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Abstract
Resolving stock structure is crucial for fisheries conservation to ensure that the spa-
tial implementation of management is commensurate with that of biological popula-
tion units. To address this in the economically important European lobster (Homarus 
gammarus), genetic structure was explored across the species' range using a small 
panel of single nucleotide polymorphisms (SNPs) previously isolated from restriction‐
site‐associated DNA sequencing; these SNPs were selected to maximize differentia-
tion at a range of both broad and fine scales. After quality control and filtering, 1,278 
lobsters from 38 sampling sites were genotyped at 79 SNPs. The results revealed a 
pronounced phylogeographic break between the Atlantic and Mediterranean basins, 
while structure within the Mediterranean was also apparent, partitioned between 
lobsters from the central Mediterranean and the Aegean Sea. In addition, a genetic 
cline across the north‐east Atlantic was revealed using both putatively neutral and 
outlier SNPs, but the precise driver(s) of this clinal pattern—isolation by distance, 
secondary contact, selection across an environmental gradient, or a combination of 
these factors—remains undetermined. Putatively neutral markers differentiated lob-
sters from Oosterschelde, an estuary on the Dutch coast, a finding likely explained by 
past bottlenecks and limited gene flow with adjacent North Sea populations. Building 
on the findings of our spatial genetic analysis, we were able to test the accuracy 
of assigning lobsters at various spatial scales, including to basin of origin (Atlantic 
or Mediterranean), region of origin and sampling location. The predictive model as-
sembled using 79 SNPs correctly assigned 99.7% of lobsters not used to build the 
model to their basin of origin, but accuracy decreased to region of origin and again to 
sampling location. These results are of direct relevance to managers of lobster fisher-
ies and hatcheries, and provide the basis for a genetic tool for tracing the origin of 
European lobsters in the food supply chain.
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1  | INTRODUC TION

Identifying distinct genetic diversity among populations and delin-
eating biologically accurate management units are key objectives 
of conservation biology and fisheries management (Funk, McKay, 
Hohenlohe, & Allendorf, 2012; Palsbøll, Bérubé, & Allendorf, 2007). 
For managing fisheries, it is important to identify stock structure and 
connectivity to ensure that the spatial implementation of manage-
ment is commensurate with that of biological population units (Reiss, 
Hoarau, Dickey‐Collas, & Wolff, 2009), and to pinpoint populations 
that may contribute colonizers to overfished or depleted stocks (Da 
Silva, Appleyard, & Upston, 2015). Moreover, this information is 
equally important for hatchery stocking programmes so that man-
agers can ensure that the juveniles they release are compatible with 
the target population and the area being stocked (Ward, 2006). 
For example, supplementing a focal population with genetically in-
compatible sources (e.g. individuals adapted to a very different en-
vironment) may lead to undesired negative consequences, such as 
mortality and outbreeding depression (Frankham et al., 2011).

Delineating subtle population structure using genome‐wide sin-
gle nucleotide polymorphisms (SNPs), isolated from restriction‐site‐
associated DNA sequencing (RADseq) (Baird et al., 2008) and other 
genomics techniques (Campbell, Brunet, Dupuis, & Sperling, 2018), 
has become commonplace in population genetics and molecular ecol-
ogy (Allendorf, Hohenlohe, & Luikart, 2010; Andrews, Good, Miller, 
Luikart, & Hohenlohe, 2016; Davey et al., 2011). Such approaches 
have enabled researchers to resolve fine‐scale population structure 
in a range of marine species, including American lobster (Benestan 
et al., 2015), great scallop (Vendrami et al., 2017), peacock wrasse 
(Carreras et al., 2017) and emperor penguin (Younger et al., 2017). 
Conversely, SNPs have also confirmed the existence of no or only 
weak population structure in some species across a variety of spatial 
scales (Everett et al., 2016; Pérez‐Portela et al., 2018), an equally im-
portant finding for marine management as it implies genetic connec-
tivity and/or large effective population sizes across the geographical 
area studied. Genomics has also contributed to the discovery of out-
lier loci (i.e. loci with high Fst relative to neutral expectations), which 
are markers potentially under the influence of selection (Lotterhos 
& Whitlock, 2015). From a conservation perspective, these outlier 
markers have the potential to aid the delineation of conservation 
units by identifying adaptive diversity in protected or exploited 
species (Barbosa et al., 2018; Flanagan, Forester, Latch, Aitken, & 
Hoban, 2017; Funk et al., 2012). Moreover, these markers often have 
greater power to differentiate populations, which offers promising 
applications for detecting immigrants via assignment approaches 
(Gagnaire et al., 2015). Indeed, the incorporation of gene‐associated 
markers in assignment analyses has already proven to be incredibly 
useful in fisheries management, where these markers have been de-
veloped as tools to help tackle illegal fishing (Martinsohn & Ogden, 
2009; Nielsen et al., 2012).

The ability to isolate informative SNPs (i.e. SNPs that show the 
greatest allele frequency variation between putative populations) 
has permitted the development of small panels of SNP markers 

which capture differentiation at the spatial scales of interest (e.g. 
Gilbey et al., 2016; Jenkins, Ellis, & Stevens, 2018; Meek et al., 2016; 
Nielsen et al., 2012; Villacorta‐Rath et al., 2016). Although useful for 
detecting subtle differentiation that can enhance analyses of pop-
ulation structure and assignment, the most differentiated loci (i.e. 
outlier loci) can have complex evolutionary histories of divergence, 
which may not always be representative of neutral genome‐wide 
patterns (Gagnaire et al., 2015). As a result, interpreting patterns of 
dispersal and gene flow based on these loci can be challenging un-
less the evolutionary mechanisms that gave rise to the outlier loci 
are identified (Gagnaire et al., 2015). Nevertheless, identifying neu-
tral markers and omitting outlier loci from the population genetic 
analysis can also be employed to provide insights into processes 
that influence gene flow and drift, such as allopatric divergence and 
changes in effective population sizes.

The European lobster (Homarus gammarus) is a large decapod 
crustacean usually found hiding in crevices within hard substrates 
from the low‐tide mark to 150 m, but typically at depths not exceed-
ing 50 m. The current range of H. gammarus extends over most of 
the north‐east Atlantic, from northern Norway to northern Morocco 
(but not the Baltic Sea), and includes parts of the Mediterranean and 
the western Black Sea where they are considerably rarer (Spanier 
et al., 2015). The high market value of H. gammarus, one of the UK's 
most valuable export species by weight (£14.06 kg−1 on average in 
2017—more than triple that of cod; Seafish, 2018), makes it a prized 
seafood product; thus, its fisheries are of great importance to the 
local and regional economies they support. However, recent and 
historical overexploitation has led to profound stock declines, with 
several regions (e.g. Scandinavia, the Mediterranean and the west-
ern Black Sea) experiencing severe stock collapses, from which re-
covery has been slow or stagnant (Agnalt, Kristiansen, & Jørstad, 
2007; Kleiven, Olsen, & Vølstad, 2012; Spanier et al., 2015). This has 
led to the rearing of H. gammarus larvae in lobster hatcheries to pro-
duce juveniles which can be released into the wild to supplement or 
rebuild wild stocks (Agnalt et al., 2004; Bannister & Addison, 1998; 
Ellis et al., 2015).

Previous genetic studies based on allozyme and mitochon-
drial DNA (mtDNA) restriction fragment length polymorphism 
(RFLP) markers have found that lobsters from northern Norway, 
Oosterschelde (Netherlands) and the Mediterranean are geneti-
cally differentiated from each other and all other samples analysed 
(Jørstad, Faresteit, Kelly, & Triantaphyllidis, 2005; Triantafyllidis et 
al., 2005). Using 14 microsatellites, Ellis, Hodgson, Daniels, Collins, 
and Griffiths (2017) suggested lobsters from the Skagerrak re-
gion—a strait located between the Jutland and Scandinavian penin-
sulas which connects the North Sea to the Kattegat and the Baltic 
Sea—may be genetically distinct. However, the two Scandinavian 
sites used in this microsatellite‐based study were genotyped by a 
different laboratory from the main group of samples analysed, and 
since accurate cross‐calibration of microsatellite profiles between 
laboratories is notoriously difficult (Ellis et al., 2011), the role of dif-
ferences in locus‐calling between laboratories could not be ruled 
out as a causal factor of the differentiation reported. Elsewhere 



     |  1883JENKINS et al.

