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Abstract 

Background:  Predicting adverse drug reactions (ADRs) has become very important owing to the huge global health 
burden and failure of drugs. This indicates a need for prior prediction of probable ADRs in preclinical stages which can 
improve drug failures and reduce the time and cost of development thus providing efficient and safer therapeutic 
options for patients. Though several approaches have been put forward for in silico ADR prediction, there is still room 
for improvement.

Methods:  In the present work, we have used machine learning based approach for cardiovascular (CV) ADRs predic-
tion by integrating different features of drugs, biological (drug transporters, targets and enzymes), chemical (sub-
structure fingerprints) and phenotypic (therapeutic indications and other identified ADRs), and their two and three 
level combinations. To recognize quality and important features, we used minimum redundancy maximum relevance 
approach while synthetic minority over-sampling technique balancing method was used to introduce a balance in 
the training sets.

Results:  This is a rigorous and comprehensive study which involved the generation of a total of 504 computational 
models for 36 CV ADRs using two state-of-the-art machine-learning algorithms: random forest and sequential minimi-
zation optimization. All the models had an accuracy of around 90% and the biological and chemical features models 
were more informative as compared to the models generated using chemical features.

Conclusions:  The results obtained demonstrated that the predictive models generated in the present study were 
highly accurate, and the phenotypic information of the drugs played the most important role in drug ADRs pre-
diction. Furthermore, the results also showed that using the proposed method, different drugs properties can be 
combined to build computational predictive models which can effectively predict potential ADRs during early stages 
of drug development.

Keywords:  Adverse drug reactions, Machine learning, Random forest, Sequential minimization optimization,  
Feature selection
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Background
Adverse drug reactions (ADRs) are unpleasant, harmful, 
or unwanted effects caused by a drug and are one of the 
main reasons for the failure of drugs and their withdrawal 
from the market [1]. Although a wide range of studies are 
being carried out on ADRs, these remain a major health 
concern worldwide and pose severe challenges to public 

health. ADRs are the fourth primary cause of deaths in 
the United States resulting in 100,000 every year [2]. The 
traditional methods of ADR prediction are highly expen-
sive and time consuming as the lead compounds undergo 
extensive testing for their safety profiles through various 
biochemical and cellular assays in pre-marketing stages 
[3]. Furthermore, during post-marketing surveillance, 
the data on ADRs is collected from various public data-
bases which include reports submitted by physicians and 
patients’ health records which again consumes a great 
deal of time [4]. Thus, timely and efficient ADR predic-
tion during initial drug discovery and development stages 
remains a huge problem to be addressed.
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In recent years, prediction of potential ADRs has 
become of extreme importance and several machine 
learning based methods have been proposed for the pre-
diction of potential ADRs in pre-clinical stages using the 
chemical features of compounds, drug targets, enzymes, 
transporters and pathways and information on drug 
side effects and therapeutic indications. Azuaje et al. [5, 
6] generated drug-target interaction networks for the 
prediction of cardiovascular ADRs of non-cardiovascu-
lar drugs. One approach proposed by Pauwels et  al. [7] 
involved the use of chemical structures of drugs for the 
generation of machine-learning models using four algo-
rithms (nearest neighbors, support vector machines 
(SVMs), canonical correlation analysis, ordinary, and 
sparse) for ADR prediction tasks and also extracted asso-
ciated sets of chemical fragments and side effects. Kuang 
et al. [8] compared and analyzed the existing methods for 
drug ADRs prediction and proposed a new algorithm, the 
general weighted profile method, from already existing 
algorithms by combining their formulas and converting 
them into a linear model for prediction of ADRs. Cami 
et al. [9] constructed a bipartite network that represented 
drugs, side effects and their associations and then pre-
dicted adverse drug events using pharmacological net-
work models relying on a logistic regression algorithm. 
In another study, Liu et  al. [10] carried out large scale 
prediction of ADRs integrating several features of drugs 
that included drug targets and pathways, chemical prop-
erties of drugs, therapeutic indications, and data from 
other known ADRs. Huang et  al. [11] generated SVMs 
and logistic regression prediction models trained on the 
combination of drug targets, gene ontology annotations, 
and protein–protein interaction networks. Zhang et  al. 
[12] considered ADR prediction as a multi-label learning 
task and proposed a novel approach, ‘feature selection-
based multi-label k-nearest neighbor method’ that led to 
simultaneous predictions of relevant features, as well as 
the generation of highly accurate prediction models.

Although numerous computational methods have been 
projected so far for ADR prediction problems, a lot can 
still be improved. The data used for generating the mod-
els is severely imbalanced, and imbalanced data clas-
sification would lead to predictions biased towards the 
negative class which is typically the dominating class. 
Another problem is with the large number of features 
associated with the drugs: some may be redundant, and 
not all would be related to ADRs. Recently, feature selec-
tion techniques have been increasingly used to identify 
significantly contributing features from high dimensional 
feature data sets for improving upon the prediction 
performances [13–15]. The benefits of feature selec-
tion for learning can include a reduction in the amount 
of data needed to achieve learning, improved predictive 

