-
tion. J. Chem. Inf. Model., 2013, 53(12), 3399-3409.
http://dx.doi.org/10.1021/ci400219z PMID: 24289468
Gönen, M. Predicting drug-target interactions from chemical and[47]
genomic kernels using Bayesian matrix factorization. Bioinformat-
ics, 2012, 28(18), 2304-2310.
http://dx.doi.org/10.1093/bioinformatics/bts360 PMID: 22730431
Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S. Collaborative matrix[48]
factorization with multiple similarities for predicting drug-target
interactions. Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2013, pp.
1025-1033.
Ezzat, A.; Zhao, P.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target in-[49]
teraction prediction with graph regularized matrix factorization.
IEEE/ACM  Trans.  Comput.  Biol.  Bioinformatics,  2017,  14(3),
646-656.
http://dx.doi.org/10.1109/TCBB.2016.2530062 PMID: 26890921
Liu, Y.; Wu, M.; Miao, C.; Zhao, P.; Li, X.L. Neighborhood regu-[50]
larized logistic matrix factorization for drug-target interaction pre-
diction. PLOS Comput. Biol., 2016, 12(2), e1004760.
http://dx.doi.org/10.1371/journal.pcbi.1004760 PMID: 26872142
Shi, J.Y.; Zhang, A.Q.; Zhang, S.W.; Mao, K.T.; Yiu, S.M. A uni-[51]
fied solution for different scenarios of predicting drug-target inter-
actions  via  triple  matrix  factorization.  BMC  Syst.  Biol.,  2018,
12(9), 136.
http://dx.doi.org/10.1186/s12918-018-0663-x PMID: 30598094
Tian, K.; Shao, M.; Wang, Y.; Guan, J.; Zhou, S. Boosting com-[52]
pound-protein interaction prediction by deep learning. Methods,
2016, 110, 64-72.
http://dx.doi.org/10.1016/j.ymeth.2016.06.024 PMID: 27378654
Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H.[53]
Deep-learning-based  drug–target  interaction  prediction.  J.  Pro-

http://dx.doi.org/10.1038/s41467-017-00680-8
http://www.ncbi.nlm.nih.gov/pubmed/%2028924171
http://dx.doi.org/10.1146/annurev-anchem-062012-092631
http://www.ncbi.nlm.nih.gov/pubmed/%2023577669
http://dx.doi.org/10.3390/molecules23092208
http://www.ncbi.nlm.nih.gov/pubmed/%2030200333
http://dx.doi.org/10.3389/fphar.2018.01134
http://www.ncbi.nlm.nih.gov/pubmed/%2030356768
http://dx.doi.org/10.1371/journal.pcbi.1002503
http://www.ncbi.nlm.nih.gov/pubmed/%2022589709
http://dx.doi.org/10.1371/journal.pone.0041064
http://www.ncbi.nlm.nih.gov/pubmed/%2022815915
http://www.ncbi.nlm.nih.gov/pubmed/%2026944082
http://dx.doi.org/10.1111/bph.13629
http://www.ncbi.nlm.nih.gov/pubmed/%2027646592
http://dx.doi.org/10.1007/978-1-4939-3572-7_23
http://dx.doi.org/10.1021/ci400010x
http://www.ncbi.nlm.nih.gov/pubmed/%2023527559
http://dx.doi.org/10.1039/c2mb00002d
http://www.ncbi.nlm.nih.gov/pubmed/%2022538619
http://dx.doi.org/10.1186/s13321-015-0089-z
http://www.ncbi.nlm.nih.gov/pubmed/%2026300984
http://dx.doi.org/10.1093/bib/bbx041
http://www.ncbi.nlm.nih.gov/pubmed/%2028453640
http://dx.doi.org/10.2174/1389200219666180821094047
http://www.ncbi.nlm.nih.gov/pubmed/%2030129407
http://dx.doi.org/10.1371/journal.pone.0037608
http://www.ncbi.nlm.nih.gov/pubmed/%2022666371
http://dx.doi.org/10.3390/molecules22071119
http://www.ncbi.nlm.nih.gov/pubmed/%2028678206
http://dx.doi.org/10.1007/978-1-4939-8955-3_14
http://www.ncbi.nlm.nih.gov/pubmed/%2030547446
http://dx.doi.org/10.1371/journal.pcbi.1005219
http://www.ncbi.nlm.nih.gov/pubmed/%2027893735
http://dx.doi.org/10.1109/TSMCA.2009.2029559
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.jtbi.2018.12.024
http://www.ncbi.nlm.nih.gov/pubmed/%2030578798
http://dx.doi.org/10.1016/j.ymeth.2017.05.016
http://www.ncbi.nlm.nih.gov/pubmed/%2028549952
http://dx.doi.org/10.3390/molecules15118177
http://www.ncbi.nlm.nih.gov/pubmed/%2021076385
http://dx.doi.org/10.1093/bioinformatics/btp433
http://www.ncbi.nlm.nih.gov/pubmed/%2019605421
http://dx.doi.org/10.1093/bioinformatics/bts670
http://www.ncbi.nlm.nih.gov/pubmed/%2023162055
http://dx.doi.org/10.1021/ci400219z
http://www.ncbi.nlm.nih.gov/pubmed/%2024289468
http://dx.doi.org/10.1093/bioinformatics/bts360
http://www.ncbi.nlm.nih.gov/pubmed/%2022730431
http://dx.doi.org/10.1109/TCBB.2016.2530062
http://www.ncbi.nlm.nih.gov/pubmed/%2026890921
http://dx.doi.org/10.1371/journal.pcbi.1004760
http://www.ncbi.nlm.nih.gov/pubmed/%2026872142
http://dx.doi.org/10.1186/s12918-018-0663-x
http://www.ncbi.nlm.nih.gov/pubmed/%2030598094
http://dx.doi.org/10.1016/j.ymeth.2016.06.024
http://www.ncbi.nlm.nih.gov/pubmed/%2027378654