TA
B

LE
 1

 
Su
m
m
ar
y 
of
 s
am
pl
in
g 
in
fo
rm
at
io
n 
an
d 
he
te
ro
zy
go
si
ty
 u
si
ng
 7
9 
si
ng
le
 n
uc
le
ot
id
e 
po
ly
m
or
ph
is
m
s

Co
un

tr
y

Si
te

Co
de

N
La

t
Lo

n
Ti

ss
ue

 ty
pe

Ye
ar

H
o

H
e

Br
ita
in

Br
id
lin
gt
on

Br
d

36
54
.0
7

−0
.1
7

Pl
eo
po
ds

20
17

0.
37

0.
36

C
ro
m
er

C
ro

35
52
.9
4

1.
31

Pl
eo
po
ds

20
16

0.
37

0.
37

Ey
em
ou
th

Ey
e

32
55
.8
8

−2
.0
7

Pl
eo
po
ds

20
17

0.
38

0.
37

O
ut
er
 H
eb
rid
es

H
eb

36
57
.7
9

−7
.2
5

Pl
eo
po
ds

20
17

0.
39

0.
38

Is
le
 o
f M
an

Io
m

35
54
.1
2

−4
.5
0

Pl
eo
po
ds

20
16

0.
39

0.
38

Is
le
s 
of
 S
ci
lly

Io
s

36
49

.9
2

−6
.3
3

Pl
eo
po
ds

20
16

0.
39

0.
38

Lo
oe
 H
ar
bo
ur

Lo
o

36
50
.3
5

−4
.4
4

Pl
eo
po
ds

20
16

0.
39

0.
37

Ll
yn
 P
en
in
su
la

Ly
n

34
52
.9
3

−4
.6
2

Pl
eo
po
ds

20
17

0.
40

0.
38

O
rk
ne
y

O
rk

36
59
.0
0

−2
.8
3

Pl
eo
po
ds

20
17

0.
36

0.
36

Pa
ds
to
w

Pa
d

36
50
.5
6

−4
.9
8

Pl
eo
po
ds

20
17

0.
37

0.
37

Pe
m
br
ok
es
hi
re

Pe
m

36
51
.8
1

−5
.2
9

Pl
eo
po
ds

20
16

0.
38

0.
37

Sh
et
la
nd

Sh
e

36
60
.1
7

−1
.4
0

Pl
eo
po
ds

20
17

0.
37

0.
36

Sh
or
eh
am
‐B
y‐

Se
a

Sb
s

36
50
.8
2

−0
.2
6

Pl
eo
po
ds

20
16

0.
38

0.
37

Su
la
 S
ge
ir

Su
l

36
59
.0
9

−6
.1
6

Pl
eo
po
ds

20
17

0.
36

0.
37

C
ha
nn
el
 Is
la
nd
s

Je
rs
ey

Je
r

36
49

.1
6

−2
.1
2

Pl
eo
po
ds

20
16

0.
38

0.
37

Fr
an
ce

Île
 d
e 
Ré
, L
a 

Ro
ch

el
le

Id
r1

6
32

46
.1

3
−1
.2
5

V‐
no
tc
he
s

20
16

0.
39

0.
38

 
Id
r1
7

29
46

.1
3

−1
.2
5

V‐
no
tc
he
s

20
17

0.
39

0.
38

G
er
m
an
y

H
el
go
la
nd

H
el

35
54
.1
8

7.
90

Pl
eo
po
ds

20
17

0.
35

0.
34

G
re
ec
e

A
le
xa
nd
ro
up
ol
i

A
le

28
40

.8
4

25
.8
7

D
N
A

19
99

–2
00

1
0.

32
0.

33

Sk
yr
os

Sk
y

37
38

.8
2

24
.5
3

D
N
A

19
99

–2
00

1
0.

33
0.

33

Th
er
m
ai
ko
s 
Ba
y

Th
e

36
40

.3
6

22
.8

8
D
N
A

19
99

–2
00

1
0.

33
0.

33

To
ro
na
io
s 
Ba
y

To
r

37
40
.1
7

23
.5
4

D
N
A

19
99

–2
00

1
0.

33
0.

33

Ir
el

an
d

C
or
k

C
or

32
51
.8
4

−8
.2
6

Pl
eo
po
ds

20
16

0.
38

0.
38

H
oo
k 
Pe
ni
ns
ul
a

H
oo

36
52
.1
2

−6
.9
2

V‐
no
tc
he
s

20
16

0.
39

0.
38

K
ilk
ie
ra
n 
Ba
y

K
il

35
53
.2
8

−9
.7
7

Pl
eo
po
ds

20
16

0.
38

0.
37

M
ul
le
t P
en
in
su
la

M
ul

36
54
.1
9

−1
0.
15

V‐
no
tc
he
s

20
16

0.
37

0.
38

Ve
nt
ry

Ve
n

36
52
.1
2

−1
0.
35

V‐
no
tc
he
s

20
16

0.
39

0.
37

It
al
y

La
zi
o

La
z

5
41

.4
4

12
.6

2
A
nt
en
na
e

20
13

0.
38

0.
31

Ta
rq
ui
ni
a,
 L
az
io

Ta
r

5
42

.2
3

11
.6

8
A
nt
en
na
e

20
13

0.
42

0.
32

Sa
rd
in
ia

Sa
r1
3

7
41

.2
6

9.
20

A
nt
en
na
e

20
13

0.
32

0.
30

 
Sa
r1
7

15
41

.2
6

9.
20

Pl
eo
po
ds

20
17

0.
34

0.
33 (C
on
tin
ue
s)



1884  |     JENKINS et al.

in the north‐east Atlantic, virtually no genetic differentiation be-
tween samples of European lobster has been found using microsat-
ellite markers (Ellis et al., 2017; Huserbraten et al., 2013; Watson, 
McKeown, Coscia, Wootton, & Ironside, 2016). Nevertheless, it is 
uncertain whether the apparent lack of population structure across 
much of the European lobster's range reflects genuine panmixia via 
widespread dispersal (or large effective population sizes), or simply 
limitations in the analytical power provided by small arrays of micro-
satellites to detect weak spatial structuring.

The first goal of this study, therefore, was to explore broad‐ and 
fine‐scale population structure across the range of European lob-
ster using a panel of informative SNP markers isolated from RADseq 
data, and to compare results with previous studies that employed 
traditional molecular markers. The second goal of this study was to 
assess the accuracy of this SNP panel to assign individual lobsters 
back to their place of origin at different spatial scales, including to 
broad‐scale ocean basin (Atlantic or Mediterranean), intermediate‐
scale region and fine‐scale location (sampling location). Finally, we 
discuss the applications of these results to inform the management, 
supplementation and conservation of European lobster populations.

2  | MATERIAL S AND METHODS

2.1 | Sampling and DNA extraction

Samples of adult European lobsters were collected from 38 sites 
(together with two temporal samples from Île de Ré and Sardinia; 
Table 1, Figure 1), covering most of the contemporary geographi-
cal range of H.  gammarus. The majority of sites were sampled in 
2016–2018; however, due to the rarity and difficulty of obtaining 
Mediterranean samples, some DNA samples analysed in previous 
studies (Ellis et al., 2017; Triantafyllidis et al., 2005) were also uti-
lized in this study. In addition, several Scandinavian samples were 
collected in 2007 and 2009 (provided by Carl André, University of 
Gothenburg). Nondestructive tissue samples were obtained by ex-
cising a 1‐ to 2‐cm distal section from one or two pleopods, although 
tissue samples from a few sites were composed of pereiopods, an-
tennae or the uropod (v‐notches; Table 1). All samples were placed 
in 95%–100% ethanol and stored at 4°C for long‐term preservation. 
Genomic DNA was extracted from all tissue types using a modified 
salting‐out protocol (Jenkins et al., 2018). The concentration and pu-
rity of all DNA extractions were quantified by spectrophotometry 
using a NanoDrop 1000.