accuracy, learned knowledge that is more compact and 
easily understood, and reduced execution time. Also, we 
have, in our previous studies, already shown how fea-
ture selection based models have either outperformed 
the models generated using all the features or have given 
very similar results [16–20]_ENREF_15. Earlier, we used 
the machine-learning based methods to predict neuro-
logical ADRs by integrating the chemical, biological, and 
phenotypic features of drugs [21]. In the present study, 
without using feature selection the dimension of the files 
was too large to handle as is evident from initial number 
of features listed in Table 1, and consumed large compu-
tational power and time to generate the models. Table 2 
provides a comparison of the number of drugs and types 
of features used in the present study and for other ADR 
prediction studies. It has been reported in various stud-
ies that the imbalance in the input datasets could result 
in biased predictions as most of the classifier are biased 
towards the major classes and hence show very poor clas-
sification rates on minor classes. It is also possible that 
classifier predicts everything as major class and ignores 
the minor class [22, 23]. Thus we used SMOTE technique 
to overcome the imbalanced data problem and ensure 
unbiased classification.

In the present study, we have tried to solve the prob-
lem of data imbalance using the synthetic minority over-
sampling technique (SMOTE) balancing method [24], 
and under-sampling using SpreadSubsample method. We 
also used a minimum redundancy maximum relevance 
(mRMR) [25] approach for identifying important and 
non-redundant features. The outline of the computa-
tional workflow followed in this paper has been shown in 
Fig. 1.

Materials and methods
Data sets
The dataset of approved drugs was retrieved from the 
DrugBank [26] database. DrugBank is a publicly avail-
able resource containing complete information on drugs 
and their actions, targets and structures. The data struc-
tural information for drugs for a total of 2141 drugs was 
obtained in structural data format.

Side‑effects
SIDER [27] (SE resource) is a freely accessible database 
containing information on marketed drugs and their doc-
umented adverse effects. As reported on October 2015, 
the SIDER database, version 4.1, contained data on 1430 
drugs and 5880 side effects, with a total of 139,756 drug-
SE associations, where each drug had an average of 39% 
side effects. In the present work, the complete SIDER 
database was obtained from http://sidee​ffect​s.embl.de/. 

http://sideeffects.embl.de/
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The 2141 approved DrugBank drugs were mapped to 
SIDER using PubChem compound IDs (CID) as SIDER 
uses STITCH compounds IDs which were converted 
to PubChem CIDs according to the rule mentioned in 
(ftp://xi.embl.de/SIDER​/2015-10-21/, Accessed April 2, 
2018). The SIDER database was also used to collect data 
on therapeutic indications of drugs. We obtained infor-
mation for a total of 970 drugs, which comprised data for 
5497 side effects and 1840 therapeutic indications.

Biological features from DrugBank
The biological information of drugs was comprised of 
drug targets, transporters (for drug transportation) and 
enzymes (for drug metabolism). We obtained data for 
1264 drug targets, 86 transporters, and 182 enzymes, for 
a total of 970 drugs directly from DrugBank database.

Chemical structure fingerprints
PaDEL [28] software was used to generate 881 PubChem 
[29] structure fingerprints for each of the 970 drugs 
in order to obtain chemical information. A substruc-
ture is part of a chemical structure, and a fingerprint is 

a well-ordered list of binary (0/1) bits; these bits are the 
Boolean representations for the presence of element 
counts, ring systems, atom pairs, etc. in the chemical 
structures.

Chemical structural similarity between drugs
Tanimoto coefficient (TC) was calculated to measure 
the similarity between two drug molecules using the 
ChemmineR [30] platform of R interface. The chemical 
structures of drugs in structural data format (SDF) were 
used to compute atom pair descriptors for all of the drug 
compounds. Further similarity search was performed 
using the cmp.search function, with a cut-off value of 0.3, 
which searched the entire atom pair database generated 
in the previous step for structurally similar compounds. 
The compounds having similar chemical structures were 
removed from the dataset.

Features construction
In classification models generation, one of the most 
important steps is to generate features which are a 

Table 1  Provides the  types of  features used to  generate the  models and  the  number of  features obtained 
after RemoveUseless and mRMR selection approaches

Type of feature Source Initial number RemoveUseless mRMR Total 
final 
features

Biological

 Targets DrugBank 1264 1207 50 150

 Transporters DrugBank 86 84 50

 Enzymes DrugBank 182 182 50

Chemical

 Substructures PubChem 881 629 50 50

Phenotypic

 Other ADRs SIDER 5497 5292 50 100

 Therapeutic indications SIDER 1840 1600 50

Table 2  Provides a comparison of the number of drugs and types of features used in the present study and for other ADR 
prediction studies

Dataset Drugs Side effects Substructures Targets Transporters Enzymes Pathways Indications