338   Current Genomics, 2021, Vol. 22, No. 5 Bhargava et al.

teome Res., 2017, 16(4), 1401-1409.
http://dx.doi.org/10.1021/acs.jproteome.6b00618  PMID:
28264154
Wan, F.; Zhu, Y.; Hu, H.; Dai, A.; Cai, X.; Chen, L.; Gong, H.;[54]
Xia, T.; Yang, D.; Wang, M.W.; Zeng, J. DeepCPI: a deep learn-
ing-based framework for large-scale in silico drug screening. Ge-
nomics Proteomics Bioinformatics, 2019, 17(5), 478-495.
http://dx.doi.org/10.1016/j.gpb.2019.04.003 PMID: 32035227
Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: deep drug-target[55]
binding  affinity  prediction.  Bioinformatics,  2018,  34(17),  i821-
i829.
http://dx.doi.org/10.1093/bioinformatics/bty593 PMID: 30423097
Lee, I.; Keum, J.; Nam, H. DeepConv-DTI: Prediction of drug-tar-[56]
get interactions via deep learning with convolution on protein se-
quences. PLOS Comput. Biol., 2019, 15(6), e1007129.
http://dx.doi.org/10.1371/journal.pcbi.1007129 PMID: 31199797
Yasuo, N.; Nakashima, Y.; Sekijima, M. CoDe-DTI: Collabora-[57]
tive  Deep  Learning-based  Drug-Target  Interaction  Prediction.
2018  IEEE  International  Conference  on  Bioinformatics  and
Biomedicine  (BIBM),  2018,  pp.  792-797.
Wang, L.; You, ZH.; Chen, X.; Xia, SX.; Liu, F.; Yan, X.; Zhou,[58]
Y.; Song, KJ. A computational-based method for predicting drug–-
target interactions by using stacked autoencoder deep neural net-
work. J. Comput. Biol., 2018, Mar 1;25(3), 361-73.
You, J.; McLeod, R.D.; Hu, P. Predicting drug-target interaction[59]
network using deep learning model. Comput. Biol. Chem., 2019,
80, 90-101.
http://dx.doi.org/10.1016/j.compbiolchem.2019.03.016  PMID:
30939415
Rifaioglu, A.S.; Atalay, V.; Martin, M.J.; Cetin-Atalay, R.; Do-[60]
gan,  T.  DEEPScreen:  High  performance  drug-target  interaction
prediction with convolutional neural networks using 2-DS tructu-
ral compound representations. J. Chem. Inf. Model., 2019, 59(10),
4438-4449.
PMID: 31518132
Thafar,  M.A.;  Olayan,  R.S.;  Ashoor,  H.;  Albaradei,  S.;  Bajic,[61]
V.B.; Gao, X.; Gojobori, T.; Essack, M. DTiGEMS+: drug-target
interaction prediction using graph embedding, graph mining, and
similarity-based techniques. J. Cheminform., 2020, 12(1), 44.
http://dx.doi.org/10.1186/s13321-020-00447-2 PMID: 33431036
Wishart,  D.S.;  Feunang,  Y.D.;  Guo,  A.C.;  Lo,  E.J.;  Marcu,  A.;[62]
Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assem-
pour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wil-
son, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wil-
son, M. DrugBank 5.0: a major update to the DrugBank database
for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.