2.2 | SNP isolation and genotyping

Single nucleotide polymorphism genotyping was carried out on 
a Fluidigm EP1 system using the 96 SNPs isolated by Jenkins et 
al., (2018). In brief, for SNP discovery, RAD sequencing using the 
SbfI restriction enzyme was performed on a subset of 55 lobsters 
from 27 geographically separate sampling sites (Figure S1A), en-
compassing much of the present‐day range of H. gammarus. Two 
SNP data sets were generated after bioinformatic analysis with Co
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Stacks v1.45 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 
2013). The first SNP data set comprised all 55 individuals from 27 
sampling sites genotyped at 7,022 SNPs, and initial analysis with 
discriminant analysis of principal components (DAPC; Jombart et 
al., 2010) clustered these individuals into three main groups: the 
Atlantic, Skagerrak and the Mediterranean (Figure S1B). All 55 indi-
viduals were then organized into these three putative groups, and 
each SNP was ranked using F‐statistics with the aim of identify-
ing SNPs that were most informative for maximizing genetic dif-
ferentiation between these groups. Global Fst (Weir & Cockerham, 
1984) between these three groups was 0.018, calculated using the 
diffCalc function from diveRsity v1.9.90 (Keenan, Mcginnity, Cross, 
Crozier, & Prodohl, 2013) implemented in R (R Core Team, 2018). 
The second SNP data set comprised 40 individuals that originated 
from only the Atlantic (excluding Mediterranean and Skagerrak 
samples; Table S1). To generate this data set, a population map that 
organized the remaining Atlantic samples into geographical regions 
(Table S1) was submitted to the populations program in Stacks. 
Subsequently, this SNP data set comprised 40 individuals from 
nine putative populations genotyped at 4,377 SNPs. Each SNP was 
also ranked using F‐statistics with the aim of identifying SNPs that 
are most informative for maximizing fine‐scale differentiation be-
tween lobsters originating from different regions in the Atlantic, 
which have to‐date been found to be genetically homogeneous; 
global Fst for this data set was 0.002.

Due to the requirements of the Fluidigm EP1 system (i.e. depen-
dency on 96‐well plates), 96 SNPs were used to compose the panel. 
After ranking SNPs in both data sets by G″st (Meirmans & Hedrick, 
2011; other differentiation measures produced similar results), and 
after filtering SNPs that were ineligible for primer design and syn-
thesis, 21 SNPs (out of 7,022 SNPs) were selected to capture differ-
entiation between Atlantic, Skagerrak and Mediterranean lobsters 
(Figure S1C), and 75 SNPs (out of 4,377 SNPs) were selected to 
capture within‐Atlantic differentiation (Figure S1D). Fluidigm SNP 
assays and DNA samples were run on a 96.96 Dynamic Array inte-
grated fluidic circuit, and genotypes were called using the Fluidigm 
SNP Genotyping Analysis software. Specific target amplification 
(STA) was conducted prior to genotyping because it increases the 
copy numbers of the desired sequence containing the SNP (i.e. the 
RAD‐tag), which can improve genotyping call rates and accuracy, 
particularly for heterozygous samples (Bhat, Polanowski, Double, 
Jarman, & Emslie, 2012).

2.3 | Quality control and filtering

Individuals and SNP loci with more than 20% missing genotypes 
were removed from the data set using the missingno function from 
poppr v2.8.0 (Kamvar, Tabima, & Grünwald, 2014). Deviations from 
Hardy–Weinberg equilibrium (HWE) were tested using the hw.test 
function from pegas v0.11 (Paradis, 2010) using the exact test based 
on Monte Carlo permutations of alleles (1,000 replicates); loci were 
considered to be out of HWE if they deviated significantly (p < .05) 
in more than 50% of populations. Although only one target SNP per 

RAD‐tag was considered to compose the SNP panel in the RADseq 
study (Jenkins et al., 2018), linkage disequilibrium (LD) was also 
tested in this study using the LD2 function from pegas. For both 
HWE and LD, the Bonferroni correction was used to adjust for mul-
tiple comparisons.

2.4 | Outlier selection tests

Outlier selection tests were conducted on the original RAD data from 
Jenkins et al., (2018) using three differentiation‐based approaches: 
Bayescan v2.1 (Foll & Gaggiotti, 2008), OutFLANK v0.2 (Whitlock 
& Lotterhos, 2015) and PCadapt v4.0.3 (Luu, Bazin, & Blum, 2017). 
Bayescan is a Bayesian method based on a logistic regression model 
that attempts to distinguish locus‐specific (alpha) effects of selection 
from population‐specific (beta) effects of demography; departure 
from neutrality at a given locus is assumed when the locus‐specific 
component is required to explain the observed pattern of diversity 
(Foll & Gaggiotti, 2008). Bayescan was run using default parameters 
and a prior odds of 10,000, which sets the neutral model as being 
10,000 times more likely than the model of selection to minimize 
the risk of false positives. OutFLANK calculates a likelihood on a 
trimmed distribution of Fst values to infer the distribution of Fst for 
neutral markers; it was executed using default parameters. PCadapt 
uses principal component analysis (PCA) to detect loci under selec-
tion and assumes that markers excessively related to population 
structure are candidates for local adaptation. For all selection tests, 
an alpha of 0.05 was used, and loci that were identified as an outlier 
in two or more tests were considered outlier SNPs.

2.5 | Genetic differentiation and 
population structure

Analyses of genetic differentiation between sampling sites were 
conducted on the SNP panel data by calculating pairwise values of 
Fst (Weir & Cockerham, 1984) and D (Jost, 2008) using the diffCalc 
function from diveRsity. Heat maps of each statistic were visualized 
in R, and significance was assessed by calculating bias‐corrected 
95% confidence intervals (1,000 replicates) and testing whether 
values were significantly different from zero. In addition, to explore 
patterns of isolation by distance (IBD), Mantel tests were conducted 
on genetic distances (Fst) and geographical distances (km) using 
the mantel.rtest function from the R package ade4 v1.7.11 (Dray & 
Dufour, 2007). The geographical distance matrices were created 
by calculating least‐cost distances via seas (avoiding landmasses) 
between sampling sites using the lc.dist function from the R pack-
age marmap v1.0 (Pante & Simon‐Bouhet, 2013). Outlier SNPs were 
omitted for this analysis, and significance of the Mantel tests was 
assessed using 1,000 permutations.