Pauwels et al. 2011 888 1385 881 NA NA NA NA NA

Wang et al. 2014 799 1385 881 775 NA NA NA 719

Zhang et al. 2015 569 4192 NA NA NA NA NA NA

Kuang et al. 2014 404 461 NA NA NA NA NA NA

Huang et al. 2011 578 1447 NA 3880 NA NA NA NA

Zhang et al. 2015 1080 2260 881 1046 96 160 268 2537

Liu et al. 2013 832 1384 881 786 72 111 173 869

Present study 965 5497 881 1264 86 182 NA 1840

ftp://xi.embl.de/SIDER/2015-10-21/
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quantifiable property of an instance being classified. 
In case where the instance is a molecule, the chemical 
information of the molecule is converted to molecular 
descriptors, which are the mathematical depictions of 
chemical compounds. In the present study, we have used 
six types of features which include the molecular 2D fin-
gerprints denoting chemical features, biological targets, 
transporters, enzymes associated with drugs represent-
ing biological information, therapeutic indications, and 
other known side effects comprising phenotypic prop-
erties of drugs. Each drug, associated with three types 
of properties, chemical, biological and phenotypic, was 
represented as a binary matrix, the elements of which 
were either 1 or 0, respectively indicating the presence 
or absence of each feature: drug targets, transporters, 
enzymes, 881 PubChem substructures, remaining known 
ADRs, and therapeutic indication. To this end, we had 
a 5497 × 1840 dimensional binary matrix representing 
phenotypic properties, a 1264 × 86 × 182 dimensional 
binary matrix demonstrating biological features, and an 
881 dimensional binary matrix denoting chemical fea-
tures for each of the total 965 drugs.

Feature selection
A high dimensional feature space is generated for a small 
size of samples by the feature construction method. This 
may result in over fitting of the classification models 

while contributing to increase in dimensionality of the 
dataset consequently leading to increased computational 
time involved. Thus in the present study, a RemoveUse-
less filter available from Weka [31], a machine learning 
platform, was used to remove the features (chemical, bio-
logical, and phenotypic) having uniform values for all the 
drug molecules throughout the data set.

Minimum redundancy maximum relevance approach
As mentioned above, a large feature space was gener-
ated where each drug was represented by large numbers 
of features; however not all the features contribute sig-
nificantly towards classification. Choosing independent, 
informative, and discriminative features is very important 
for classification purposes; thus in the present study we 
used an mRMR approach as the feature selection tech-
nique to extract useful features. The mRMR approach 
selects features having a high correlation with the output 
class, while with low inter-correlation. F-statistic is used 
to calculate the correlation with the output class (rel-
evance), and the Pearson correlation coefficient is used to 
compute correlation amongst the features (redundancy). 
Two lists of features are generated by this approach: the 
MaxRel list and mRMR features list, where MaxRel gives 
the significantly contributing features and the mRMR 
list contains the features having higher ranks for contri-
bution with least redundancy. An mRMR approach was 

Fig. 1  Depicts the outline of the computational methodology followed in the present study
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used with default (fifty features) and eighty features of 
each kind were selected for model building in the present 
study.

Experimental setup
The ADRs prediction problem was considered as a binary 
classification problem where each drug was either asso-
ciated with a particular SE (Yes) or not (No). Thus a 
column titled Outcome was appended in all the comma 
separated value (csv) files for the chemical, biological, 
and phenotypic features. Before the model generation 
task, the already existing 124 CV drugs were removed 
from the dataset and kept as a control to evaluate the 
performance of the generated classifier models. Machine 
learning is based on adapting from previous experiences 
and known data properties and then making predictions 
on the new unseen data. The feature data set was split 
into 80% training data (used for generation of classifier 
models) and 20% testing set (used for model performance 
evaluation) using in-house Perl script. The mRMR based 
feature selection was performed on training data and the 
testing dataset was used as a complete held out data to 
eliminate any biasness in classification. For each of the 36 
cardiovascular ADRs, a classifier model was generated 
using training data that included features for the result-
ing 842 drugs. The predictive computational models were 
generated for each of the individual set of features (chem-
ical, biological, and phenotypic) and their combinations 
that involved biological + chemical, biological + pheno-
typic, chemical + phenotypic and biological + chemi-
cal + phenotypic feature combinations.

Handling the imbalance amongst output class
The dataset was highly imbalanced in the present study 
where the instances were dominated by the negative class 
which could lead to overestimated performance predic-
tions biased towards the negative (dominating) class. In 
the present study, we incorporated SMOTE (Synthetic 
Minority Over-sampling Technique), under sampling of 
the majority class and cross validation balancing meth-
ods to alleviate the problem of data imbalance.

SMOTE
To improve upon the performance of the classifier mod-
els, we employed a balancing strategy, SMOTE method 
from Weka, to bring a balance between the majority and 
minority classes. The SMOTE method oversamples the 
minority class by generating synthetic examples using the 
information available from the data set and resampling 
the data. To oversample, a sample from the minority class 
in the dataset is taken along with its k-nearest neighbors 

using Euclidean distance. Next, the difference is com-
puted between the input vector and its nearest neigh-
bor, which is multiplied to a random number that lies 
between 0 and 1 and further added to the current data 
point under consideration.

Under‑sampling using SpreadSubsample
In the present work, we used SpreadSubsample filter of 
Weka to under-sample the dominating class to introduce 
balance between the majority and minority class. The 
SpreadSubsample filter method produces a random sub-
sample of the dataset and specifies the maximum distri-
bution between the minority and majority class.

Tenfold cross validation
We used tenfold cross validation in the present work to 
evaluate the performance of the generated predictive 
models. In tenfold cross validation, the original dataset 
was randomly partitioned into 10 equivalent sized folds 
or subsamples. One of the subsamples was retained as 
the validation set and the left overs were used as part of 
the training set. The process was repeated ten times (ten-
fold) until each subsample had been once used as valida-
tion data. At the end, the results obtained from all tenfold 
were averaged to get a single result.