http://dx.doi.org/10.1093/nar/gkx1037 PMID: 29126136
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte,[63]
A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.;
Zhang,  J.;  Bryant,  S.H.  PubChem  substance  and  compound
databases.  Nucleic  Acids  Res.,  2016,  44(D1),  D1202-D1213.
http://dx.doi.org/10.1093/nar/gkv951 PMID: 26400175
Liu,  T.;  Lin,  Y.;  Wen,  X.;  Jorissen,  R.N.;  Gilson,  M.K.  Bind-[64]
ingDB: a web-accessible database of experimentally determined
protein-ligand  binding  affinities.  Nucleic  Acids  Res.,  2007,
35(Database  issue)(Suppl.  1),  D198-D201.
http://dx.doi.org/10.1093/nar/gkl999 PMID: 17145705
Hecker, N.; Ahmed, J.; von Eichborn, J.; Dunkel, M.; Macha, K.;[65]
Eckert, A.; Gilson, M.K.; Bourne, P.E.; Preissner, R. SuperTarget
goes  quantitative:  update  on  drug-target  interactions.  Nucleic
Acids  Res.,  2012,  40(Database  issue),  D1113-D1117.
http://dx.doi.org/10.1093/nar/gkr912 PMID: 22067455
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.;[66]
Mendez,  D.;  Mutowo,  P.;  Atkinson,  F.;  Bellis,  L.J.;  Cib-
rián-Uhalte,  E.;  Davies,  M.;  Dedman,  N.;  Karlsson,  A.;  Magar-
iños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R.
The  ChEMBL  database  in  2017.  Nucleic  Acids  Res.,  2017,
45(D1),  D945-D954.
http://dx.doi.org/10.1093/nar/gkw1074 PMID: 27899562
Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database[67]
of  drugs  and  side  effects.  Nucleic  Acids  Res.,  2016,  44(D1),
D1075-D1079.
http://dx.doi.org/10.1093/nar/gkv1075 PMID: 26481350
Günther, S.; Kuhn, M.; Dunkel, M.; Campillos, M.; Senger, C.;[68]
Petsalaki, E.; Ahmed, J.; Urdiales, E.G.; Gewiess, A.; Jensen, L.J.;
Schneider, R.; Skoblo, R.; Russell, R.B.; Bourne, P.E.; Bork, P.;
Preissner,  R. SuperTarget and Matador: resources for exploring
drug-target relationships. Nucleic Acids Res., 2008, 36(Database is-
sue)(Suppl. 1), D919-D922.
PMID: 17942422
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P.[69]
STITCH: interaction networks of chemicals and proteins. Nucleic
Acids Res., 2008, 36(Database issue)(Suppl. 1), D684-D688.
PMID: 18084021
Sterling, T.; Irwin, J.J. ZINC 15–ligand discovery for everyone. J.[70]
Chem. Inf. Model., 2015, 55(11), 2324-2337.
http://dx.doi.org/10.1021/acs.jcim.5b00559 PMID: 26479676
Yang,  J.;  Roy,  A.;  Zhang,  Y.  BioLiP:  a  semi-manually  curated[71]
database for biologically relevant ligand-protein interactions. Nu-
cleic Acids Res., 2013, 41(Database issue), D1096-D1103.
PMID: 23087378

http://dx.doi.org/10.1021/acs.jproteome.6b00618
http://www.ncbi.nlm.nih.gov/pubmed/%2028264154
http://dx.doi.org/10.1016/j.gpb.2019.04.003
http://www.ncbi.nlm.nih.gov/pubmed/%2032035227
http://dx.doi.org/10.1093/bioinformatics/bty593
http://www.ncbi.nlm.nih.gov/pubmed/%2030423097
http://dx.doi.org/10.1371/journal.pcbi.1007129
http://www.ncbi.nlm.nih.gov/pubmed/%2031199797
http://dx.doi.org/10.1016/j.compbiolchem.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/%2030939415
http://www.ncbi.nlm.nih.gov/pubmed/%2031518132
http://dx.doi.org/10.1186/s13321-020-00447-2
http://www.ncbi.nlm.nih.gov/pubmed/%2033431036
http://dx.doi.org/10.1093/nar/gkx1037
http://www.ncbi.nlm.nih.gov/pubmed/%2029126136
http://dx.doi.org/10.1093/nar/gkv951
http://www.ncbi.nlm.nih.gov/pubmed/%2026400175
http://dx.doi.org/10.1093/nar/gkl999
http://www.ncbi.nlm.nih.gov/pubmed/%2017145705
http://dx.doi.org/10.1093/nar/gkr912
http://www.ncbi.nlm.nih.gov/pubmed/%2022067455
http://dx.doi.org/10.1093/nar/gkw1074
http://www.ncbi.nlm.nih.gov/pubmed/%2027899562
http://dx.doi.org/10.1093/nar/gkv1075
http://www.ncbi.nlm.nih.gov/pubmed/%2026481350
http://www.ncbi.nlm.nih.gov/pubmed/%2017942422
http://www.ncbi.nlm.nih.gov/pubmed/%2018084021
http://dx.doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/%2026479676
http://www.ncbi.nlm.nih.gov/pubmed/%2023087378

	Chemogenomic Approaches for Revealing Drug Target Interactions in Drug Discovery 
	1. INTRODUCTION
	1.1. Drug Discovery Process

	2. DRUG TARGET INTERACTION PREDICTION
	3. IN SILICO METHODS FOR DRUG-TARGET INTERACTION PREDICTION
	3.1. Network-based Methods
	3.2. Machine Learning-based Methods
	3.2.1. Feature-based Methods
	3.2.2. Non-Feature Based Methods


	4. OPEN SOURCE DATABASES FOR DRUG-TARGET INTERACTION PREDICTION
	CONCLUSION
	AUTHORS' CONTRIBUTIONS
	CONSENT FOR PUBLICATION
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