Population structure was explored using three different ap-
proaches. First, DAPC was run using the dapc function from the R 
package adegenet v2.1.1 (Jombart & Ahmed, 2011). DAPC attempts 
to summarize genetic differentiation between groups (between 
sampling sites, in this context), while overlooking variation within 
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groups (Jombart et al., 2010). DAPC does not assume a population 
genetics model; instead, it transforms the data using PCA and then 
performs discriminant analysis on the number of principal compo-
nents retained. Cross‐validation using the xvalDapc function from 
adegenet was used to choose the optimal number of principal com-
ponents to retain. Second, the program snapclust (Beugin, Gayet, 
Pontier, Devillard, & Jombart, 2018) was implemented in adegenet. 
This program uses maximum‐likelihood estimations based on the ex-
pectation–maximization algorithm to investigate genetic clustering 
and admixture, assuming HWE and independence of loci (linkage 
equilibrium). The number of clusters best describing the pattern of 
differentiation was explored by examining the DAPC results and by 
computing goodness‐of‐fit statistics. To visualize the genetic clusters 
geographically, individual membership proportions to each K cluster 
were averaged for each sampling site and the data were plotted as 
pie charts on a map. Lastly, STRUCTURE v2.3.4 (Pritchard, Stephens, 
& Donnelly, 2000), a Bayesian clustering algorithm, was run in par-
allel using the program StrAuto v1.0 (Chhatre & Emerson, 2017). 
STRUCTURE attempts to estimate the number of ancestral popula-
tions (K) from multilocus allele frequencies, with the assumption that 
loci are in HWE and linkage equilibrium. STRUCTURE was executed 
using the admixture model, with 105 MCMC repetitions and a burn‐
in of 105. The locprior option was selected, meaning sampling loca-
tions were used as a priori information; all other parameters were set 
to default values. To statistically compare different values of K, the 

mean value of L (K) (Pritchard et al., 2000) and the delta K (Evanno, 
Regnaut, & Goudet, 2005) statistics were examined in the R package 
pophelper v2.2.5.1 (Francis, 2017). Replicate runs were aligned and 
merged with CLUMPP v1.1.2 (Jakobsson & Rosenberg, 2007) using a 
wrapper script in pophelper, and R was used to visualize the results.

2.6 | Individual assignment

The accuracy of assigning individuals back to their basin (Atlantic or 
Mediterranean), region and sampling location of origin was assessed 
using the R package assignPOP v1.1.4 (Chen et al., 2018). assign-
POP uses a cross‐validation procedure followed by PCA to evalu-
ate assignment accuracy and membership probabilities. First, the 
data set is partitioned into training (baseline) and test (holdout) data 
sets using a resampling cross‐validation procedure, with the user 
specifying the number or proportion of individuals from each source 
“population” (i.e. Atlantic or Mediterranean in the basin analysis) to 
be used in the training data set. This approach of creating randomly 
selected, independent training and test data sets avoids introduc-
ing high‐grading bias (Anderson, 2010). Second, the features of the 
training data sets (i.e. the genotypes) are reduced in dimensionality 
using PCA, the output of which are used to build predictive models 
from user‐chosen classification machine‐learning functions (Chen 
et al., 2018). Finally, these models are then used to estimate mem-
bership probabilities of test individuals and assign them to a source 

F I G U R E  1  Map of the study area 
showing the locations of the sites sampled 
across the north‐east Atlantic and the 
Mediterranean. See Table 1 for detailed 
information about sites and sampling

0 km 250 km 500 km

Brd

Cro

EyeHeb

Iom

Ios
Loo

Lyn

Ork

Pad
Pem

Sbs

She
Sul

Jer

Idr17

Idr16

Hel

Cor

Hoo

Kil

Mul

Ven

Ale
LazSar13

Sar17

Sky

Tar

The

Tor

Flo

SinBer

Tro

Vig

Gul

Kav

Lys

Oos

0 km 5 km10 km

35

40

45

50

55

60

65

−10 0 10 20 30

Longitude

La
tit

ud
e



     |  1887JENKINS et al.

population, while also evaluating the baseline data and conducting 
assignment tests on individuals for which the origin is unknown 
(Chen et al., 2018).

For assigning individuals to their basin of origin, before dividing 
the data set into baseline and test data sets, two individuals from 
each Mediterranean site (16 individuals in total) were randomly se-
lected in R to compose a file representing “unknown” individuals, 
whereby the basin of origin was considered to be unknown. Due 
to the potential bias of unequal sample size in assignment analyses 
(Wang, 2017), 250 individuals from the Atlantic basin were randomly 
selected in R to compose this source population, with 154 individ-
uals composing the Mediterranean basin. The remaining individuals 
from the Atlantic (858 individuals) were added to the “unknown” file 
(874 individuals in total).

A Monte Carlo cross‐validation procedure was used to group in-
dividuals into baseline and test data sets using the function assign.
MC from assignPOP. Resampling was repeated 100 times for each 
combination of training individuals and loci. The proportion of indi-
viduals from each source population randomly allocated to the base-
line data set was set to 0.5, 0.7 and 0.9. Lastly, the support vector 
machine (SVM) classification function was used to build predictive 
models; after building predictive models based on the baseline data 
set, the origin of the “unknown” individuals was assessed to further 
evaluate the performance of the predictive model.

3  | RESULTS

3.1 | Genotyping, quality control and outlier SNPs

Five SNP loci (25580, 32362, 41521, 53889 and 65376) did not work 
consistently on the Fluidigm EP1 system, possibly due to inadequate 
assay design, poor STA performance or ascertainment bias. One 
locus (22365) contained 28.3% missing data and two loci (8953 and 
21197) deviated significantly from HWE in 22 and 34 sampling sites, 
respectively; all three loci were subsequently removed from the data 
set. Two loci (21880 and 22323) exhibited unexpectedly high pro-
portions of observed heterozygosity (0.61 and 0.67, respectively); 
these loci were removed because they could contain paralogs, as true 
variants are often considered to have a maximum frequency of 0.50 
heterozygous genotypes (Dufresne, Stift, Vergilino, & Mable, 2014). 
Tests of linkage revealed significant deviation (p <  .05) from equi-
librium between several pairs of loci. In particular, LD was detected 
between SNPs 15531 and 53935, between SNPs 28357 and 56785, 
and between SNPs 22740, 33066, 51507, 53052, 53263 and 65064; 
the extent of LD among these pairs of loci was apparent when visu-
alizing the population allele frequencies for each SNP (Figure S2). 
Of these loci, 53935, 56785 and 65064 were retained, while the 
other seven loci were removed. Outlier selection tests revealed that, 
of the remaining loci, eight loci were classed as outlier SNPs (Table 
S2), of which the RAD‐tag of one SNP (65064) matched hypotheti-
cal proteins on BLASTx, although per identity scores were relatively 
low (<72.2%). The final filtered data set contained 1,278 individual 
lobsters from 38 sites (plus two temporal samples) genotyped at 79 

biallelic SNP loci. This data set composed 15 SNPs from the original 
panel selected for analysis of Mediterranean‐Atlantic–Skagerrak dif-
ferentiation and 64 SNPs selected for analysis of within‐Atlantic dif-
ferentiation (six and 11 loci were omitted from the 21 and 75 SNPs, 
respectively, from the original panel).

3.2 | Genetic differentiation

Global values of Fst and D using all 79 SNPs were 0.051 and 0.010, 
respectively, and both pairwise differentiation statistics showed 
comparable patterns between sampling sites (Figure S3). Pairwise 
values of Fst and D ranged from zero (e.g. Cor‐Hoo) to 0.246 (Oos‐
Sar13) and from zero (e.g. Ale‐Sky) to 0.030 (Oos‐Ale), respectively. 
The highest values for both statistics were between Atlantic sites 
and Mediterranean sites, of which many values were significantly 
different from zero. Within the Atlantic, Oosterschelde consist-
ently yielded the highest pairwise values with other Atlantic sites 
in both statistics (Figure S3). The lowest values tended to be be-
tween sites originating from Britain, Ireland and the Channel Islands, 
although this was also the case between most sites situated close 
together in other regions (e.g. Greek sites from the Aegean Sea), 
and between the temporal samples from Île de Ré (2016 and 2017) 
and Sardinia (2013 and 2017). As a result of their genetic similarity, 
temporal samples, as well as both sites from Lazio (western Italy), 
were combined into single samples for the Mantel tests. These tests 
revealed a strong positive correlation between Fst and geographical 
distance using all sites (Figure S4A; r2  =  0.87, p  <  .001), although 
when the Mediterranean samples were removed, this correlation 
was much weaker (Figure S4B; r2 = 0.17, p = .060). However, removal 
of Oosterschelde lobsters from the analysis of Atlantic sites vastly 
increased the strength and significance of the correlation (Figure 
S4C; r2 = 0.45, p < .001). Analysis with only the Mediterranean sam-
ples also produced a positive correlation, but this was not significant 
(Figure S4D, r2 = 0.89, p = .061).