Machine learning models construction
Two different machine-learning algorithms were used 
for predictive modelling in the present study: random 
forest (RF) and sequential minimization optimization 
(SMO) algorithm. Predictive models were implemented 
using Weka, which is a machine learning platform that 
supports training models using several machine learning 
algorithms and their evaluation.

Random forest
RF is an ensemble classifier developed by Leo Brei-
man that involves integration of multiple decision trees. 
A multitude of trees is generated during training of the 
learning model and the output class is the mode of the 
classes predicted by the individual trees. The larger the 
number of trees, the higher the accuracy. For prediction 
of a test case, each tree estimates an outcome which is 
stored for voting, and the highest-voted prediction is the 
final output class for the test case.

Sequential minimization optimization
SMO algorithm, invented by John Platt, is an imple-
mentation of support vector machines (SVM) in Weka. 
The SMO algorithm solves the problem of quadratic 
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programming (QP) by breaking the large QP problem 
into a sequence of smaller QP problems, further solving 
the smallest optimization problem at each step. SVMs 
are supervised learning models which perform binary 
linear classification by constructing a hyperplane, or a 
set of hyperplanes in high dimensional space, and try to 
categorize the examples to either of the two classes. The 
two classes are separated by the maximum possible gap; 
new test cases are then mapped to the same space, and 
a prediction is made based on the category in which the 
test instance falls.

Model performance assessment
For each CV SE, classifier models were generated using 
RF and SMO algorithms and were evaluated using ten-
fold cross validation on 842 drugs. The performance 
of the predictive models was assessed using accuracy 
(ACC), precision, recall, F-measure, and Area under 
Curve (AUC) value. AUC value is a single measure-
ment obtained from the receiver operating character-
istic (ROC) curve, which is a plot of sensitivity or true 
positive rate (TPR) against false positive rate (FPR) or 
(1-specificity).

where TP is true positive, FP is false positive, TN is true 
negative and FN is false negative.

Results
In the present study, a total of 504 machine-learning 
based classifier models were generated for 36 CV ADRs 
using chemical, biological, and phenotypic features and 
their two and three level combinations for 842 drugs. 
Table  3 lists the 36 CV ADRs and their SIDER IDs for 
which the RF and SMO models were generated.

Analysis of the features used to study CV ADRs
As described in the methods section, chemical, biologi-
cal and phenotypic features of dimensions 1,532, 881, 
and 7337, respectively, were used to represent 842 drugs 
which resulted in a very high dimensional feature space. 
This increased the probability of redundant and irrelevant 
feature vectors among the feature sets. Thus we used the 

(1)ACC =

TP + TN

TP + TN + FP + FN

(2)Precision =

TP

TP + FP

(3)Recall =

TP

TP + FN

(4)F1 =
2 ∗ Precision*Recall

Recall + Precision

RemoveUseless filter and mRMR approach, with default 
parameters, to obtain non-redundant and significant fea-
tures. In the case of the mRMR approach, the features 
with scores larger than zero were selected for generat-
ing the trained classifier models. The top 50 features, 
which is the default number of features for mRMR, from 
each of the six types—enzymes, targets, transporters, 
substructure fingerprints, indications and side effects—
investigated in the present study were used to generate 
the machine learning models. Table 1 provides the types 

Table 3  Lists the  36 cardiovascular ADRs along  with  their 
SIDER ids for  which the  RF and  SMO models were 
generated

Cardiovascular side effect SIDER id

Arrhythmia C0003811

Atrioventricular block C0004245

Atrioventricular block complete C0151517

Atrioventricular block first degree C0085614

Atrioventricular block second degree C0264906

Block heart C0018794

Bradycardia C0428977

Cardiac arrest C0018790

Cardiac death C0376297

Cardiac disorder C0018799

Cardiac failure acute C0264714

Cardiac failure congestive C0018802

Cardiac failure C0018801

Cardiac fibrillation C0232197

Cardiac flutter C0016385

Cardiac murmur C0018808

Cardiac output decreased C0007166

Cardiac tamponade C0007177

Cardiac valve disease C0018824

Cardiogenic shock C0036980

Cardiomegaly C0018800

Cardiomyopathy C0878544

Cardiopulmonary failure C1444565

Cardio-respiratory arrest C0600228

Cardiotoxicity C0876994

Cardiovascular disorder C0007222

Conduction disorder C0264886

Cor pulmonale C0034072

Decompensation cardiac C1961112

Heart malformation C0018798

Heart rate irregular C0237314

Heartburn C0018834

Left ventricular failure C0023212

Myocardial ischaemia C0151744

Shock C0036974

Tachycardia C0039231
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of features used for the generation of the machine learn-
ing models and the number of features obtained after 
RemoveUseless and mRMR selection approaches. The list 
of the top 50 features ranked by mRMR has been pro-
vided as Additional file 1.

Performance comparison of different machine learning 
algorithms
For the ADRs prediction task, the following feature 
combinations were used as input: (1) biological features 
(protein targets, transporters and enzymes, 150 dimen-
sional); (2) chemical structures (50 dimensional); (3) 
phenotypic properties (therapeutic indications and other 
known ADRs, 100 dimensional); (4) biological + chemical 
features (200 dimensional); (5) biological + phenotypic 
features (250 dimensional); (6) chemical + phenotypic 
features (150 dimensional); and (7) biological + chemi-
cal + phenotypic features (300 dimensional). Two dif-
ferent machine learning algorithms, RF and SMO, were 
employed for the generation of models using training 
data sets which were evaluated using tenfold cross vali-
dation. Table 4 provides the overall tenfold cross-valida-
tion performance of the models generated using training 

dataset with biological, chemical, and phenotypic fea-
tures and the combination of the two and three levels of 
features. It is clearly evident from Table 4 that most of the 
AUC values are not around 0.50 which indicates that the 
models generated in the present study are not random 
predictors. Additional file  2 provide the tenfold cross-
validation performance measures for the RF and SVM 
models for each cardiovascular ADR using biological, 
chemical, phenotypic features and their two and three 
level combinations.

Tables 5 and 6 provide the overall performance meas-
ures for the classifier models generated using chemical, 
biological, and phenotypic features and the combina-
tion of the two and three levels of features using SMOTE 
and SpreadSubsample method. In few cases where the 
AUC score is around 0.5, the probable reason may be 
due to the fact that only a few drugs in the dataset have 
these side-effects which makes the prediction difficult. 
The training set was balanced for minority class using 
SMOTE and SpreadSubsample method which resulted 
in significant AUC values in case of cross validated mod-
els. And thus most of the AUC values in case of testing 
data are around 0.50 owing to the low frequency of side 

Table 4  Provides the  overall tenfold cross-validation performance of  the  models generated using training dataset 
with biological, chemical, and phenotypic features and the combination of the two and three levels of features

Type of feature RF SMO

ACC​ Precision Recall F-score AUC​ PRC ACC​ Precision Recall F-score AUC​ PRC

Biological 78.11 0.77 0.99 0.87 0.62 0.81 76.73 0.76 0.99 0.86 0.58 0.73

Chemical 83.34 0.84 0.97 0.89 0.78 0.89 76.32 0.78 0.94 0.85 0.68 0.74

Phenotypic 77.06 0.75 1.00 0.86 0.54 0.75 77.91 0.77 1.00 0.87 0.54 0.74

Biological + chemical 84.80 0.86 0.95 0.90 0.81 0.91 78.87 0.80 0.95 0.86 0.72 0.75

Biological + phenotypic 80.87 0.80 0.99 0.88 0.66 0.82 79.13 0.78 0.99 0.87 0.63 0.75

Chemical + phenotypic 83.69 0.84 0.97 0.89 0.79 0.90 77.79 0.79 0.96 0.86 0.69 0.75

Biological + chemical + phenotypic 85.25 0.85 0.96 0.90 0.82 0.91 89.07 0.94 0.95 0.94 0.47 0.75

Table 5  Provides the overall performance measures for the models generated using biological, chemical, and phenotypic 
features and  the  combination of  the  two and  three levels of  features on  non-redundant testing dataset using 
over sampling of minority class

Type of feature RF SMO

ACC​ Precision Recall F-score AUC​ PRC ACC​ Precision Recall F-score AUC​ PRC

Biological 93.56 0.94 0.99 0.96 0.52 0.93 91.24 0.93 0.99 0.96 0.51 0.93

Chemical 91.41 0.94 0.97 0.95 0.52 0.94 88.75 0.94 0.95 0.93 0.48 0.93

Phenotypic 93.83 0.95 1.00 0.97 0.50 0.93 93.83 0.94 1.00 0.97 0.50 0.93

Biological + chemical 90.24 0.94 0.96 0.94 0.53 0.94 89.06 0.94 0.95 0.94 0.53 0.93

Biological + phenotypic 93.66 0.94 1.00 0.97 0.52 0.94 93.30 0.94 0.99 0.96 0.52 0.93

Chemical + phenotypic 91.49 0.94 0.97 0.95 0.50 0.94 90.54 0.94 0.96 0.95 0.48 0.93

Biological + chemical + phenotypic 90.92 0.94 0.96 0.95 0.54 0.95 89.07 0.94 0.95 0.94 0.47 0.93
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effects. It is evident from Table 5 that both RF and SMO 
models had high performance metrics; however, RF per-
formed better that SMO in the case of chemical feature 
models, as well as in cases where chemical features were 
combined with other features. The chemical feature SMO 
models had an accuracy of 88.75% which was much less 
as compared to chemical feature RF models where the 
accuracy was 91.41% in SMOTE models. The accuracy of 
chemical feature models generated using under-sampling 
method was 93.69% and 93.32% in case of SMO and RF 
models respectively. Similar was the accuracy value in 
case of biological + chemical (SMO 89.06%, RF 90.24%), 
chemical + phenotypic (SMO 90.54%, RF 91.49%) and 
biological + chemical + phenotypic (SMO 89.07%, RF 
90.92%) combinations models using SMOTE method.