3.3 | Population structure and genetic clustering

Analyses of population structure were conducted using all 79 SNPs, 
and independently using the eight outlier SNPs, and the 71 puta-
tively neutral SNPs (SNPs not identified as outliers, albeit still origi-
nally chosen for the panel due to their high differentiation). Global 
Fst for the outlier SNP data set was 0.310, while global Fst for the 
neutral SNP data set was 0.024. The DAPC using all 79 SNPs showed 
that lobsters originating from the Atlantic and the Mediterranean 
were genetically distinct (Figure 2a). There was also evidence for 
structure within the Mediterranean, partitioned between the cen-
tral Mediterranean (Sardinia and Lazio samples) and the Aegean Sea 
(all Greek samples), which was also supported by the pairwise dif-
ferentiation statistics. Within the Atlantic cluster, there was a clear 
genetic cline starting from the most southerly site sampled, Vigo 
(northern Spain), to the most north‐easterly sites sampled in Norway 
and Sweden. In total, the first and second axes explained 69.1% of 
the variation in the data set. The outlier SNP data set (Figure 2b) 
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showed very similar patterns to those described using 79 SNPs, but 
here the first and second axes explained even more of the variation 
in the data set (91.7%). In contrast, the neutral SNP data set showed 
a much weaker clinal pattern in the Atlantic, with the first and sec-
ond axes explaining only 64.3% (Figure 2c). However, compared to 
the outlier SNPs, neutral SNPs showed stronger separation between 
the central Mediterranean and the Aegean Sea. Moreover, neutral 
SNPs still distinguished lobsters originating from the Atlantic and 
the Mediterranean basins, although the signal was generally weaker. 
In addition, exploration of the third axis showed that many lob-
sters from Oosterschelde were markedly differentiated from other 
Atlantic samples (Figure 2d).

For analyses with snapclust, temporal replicates from Île de Ré 
and Sardinia were combined into single samples due to their genetic 
similarity. Analysis of snapclust goodness‐of‐fit statistics revealed 
support for multiple K clusters ranging from 3 to 5 using 79 SNPs 
(Figure S5), though when the data were visualized, K = 3 made most 
biological sense. Overall, there was virtually no admixture between 
sites from the Atlantic and sites from the Mediterranean (Figure 3a). 
Sites in the north‐east Atlantic were predominantly grouped into two 
clusters (blue and green), both distinct from the Mediterranean (red 
cluster), and a clinal pattern like the DAPC was apparent. Analysis 
with outlier SNPs (Figure 3b) showed almost identical patterns to 
those observed using all 79 SNPs. In contrast, using neutral SNPs 
(Figure 3c), structure was apparent between sites from the central 
Mediterranean and sites from the Aegean Sea, which supported 
the DAPC results. In addition, similarly to the DAPC, neutral SNPs 
showed a weaker genetic cline in the Atlantic, with some admixture 
between Atlantic and Mediterranean sites, which appears more 
prominent in Atlantic sites spatially closer to the Mediterranean.

As a clear genetic cline was detected in the data sets composed 
of all SNPs and outlier SNPs using DAPC and snapclust, STRUCTURE 
analysis was deemed to be inappropriate for these two data sets 
as limitations with the underlying STRUCTURE model can make 
interpretations extremely challenging when there are clines of ge-
netic variation (Frantz, Cellina, Krier, Schley, & Burke, 2009; Gilbert, 
2016; Perez et al., 2018). Nevertheless, as much weaker clinal pat-
terns were detected in the Atlantic using neutral SNPs (Figures 2c 
and 3c, Figure S4B), hierarchical structure within the Atlantic using 
only neutral SNPs was analysed with STRUCTURE. This hierarchical 
analysis revealed K = 3 to be informative, and the results supported 
the differentiation statistics and the DAPC in showing that lobsters 
from Oosterschelde were genetically differentiated from other 
Atlantic samples analysed (Figure S6).

3.4 | Individual assignment

Assigning individuals to their basin of origin (Atlantic or 
Mediterranean) using the baseline data was extremely accurate, 
ranging from 97% to 100% depending on the proportion of individu-
als used in the training data set and the number of loci used for the 
assignment tests (Figure 4a). Overall, the proportion of individuals 
used in the training data set had little effect on assignment accuracy 

in this analysis. When all 79 SNPs were used, and when a proportion 
of 0.7 was used for the training data set, the model predicted the 
basin of origin of Atlantic and Mediterranean test individuals at a 
mean accuracy of 100% and 99%, respectively. Moreover, the top 
10% of high Fst loci (train.loci = 0.1) correctly assigned on average 
98% of Atlantic individuals and 97% of Mediterranean individuals 
to their basin of origin. The population allele frequency of one al-
lele for each of these top eight SNP loci was visualized (Figure 5); 
this mostly showed clear allele frequency differences between sites 
from the Atlantic and sites from the Mediterranean. This model was 
then tested on the “unknown” data set; the SVM model predicted 
the correct basin of origin for 99.7% of individuals (871 out of 874 
individuals; Table S3).

In contrast, assigning individuals from the Atlantic back to their 
sampling location of origin was not accurate using all 79 SNPs 
(Figure S7A). Assignment accuracies were generally <20%, except 
for a few sites in which the mean accuracy ranged from 27% (Ber) 
to 58% (Vig) depending on the proportion of individuals used in the 
training data set. Accuracy was slightly higher when attempting to 
assign individuals from the Mediterranean back to their sampling lo-
cation of origin (Figure S7B), although accuracy was generally still 
low and highly variable.

However, assigning individuals to one of three regions across the 
Atlantic genetic cline, informed by the DAPC and snapclust results, 
was more accurate (Figure 4b). When using all 103 individuals from 
the western North Sea (Eye‐Brd‐Cro, with Oosterschelde omitted 
due to its discrete differentiation), and 120 individuals randomly 
selected from Scandinavia (Hel‐Flo‐Sin‐Gul‐Kav‐Lys) and from the 
remaining Atlantic sites, all 79 SNPs assigned on average 60% of 
Scandinavian individuals and 63% of remaining Atlantic individuals 
to their correct region of origin (when the proportion of training in-
dividuals was 0.7). In addition, using only the top 10% of high Fst 
loci, assignment of Scandinavian individuals was improved across all 
training proportions (i.e. from 60% to 82% when the proportion of 
training individuals was 0.7), but assignment among the remaining 
Atlantic individuals was generally unchanged (Figure 4b). In con-
trast, individuals from the western North Sea consistently failed to 
assign to that region, instead tending to be split evenly between the 
Scandinavian group and the remaining Atlantic group. Assigning in-
dividuals to one of two regions in the Mediterranean was also more 
accurate (Figure 4c). When using all 32 individuals from the central 
Mediterranean (Sardinia and Lazio), and 50 individuals randomly se-
lected from the Aegean Sea, all 79 SNPs assigned on average 88% of 
central Mediterranean individuals and 96% of Aegean Sea individu-
als to their correct region of origin (when the proportion of training 
individuals was 0.7).

4  | DISCUSSION

This study comprises the first application of SNP markers isolated from 
RAD sequencing to investigate population genetic structure and as-
signment in the European lobster. Moreover, as opposed to sequencing 
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multiple RAD libraries, this study isolated the most informative markers 
(in terms of maximizing Fst between our target groups) from one RAD 
screen and then genotyped those markers in all individuals at all sites 
sampled using a relatively inexpensive and high‐throughput SNP geno-
typing approach. This approach enabled a large number of individuals 
to be genotyped, increasing the likelihood of accurately representing al-
lele frequencies at each site sampled, while still retaining a subset of in-
formative SNPs to facilitate the exploration of basin‐wide patterns, and 
differentiation patterns at fine spatial scales in the geographical areas of 
highest population abundance (i.e. the north‐east Atlantic).