As mentioned above, different features were combined 
to evaluate their predictive capacities for CV ADRs pre-
diction task. The chemical features models were least 
informative in the case of both RF and SMO classification 
models generated using SMOTE method. The biological 
and phenotypic models were much more accurate than 
chemical features models with accuracy values of 93.56%, 
93.83% and 91.41% in case of RF and 93.28%, 88.75% and 
93.83% for SMO models respectively. The accuracy of 
the models showed significant improvement upon addi-
tion of phenotypic features from 88.75 to 90.54% in case 
of SMO models. The biological and phenotypic combi-
nation models yielded better accuracy values (93.66% 
RF and 93.30% SMO). However the phenotypic features 
were most accurate and informative, leading to highly 
predictive models indicating that phenotypic features 
played an important role in the ADR prediction task. On 
the other hand the RF and SMO models generated using 
biological, chemical, and phenotypic and combination 
models using SpreadSubsample under-sampling method 
had almost similar performance. Additional files 3 and 4 
provide the performance measures for the RF and SVM 

models for each cardiovascular ADR using fifty bio-
logical, chemical, phenotypic features and their two and 
three level combinations on non-redundant testing data-
set using SMOTE and SpreadSubsample data balancing 
method respectively.

In addition we also generated biological, chemical, 
phenotypic and combination models using eighty fea-
tures. The models generated using eighty features per-
formed largely better in terms of accuracy in comparison 
to the models generated using the default fifty features 
(Table 7). All the models were around 93–94% accurate 
and had precision, recall, F-measure and PRC values in 
the range of 93–100%. However the RF biological and 
phenotypic combination models performed best in terms 
of AUC value (0.72). The individual performance metrics 
for RF and SMO generated on non-redundant testing 
dataset using eighty mRMR biological, chemical, pheno-
typic features and their combinations for 36 CV ADRs 
has been provided as Additional file  5. Additionally we 
have also compared the statistical performances of mod-
els generated in the present study with other approaches 
for drug ADR prediction (Table 8).

Case study on cardiovascular drugs
To exhibit the realistic application and clinical impor-
tance of the generated predictive models, the models 
were evaluated for their ability to predict the already 
reported ADRs of the known CV drugs. Already known 
CV drugs were removed from the dataset used for gener-
ating the models and reserved as controls. A total of 124 
CV drugs were obtained from DrugBank, among which 
we could extract the features for 34 drugs, for which 
predictions were made. We would like to mention here 
that out of total 124 CV drugs, the data for targets was 
available only for 121. Amongst which, 94 drugs could 
be mapped to enzymes and 63 drugs could be mapped to 
transporters. While there were only 34 CV drugs which 

Table 6  Provides the overall performance measures for the models generated using biological, chemical, and phenotypic 
features and  the  combination of  the  two and  three levels of  features on  non-redundant testing dataset using 
under sampling of majority class

Type of feature RF SMO

ACC​ Precision Recall F-score AUC​ PRC ACC​ Precision Recall F-score AUC​ PRC

Biological 93.90 0.88 0.91 0.89 0.46 0.94 92.15 0.88 0.91 0.89 0.45 0.94

Chemical 93.32 0.85 0.88 0.87 0.48 0.94 93.69 0.85 0.89 0.87 0.44 0.93

Phenotypic 93.65 0.85 0.88 0.87 0.44 0.93 93.85 0.85 0.89 0.87 0.44 0.93

Biological + chemical 93.07 0.85 0.88 0.86 0.46 0.94 93.72 0.85 0.89 0.87 0.44 0.93

Biological + phenotypic 93.51 0.85 0.88 0.87 0.43 0.93 93.82 0.85 0.89 0.87 0.44 0.93

Chemical + phenotypic 93.43 0.85 0.88 0.87 0.45 0.94 93.83 0.85 0.89 0.87 0.44 0.93

Biological + chemical + phenotypic 93.06 0.85 0.88 0.86 0.47 0.94 93.61 0.85 0.89 0.87 0.44 0.93
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all the information i.e. targets, transporters, enzymes as 
well as therapeutic indications and substructure finger-
prints were available. Thus the predictions were made for 
these 36CV drugs which had all the properties.

The most common side effects predicted were brady-
cardia (Disopyramide, Verapamil, Procainamide, Nifedi-
pine, and Lidocaine); cardiac disorder (Clonidine, 
Telmisartan, Procainamide, and Nifedipine); congestive 
cardiac failure (Amlodipine and Metoprolol); cardiac 
murmur (Nisoldipine, Ibuprofen, and Propafenone) and 
tachycardia (Amlodipine, Prazosin, Bosentan, Doxazosin, 
Candesartan cilexetil and Acetylsalicylic acid, Telmisar-
tan, Nifedipine and Carvedilol). These side effects had 
already been reported to be associated with the drugs in 
question on SIDER. Additionally, various side effects not 

reported on SIDER were also predicted by our models. 
The side effects include atrioventricular block (Acetylsali-
cylic acid, Telmisartan, Nifedipine and Midodrine); car-
diomyopathy (Nifedipine [32]); cardiac failure (Verapamil 
[33] and Procainamide [34]); cardiopulmonary failure 
(Amlodipine, Prazosin, Bosentan [33], Doxazosin [33] 
and Bumetanide); cor pulmonale (Amlodipine, Prazosin, 
Bosentan [35], Doxazosin, Carvedilol, Furosemide [36] 
and Bepridil); and heart malformation (Disopyramide, 
Nisoldipine, Bosentan, Clonidine, Verapamil, Acetylsali-
cylic acid, Telmisartan, Procainamide, Ibuprofen, Nifedi-
pine, Propafenone, Gemfibrozil, Metoprolol, Lidocaine, 
Indomethacin, Propanolol, Losartan, Felodipine, Oxepro-
nolol, Lomitapide, Riociguat); irregular heart rate (Dis-
opyramide [37] and Nifedipine [38]) and left ventricular 

Table 7  Provides the  overall performance measures for  the  models generated using eighty biological, chemical, 
and phenotypic features and the combination of the two and three levels of features on non-redundant testing dataset

Type of feature RF SMO

ACC​ Precision Recall F-score AUC​ PRC ACC​ Precision Recall F-score AUC​ PRC

Biological 93.76 0.94 0.99 0.96 0.48 0.94 93.59 0.93 0.99 0.96 0.50 0.93

Chemical 93.03 0.93 0.98 0.95 0.54 0.95 93.98 0.93 100.00 0.96 0.50 0.93

Phenotypic 94.85 0.95 0.98 0.97 0.69 0.96 94.23 0.94 0.99 0.96 0.52 0.94

Biological + chemical 93.81 0.94 0.98 0.96 0.55 0.95 93.94 0.93 0.99 0.96 0.50 0.93

Biological + phenotypic 94.31 0.94 0.99 0.96 0.72 0.96 94.57 0.94 0.99 0.97 0.50 0.94

Chemical + phenotypic 94.97 0.95 0.99 0.97 0.72 0.97 94.16 0.94 0.99 0.95 0.52 0.94

Biological + chemical + phenotypic 94.28 0.94 0.99 0.96 0.68 0.96 92.34 0.95 0.99 0.97 0.51 0.95

Table 8  Provides the  comparison of  performances of  models generated in  the  present study with  other approaches 
for drug ADR prediction

Dataset Feature Algorithm AUC​ Sensitivity/
recall

Precision Accuracy

Pauwels et al. 2011 Substructures RF 0.62 0.97 0.93 91.30

SMO 0.50 1.00 0.92 92.42

Present study Biological Random forest 0.52 0.99 0.94 91.24

Chemical 0.52 0.97 0.94 88.75

Phenotypic 0.5 1.00 0.95 93.83

Biological + chemical 0.53 0.96 0.94 89.06

Biological + phenotypic 0.52 1.00 0.94 93.3

Chemical + phenotypic 0.5 0.97 0.94 90.54

Biological + chemical + phenotypic 0.54 0.96 0.94 89.07

Biological Support vector machine 0.51 0.99 0.93 93.56

Chemical 0.48 0.95 0.94 91.41

Phenotypic 0.5 1.00 0.94 93.83

Biological + chemical 0.53 0.95 0.94 90.24

Biological + phenotypic 0.52 0.99 0.94 93.66

Chemical + phenotypic 0.48 0.96 0.94 91.49

Biological + chemical + phenotypic 0.47 0.95 0.94 90.92
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failure (Bosentan, Doxazosin [39], Candesartan cilexetil, 
Bumetanide, Carvedilol, Furosemide, Bepridil).

Four CV drugs, Simvastatin, Benzocaine, Bezafibrate 
and Ezetimibe, had no side effects reported on SIDER. 
These drugs were predicted to be associated with heart 
malformation, irregular heart rate (Bezafibrate [40]), 
acute cardiac failure (Simvastatin [41]) and cardiac mur-
mur (Simvastatin [41] and Bezafibrate [42]) by our classi-
fier models.

Predictions of uncharacterized drugs in SIDER
The predictive computational CV side effect models gen-
erated in the present study were used to make predic-
tions on the drugs having no information of side effects 
on SIDER. The ADR predictions were done for twelve 
drugs and the most common side effects predicted 
included cardiac decompensation, congestive cardiac 
failure, cardiac disorder, cardiac murmur, irregular heart 
rate, shock, tachycardia and cardiopulmonary failure.

In order to make these findings significant, we per-
formed a thorough literature search to find associations 
among the ADRs predicted by our models and the drugs 
with which the side effects were associated. Fluvoxamine 
was found to be related with decompensation cardiac, 
and fluvoxamine in combination with risperidone has 
been known to cause serious adverse cardiovascular drug 
events [43]. Various cardiac side effects were predicted 
for Diethylstilbestrol that include shock, congestive car-
diac failure, cor pulmonale, cardiopulmonary failure, left 
ventricular failure, and tachycardia [44]. Mefloquine, 
which is an antimalarial drug was found to be associated 
with congestive cardiac failure and tachycardia. Anti-
malarial drugs have been known to cause serious adverse 
cardiovascular events that include sinus bradycardia 
alternating with tachycardia and cardiac failure [45, 46]. 
Cardiac murmur, irregular heart rate, tachycardia and 
acute cardiac failure were the side effects observed for 
Famotidine which has already been reported to cause 
complete atrioventricular block and cardiac arrest [47]. 
High levels of Urea in blood have been connected to 
increased risk of cardiovascular events that include car-
diac murmur [48], irregular heart rate [49] and acute 
cardiac failure [50]. Serious cardiovascular events that 
include block heart, cardiac murmur, irregular heart rate, 
cardiac failure, arrhythmia and cardiac failure acute were 
predicted for the drug, Eltrombopag [51–53]. According 
to a FDA report, Tretinoin was found to be associated 
with various cardiac side effects that include arrhyth-
mias, hypotension, hypertension, cardiac failure, and car-
diac murmur. Cardiac murmur, acute cardiac failure and 
irregular heart rate were the side effects predicted accu-
rately by the models generated in the present study [54]. 
Ketoconazole in combination with Dofetilide, Pimozide, 