4.1 | Basin‐wide genetic structure

This study revealed a pronounced phylogeographic break between 
the Atlantic and Mediterranean basins using 79 SNPs, a pattern 

detected by two previous studies of H. gammarus that used six al-
lozymes (Jørstad et al., 2005) and RFLP analysis of a 3‐kb mtDNA 
segment (Triantafyllidis et al., 2005). However, compared to these 
two studies that similarly explored range‐wide genetic variation, the 
79 SNPs from this study detected higher overall genetic differen-
tiation (global Fst  = 0.051 in this study, vs. 0.016 in Jørstad et al., 
2005; global Gst = 0.106 in this study, vs. 0.078 in Triantafyllidis et 
al., 2005).

A partition between the Atlantic and the Mediterranean has also 
been found in previous studies for a diverse array of marine taxa, 
including other crustaceans (mtDNA, Reuschel, Cuesta, & Schubart, 
2010; microsatellites, Palero, Abelló, Macpherson, Beaumont, & 
Pascual, 2011), molluscs (microsatellites, Pérez‐Losada, Guerra, 
Carvalho, Sanjuan, & Shaw, 2002), sponges (microsatellites, Riesgo 
et al., 2019), arrow worms (mtDNA and microsatellites, Peijnenburg, 

F I G U R E  2  Discriminant analysis of principal components (DAPC): (a) all 79 SNPs; (b) eight outlier SNPs; (c) 71 neutral SNPs (principal 
components 1 and 2); and (d) 71 neutral SNPs (principal components 1 and 3). For each DAPC, each point represents an individual and 
colours denote whether the individual originates from the Atlantic (blue), the central Mediterranean (yellow), the Aegean Sea (red) or 
Oosterschelde (orange)
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Fauvelot, Breeuwer, & Menken, 2006) and fish (mtDNA, Bargelloni 
et al., 2003). The majority of these studies ascribe this partition to 
restricted gene flow between the Atlantic and Mediterranean basins, 
most frequently due to IBD and/or an oceanographic barrier to con-
nectivity. For example, Reuschel, Cuesta, & Schubart (2010) found a 
distinct phylogeographic break across the Atlantic–Mediterranean 
boundary in a littoral shrimp (Palaemon elegans), a finding the authors 
linked to reduced larval dispersal across the Almeria–Oran front, 
located in the western Mediterranean between Spain and Algeria. 
Although the Almeria–Oran front has been reported to impede gene 
flow in a number of marine species (Patarnello, Volckaert, & Castilho, 
2007), the Strait of Gibraltar has also been implicated as a potential 
driver of genetic patterns (García‐Merchán et al., 2012). For instance, 
recurrent glaciations during the Pleistocene periodically reduced 
the width and depth of the Strait of Gibraltar (sea levels repeat-
edly decreased to ~120 m below present‐day levels; Rohling et al., 
1998), which may have reduced connectivity between Atlantic and 
Mediterranean populations due to vicariance and habitat fragmen-
tation (Charrier et al., 2006). In this study, very little admixture was 

detected between Atlantic and Mediterranean lobsters, although at 
putatively neutral SNPs some admixture was detected between the 
central Mediterranean and sites from the Atlantic, which appears to 
decrease as distance away from the central Mediterranean increases 
(Figures 2c and 3c). Overall, it is likely that the basin‐wide differenti-
ation observed here has been shaped in part by both contemporary 
and historical barriers to gene flow and subsequent drift, possibly 
due to past/present oceanographic barriers and vicariance during 
the Pleistocene glaciations. Nevertheless, analysis with outlier SNPs 
also revealed strong basin‐wide differentiation (Figures 2b and 3b), 
which suggests that local adaptation to environmental conditions 
(e.g. sea temperature and salinity) may also contribute to the diver-
gence of Atlantic–Mediterranean populations. However, due to a 
lack of samples from the western Mediterranean and from southern 
Iberia/northern Morocco in the Atlantic, it is difficult to ascertain the 
precise driver(s) of this basin‐wide differentiation in H. gammarus.

In addition to the strong differentiation observed between the 
Atlantic and Mediterranean basins, data from 79 SNPs identified 
differentiation (albeit slightly weaker) within the Mediterranean, 

F I G U R E  3  Snapclust results visualized geographically: (a) all 79 SNPs; (b) eight outlier SNPs; and (c) 71 neutral SNPs. Pie chart colours 
denote the average membership proportions for each sampling site to each K cluster
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F I G U R E  4  Assignment accuracies estimated via Monte Carlo cross‐validation, with three levels of training (baseline) individuals (50%, 
70% and 90% of individuals from each group) crossed by up to four levels of training loci (top 10%, 25%, 50% and all loci) by 100 resampling 
events: (a) basin of origin analysis; (b) Atlantic region of origin analysis; and (c) Mediterranean region of origin analysis
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separated into sites from the central Mediterranean (Sardinia and 
Lazio) and the Aegean Sea (all Greek sites). Furthermore, this pat-
tern of differentiation was much stronger when analysed using only 
putatively neutral SNPs (Figures 2c and 3c). Although it cannot be 
discounted that this differentiation could be an artefact of ascertain-
ment bias (since the original RAD screen contained no samples from 
the Aegean Sea), a similar pattern was found by Triantafyllidis et al. 
(2005), whereby H. gammarus samples from the Aegean Sea were 
differentiated from one site in the Adriatic Sea and from one site 
from the Columbretes Islands (in the western Mediterranean). The 
authors attributed this differentiation to the geographical isolation 
of Aegean Sea populations which could be caused by bathymetric 
and oceanographic conditions. Our study also found that popula-
tions from the Aegean Sea had in general the lowest values of ob-
served heterozygosity compared with other sites sampled (Table 1), 
which may be indicative of past bottlenecks, possibly from natural 
mortality or as a result of historical overexploitation (Spanier et al., 
2015). Overall, this suggests that the genetic differences observed 
between sites from Sardinia/Lazio and the Aegean Sea in this study 

are likely being driven by neutral drift, possibly via a combination 
of restricted connectivity (suggesting limited larval dispersal across 
this spatial scale) and historical contractions of effective population 
sizes.

4.2 | North‐east Atlantic genetic structure

Across the north‐east Atlantic, a genetic cline is apparent, start-
ing from Vigo in north‐west Spain to sites in Norway and Sweden 
(Figures 2 and 3), a pattern not detected by previous genetic stud-
ies of H. gammarus, and suggests that lobster populations across the 
north‐east Atlantic are not in complete panmixia. The most com-
monly proposed causes of clinal patterns in allele frequencies are 
as follows: (a) IBD caused by limited dispersal; (b) secondary con-
tact and introgression between previously isolated and genetically 
divergent populations; and (c) selection across an environmental 
gradient (Dayan, 2018; Pérez‐Losada et al., 2002). Although much 
weaker using only neutral SNPs, a genetic cline was still evident 
in both the DAPC and the snapclust analyses (Figures 2c and 3c), 