and Quinidine could also result in serious adverse cardiac 
effects that include tachycardia, shock, congestive cardiac 
failure, cardiotoxicity, cor pulmonale, heart malforma-
tion and cardiopulmonary failure [55]. Although various 
researchers have put forward colchicine as a probable 
cardiovascular agent, incidences have been reported of 
adverse cardiac events that include shock, tachycardia, 
cardiac disorder and cardiac failure [56–58]. Clomifene, 
Gallium nitrate and Gabapentin enacarbil were predicted 
to be associated with cardiac decompensation by our 
models; however, we could not find any literature evi-
dence to support our observation for these drugs. Table 9 
lists the CV ADRs predicted by the machine learning RF 
and SMO models on uncharacterized drugs in SIDER.

Validation on external dataset
Considering the real-world application of the machine 
learning models generated in the present study, these 
models were evaluated on an external library of 16,383 
MyriaScreen compound available from Sigma-Aldrich. 
The most common side effects predicted by RF and 
SVM models associated with at least 10% of compounds 
included cardiac murmur and decompensation cardiac. 
In case of RF models, cardiac murmur was predicted to 
be associated with 7266 compounds, tachycardia with 
3346 compounds, decompensation cardiac with 3303 
compounds and cardiac failure congestive with 1670 
compounds. In case of SMO models, the most predicted 
side effect was heart rate irregular for 7272 compounds 
followed by cardiac murmur for 7266 compounds, left 
ventricular failure for 3598 compounds, decompensation 
cardiac with 3112 compounds, cardiopulmonary failure 
with 2374 compounds and cor pulmonale was associ-
ated with 2278 compounds. Few ADRs which were not 
predicted to be associated with any compound by any 
machine learning model included atrioventricular block 
complete, cardiac tamponade, cardiomegaly and conduc-
tion disorder. We found that the results obtained were 
very similar to the predictions on uncharacterized drugs.

Discussion
The present study proposed an exhaustive computational 
protocol for drug ADR prediction using machine-learn-
ing based methods by integrating different levels of infor-
mation for drugs. A total of 504 computational models 
were generated for 36 CV ADRs by integrating biological 
(drug transporters, targets, and enzymes), chemical (sub-
structure fingerprints), and phenotypic (therapeutic indi-
cations and other known ADRs) features using RF and 
SMO machine learning algorithms. To find the inform-
ative and discriminative features, we used an mRMR 
approach which provided us with a list of non-redundant 
features of maximum relevance for classification, thereby 
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reducing the feature space and computational time 
involved. Furthermore, we also employed the SMOTE 
method on the training data for handling data imbal-
ance, which balanced the minority class by generating 
synthetic instances. The performances of the biological 
[accuracy 93.56% (RF) and 93.28% (SMO)] and pheno-
typic features [accuracy 93.83% (RF) and 93.83% (SMO)] 
alone were better in comparison to chemical feature 
[accuracy 91.41% (RF) and 88.75% (SMO)] models. The 
results showed that the chemical feature models were 
least informative in cases of both, RF and SMO mod-
els; however, the performance of the models improved 
upon integration of biological and phenotypic features 
to chemical features. To show the real-life application, 
efficiency and significance of the computational models, 
we also performed ADR prediction for uncharacterized 
drugs and already existing CV drugs, which were not a 
part of the training set used for generating the models.

Conclusion
The present work focused on generating machine-learn-
ing based computational models for the prediction of 
cardiovascular ADRs. In this study, we have investigated 
three levels of information: biological properties includ-
ing drug targets, enzymes and transporters; chemical 
features represented by PubChem substructures; and 
phenotypic properties that include drugs therapeutic 
indications and other known ADRs. Two machine-learn-
ing algorithms, sequential minimization optimization 
(SMO) and random forest (RF), were used to generate 
computational models trained using chemical, biologi-
cal and phenotypic properties as well as their two and 
three level combinations for 36 CV ADRs. In conclusion, 

the proposed machine learning based data-integration 
approach could be a promising method for the prediction 
of potential ADRs prior to preclinical testing stages.

Additional files

Additional file 1. Provides the list of the top 50 features ranked by mRMR. 

Additional file 2. Provide the ten-fold cross-validation performance 
measures for the RF and SVM models for each cardiovascular ADR using 
biological, chemical, phenotypic features and their two and three level 
combinations. 

Additional file 3. Provide the performance measures for the RF and 
SVM models for each cardiovascular ADR using fifty biological, chemical, 
phenotypic features and their two and three level combinations on non-
redundant testing dataset using SMOTE data balancing method. 

Additional file 4. Provide the performance measures for the RF and 
SVM models for each cardiovascular ADR using fifty biological, chemi-
cal, phenotypic features and their two and three level combinations on 
non-redundant testing dataset using SpreadSubsample data balancing 
method. 

Additional file 5. Provide the performance measures for the RF and SVM 
models for each cardiovascular ADR using eighty features biological, 
chemical, phenotypic features and their two and three level combinations 
on non-redundant testing dataset.
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