F I G U R E  5  Population allele frequency of one allele for each of the eight top Fst SNPs identified from the basin of origin assignment 
analysis. For each SNP, the sampling sites (x‐axis) are arranged in the following order: Tro, Ber, Flo, Gul, Kav, Lys, Sin, Hel, Oos, Cro, Brd, Eye, 
She, Ork, Heb, Sul, Cor, Hoo, Iom, Ios, Jer, Kil, Loo, Lyn, Mul, Pad, Pem, Sbs, Ven, Idr, Vig, Sar, Laz, Tar, Ale, Sky, The and Tor. Colours denote 
whether the sampling site originates from the Atlantic (blue), the central Mediterranean (yellow) or the Aegean Sea (red)
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and a significant association of genetic and geographical distances 
(Figure S4C) provides evidence for IBD in the north‐east Atlantic. 
Assuming IBD contributes to the formation of this cline, this would 
suggest that connectivity in H. gammarus follows a stepping‐stone 
model, as proposed by Ellis et al. (2017) based on the analysis of 14 
microsatellite loci. However, the neutral clinal patterns observed in 
this study across the north‐east Atlantic could also be explained by 
expansion from refugia and secondary contact between previously 
isolated populations (Dayan, 2018). As range expansions and sec-
ondary contact are nonequilibrium processes, the clines produced 
can persist for many generations before they are eventually eroded 
by gene flow; thus, signatures of these processes may remain in the 
contemporary genetic structure of the marine organisms affected 
(Dayan, 2018). In the north‐east Atlantic, regional extirpation dur-
ing the Last Glacial Maximum (LGM), followed by postglacial ex-
pansions, appears to be a common biogeographic history for many 
marine taxa (Jenkins, Castilho, & Stevens, 2018), although there 
is also evidence that some populations in ice‐free northern areas 
may have persisted in small periglacial refugia (Maggs et al., 2008). 
Putative southern refugia during the LGM (23–18 Ka) (Hewitt, 2004) 
have been proposed in south‐west Ireland (e.g. Assis, Serrao, Claro, 
Perrin, & Pearson, 2014; Hoarau, Coyer, Veldsink, Stam, & Olsen, 
2007), the western English Channel (e.g. Assis et al., 2014), north‐
west France (e.g. Coyer, Peters, Stam, & Olsen, 2003; Finnegan et al., 
2013) and the Iberian Peninsula (e.g. Finnegan et al., 2013; Maggs et 
al., 2008), evidenced by the high levels of genetic diversity found in 
populations inhabiting these areas (Provan & Bennett, 2008). Given 
that samples from south‐west Ireland, south‐west England, western 
France and north‐west Spain yielded among the highest levels of 
observed heterozygosity in this study (Table 1), it is possible that 
these sites formed part of an area which served as a glacial refuge 
for H. gammarus, which preceded secondary contact of northward 
dispersers after the ice retreated.

The genetic cline, however, was even more distinctive when 
analysed with only the eight outlier SNPs (Figures 2b and 3b). 
Assuming that these SNP loci are indeed linked to or directly 
under the influence of selection, local adaptation across an envi-
ronmental gradient cannot be ruled out as a causal factor of the 
cline. Indeed, evidence for local adaptation across both large spa-
tial scales (i.e. ocean basins) and small spatial scales (i.e. within 
single estuaries) has been reported in numerous marine inverte-
brate species, of which sea temperature and salinity are key se-
lective factors (Sanford & Kelly, 2011). As an example, a recent 
study reported a multispecies genetic cline in the north‐west 
Atlantic driven by sea temperature minima (Stanley et al., 2018); 
this study included a closely related species of H. gammarus, 
the American lobster (Homarus americanus), whose north‐west 
Atlantic range spans an extensive temperature gradient of −1°C 
to 26°C (Benestan, Quinn, et al., 2016). A similarly large thermal 
gradient exists across the range of H. gammarus populations sam-
pled in this study, from the Aegean Sea (26°C maxima in summer) 
to the Skagerrak region (1°C minima in winter). Moreover, as with 
H. americanus (Quinn, Rochette, Ouellet, & Sainte‐Marie, 2013), 

temperature has been shown to be an important determinant of 
the development and behaviour of H. gammarus larvae during their 
pelagic dispersal phase (Schmalenbach & Franke, 2010). Although 
this provides some evidence that selection across an environmen-
tal gradient could explain the clinal patterns observed with outlier 
SNPs, additional analyses that incorporate environmental vari-
ables into the analysis are required to fully explore this hypothesis.

The results of this SNP study also indicated that lobsters from 
Oosterschelde are genetically differentiated from all other Atlantic 
sites analysed, which accords with previous studies (Jørstad et 
al., 2005; Triantafyllidis et al., 2005). Oosterschelde is a tidal es-
tuarine system containing habitats such as intertidal flats, deep 
gullies, artificial rocky shores, and shallow water areas (Smaal, 
Kater, & Wijsman, 2009). During 1962–1963, harsh winters led 
to mass mortality of lobsters and other marine organisms in this 
area (Triantafyllidis et al., 2005), which would have drastically re-
duced effective population sizes. Indeed, Oosterschelde had one 
of the lowest measures of observed heterozygosity in this study 
(Table 1), and showed low haplotype diversity in Triantafyllidis 
et al. (2005), which supports a bottleneck scenario. In addition, 
construction of a storm surge barrier between the estuary and 
the North Sea was completed in 1986 to protect the area from 
flooding, although this is usually open to the North Sea so is not 
thought to be a permanent barrier to dispersal (Nienhuis & Smaal, 
1994). Indeed, Smaal et al. (2009) reported that Pacific oysters, in-
troduced into Oosterschelde as an exotic species from 1964, have 
expanded into the Wadden Sea, with northward larval dispersal 
from Oosterschelde among the most likely explanations for this 
colonization. Nevertheless, it is likely that past bottlenecks, and 
limited gene flow with adjacent North Sea sites, are responsible for 
the observed differentiation of Oosterschelde lobsters.

4.3 | Assignment accuracy

The development and use of SNP panels composed of high‐ranking 
loci has proven to be extremely informative for assignment studies 
(e.g. Nielsen et al., 2012; Storer et al., 2012) and appears to offer 
particular promise for marine organisms showing weak overall ge-
netic differentiation (Jorde, Synnes, Espeland, Sodeland, & Knutsen, 
2018). In this study, the predictive model built using the baseline data 
composed of 79 SNPs was able to correctly assign 871 out of 874 
(99.7%) “unknown” lobsters to their correct basin of origin. By com-
parison, across the north‐west Atlantic distribution of the American 
lobster, Benestan et al. (2015) were able to assign lobsters to north 
and south regions at ~94% accuracy, but only when using the top 
3,000 most differentiated SNPs. The higher assignment accuracy in 
H. gammarus with substantially fewer SNP loci is likely reflective of 
the much higher differentiation observed between the north‐east 
Atlantic and the Mediterranean basins compared with the regional 
north–south differentiation in H. americanus across the north‐west 
Atlantic. This is not surprising considering the range‐wide Fst values 
generated for H. gammarus (0.051, this study) and H. americanus 
(0.002, Benestan et al., 2015), although the Fst calculation for H. 
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americanus was based on 8,144 neutral SNPs for which no selection 
criteria were employed to maximize differentiation.

Assigning individuals of European lobster back to their sampling 
location of origin had low success in this study (generally <20%), 
which accords with the results for American lobster, whereby as-
signment success to population level achieved 25%–30% on average 
using 10,156 SNPs (Benestan, Gosselin, et al., 2016). In the present 
study, however, greater assignment success was achievable when in-
dividuals were assigned to intermediate regional scales. In the north‐
east Atlantic, although accuracy was low when assigning individuals 
to the western North Sea, accuracy was much higher when assign-
ing individuals to the remaining Atlantic sites (up to 63%) and the 
Scandinavian sites (up to 82%). This is reflective of the differentia-
tion between the Scandinavian sites and the other Atlantic sites (ex-
cluding the western North Sea), which is evident from the pairwise 
differentiation statistics and the analyses of population structure in 
this study. Still, it cannot be ruled out that the overall lack of power 
for assigning individuals to region and location of origin may be a 
consequence of either true genetic homogeneity among sampling 
sites, or inadequate analytical power resulting from an insufficient 
number of markers and/or individuals per sample (the latter particu-
larly for the assignment to sampling location, for which the maximum 
sample size was 40 individuals from Oosterschelde). This limitation 
was also outlined by Benestan et al. (2015), who suggested that sub-
stantially increasing the number of individuals per sampling location 
(at least 50 and ideally >100 individuals, Benestan, Gosselin, et al., 
2016) could improve assignment success to these more precise spa-
tial scales. In addition, assignment accuracy in this study may be im-
proved by incorporating more SNP markers and by combining these 
extra data with software that attempts to account for clinal patterns 
of genetic variation (e.g. Drinan et al., 2018; Guillot, Jónsson, Hinge, 
Manchih, & Orlando, 2016).

4.4 | Implications for management

Delineating conservation units is a fundamental requirement for 
fisheries and conservation managers, so that they recognize the 
boundaries of the populations they are trying to preserve (Funk et 
al., 2012; Palsbøll et al., 2007). Evolutionary significant units (ESUs) 
typically consider all the genetic variation among a sample of popu-
lations, while management units (MUs) and adaptive units (AUs) 
usually consider only neutral and adaptive genetic variation, respec-
tively (Barbosa et al., 2018; Funk et al., 2012). The results from this 
SNP study indicate that two overarching ESUs exist across the range 
of the European lobster, partitioned between populations from the 
north‐east Atlantic and populations from the Mediterranean. Overall, 
however, it appears there are (based on the sampling undertaken in 
this study) at least two distinct ESUs in the Mediterranean, divided 
into the central Mediterranean and the Aegean Sea, and at least 
three in the north‐east Atlantic; this is represented by two units that 
show a longitudinal clinal pattern, whereby genetic distinctiveness is 
highest between Vigo (north‐west Spain) and Scandinavia, and one 
from Oosterschelde.

The results from this study using putatively neutral SNPs, com-
bined with the results from previous studies (Ellis et al., 2017; Jørstad 
et al., 2005; Triantafyllidis et al., 2005), suggest that gene flow in H. 
gammarus across the north‐east Atlantic likely follows a stepping‐
stone model of connectivity. If true, this implies that site‐specific 
recruitment may not always come from local sources, but potentially 
from adjacent local or regional sources. Thus, a localized depletion 
of abundance may in fact reduce recruitment in adjacent stocks and 
potentially cause a more far‐reaching depletion across surrounding 
fisheries. Recent research has found that temporary closures or pro-
hibiting fishing in marine protected areas (MPAs) offers some respite 
to lobster populations (Moland et al., 2013; Roach, Cohen, Forster, 
Revill, & Johnson, 2018; Sørdalen et al., 2018), highlighting their via-
bility as a management option to prevent overexploitation of lobster 
fisheries. However, although safeguarding lobster stocks via tempo-
rary closures or MPAs may increase size and density of lobsters in 
reserves in the short term, the value of larval spillover from these 
reserves to surrounding areas is potentially just as important but re-
quires the design and implementation of longer‐term management 
strategies to be effective.

For lobster hatcheries, knowledge of stock structure is crucial to 
ensure that juveniles, which are usually reared from the egg clutches 
of wild‐mated females (Ellis et al., 2015), are genetically compati-
ble with the target population being stocked (Ward, 2006). Overall, 
the genetic profiles observed in this study suggest that stock en-
hancement and restocking should ideally be implemented with ju-
veniles whose parents originate from the same geographical region. 
Furthermore, the use of broodstock originating from the north‐east 
Atlantic to restock populations in the Mediterranean, or vice versa, is 
highly discouraged because of the potential to introduce maladapted 
traits into the target population that could also proliferate to neigh-
bouring populations (Araki, Cooper, & Blouin, 2007). The futility of 
stocking with exogenous broodstock has been amply demonstrated 
in Atlantic salmon (Finnegan & Stevens, 2008; Griffiths et al., 2011), 
and lobster hatcheries should mitigate the propensity for unwanted 
side effects if release programs are to achieve conservation ambi-
tions (Ellis et al., 2015).

Individual assignment using genetic techniques has been 
shown to be a potentially useful tool for determining the origin of 
fished individuals and for tackling illegal fishing (Bernatchez et al., 
2017; Martinsohn & Ogden, 2009; Nielsen et al., 2012). However, 
the power of the markers employed is highly sensitive to the de-
gree of genetic differentiation between sites (Christie, Meirmans, 
Gaggiotti, Toonen, & White, 2017). This study demonstrated that 
a panel of 79 SNPs has adequate power to assign lobsters accu-
rately to either the Atlantic or the Mediterranean basin. This may 
have useful applications for management authorities, such as 
estimating the proportions of native versus imported European 
lobster consumed as seafood in the Mediterranean, or to ensure 
that any attempts to restock depleted Mediterranean areas utilize 
local broodstock. Moreover, managers could test for the presence 
of Atlantic‐origin lobsters in the Mediterranean via escaped or re-
leased animals. At present, though, it is not possible to accurately 
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assign lobsters back to their precise location of origin using the 
SNP panel employed in this study. Nevertheless, it may be possible 
to assign lobsters with some confidence to geographical regions 
(e.g. Scandinavia) which could have useful applications for similar 
reasons.

4.5 | Limitations and conclusions

This study conducted analyses of population structure on all SNPs, 
but also independently on putatively neutral and outlier SNPs to 
facilitate the inference of neutral versus adaptive processes in 
driving the genetic patterns observed. However, because the out-
lier selection tests were carried out on the original RAD sequenc-
ing data set (composed of 55 individuals), this may have reduced 
the power to detect genuine outliers because many sites included 
in this SNP study were not included in the original RAD analysis. 
All outliers detected originated from the SNP loci selected for the 
panel to maximize differentiation between the Atlantic, Skagerrak 
and the Mediterranean (Figure S1; Jenkins et al., 2018), of which five 
were removed in the current study because of LD (Table S2; Figure 
S2). Of these outlier SNPs, one (65064) had low identity matches on 
BLASTx, which is likely a product of the general lack of well‐anno-
tated genomic resources for marine decapods. Interestingly, outlier 
SNPs were informative for both the north‐east Atlantic genetic cline 
and for the differentiation between the Atlantic and Mediterranean 
basins (Figures 2b and 3b). This may indicate that some of these 
outlier loci, particularly SNPs 42395 and 53935 (Figure 5), and SNP 
65064 and the loci in LD with SNP 65064 (Figure S2), have un-
dergone parallel genetic divergence (i.e. convergence of allele fre-
quency patterns; Bierne, Gagnaire, & David, 2013). A similar pattern 
was found in six outlier SNPs in long‐snouted seahorses (Riquet et 
al., 2019), whereby genetic parallelism between a Mediterranean la-
goon ecotype and a north Atlantic lineage was detected at a large 
genomic island. Mapping the location of the outlier SNPs and the 
SNPs in LD in this study would allow us to discern whether some (or 
all) of these SNPs are also located in a genomic island of differentia-
tion, but at present a reference genome assembly for H. gammarus or 
H. americanus is not available.

In conclusion, using 79 SNPs selected for their ability to 
maximize genetic differentiation at a range of both broad and 
fine scales, this study found that basin‐wide patterns of pop-
ulation structure (i.e. differentiation between the Atlantic and 
Mediterranean basins) generally accord with previous genetic 
studies of H. gammarus, but, uniquely, the additional resolution 
provided by this study revealed a genetic cline across the north‐
east Atlantic. Analyses of neutral SNPs suggested that this cline 
could have been produced in part by IBD or secondary contact, or 
both, as there is evidence that restrictions in contemporary gene 
flow can maintain neutral nonequilibrium clines formed by post-
glacial expansions and secondary contact (Dayan, 2018). However, 
analysis with outlier SNPs suggests local adaptation across an en-
vironmental gradient (e.g. temperature) cannot be ruled out as a 
causal factor of the genetic cline. In contrast to previous studies 

that employed traditional genetic markers (e.g. microsatellites), 
this SNP‐based study detected far greater levels of genetic dif-
ferentiation. As a result of the higher differentiation detected, 
the predictive model assembled was able to assign 99.7% of 
“unknown” lobsters (lobsters whose origin was known but were 
omitted from the baseline data set) to their correct basin of origin 
(Atlantic or Mediterranean), although the accuracy of this method 
decreased when attempting to assign to region of origin and again 
when assigning to sampling location. Importantly, from an applied 
perspective, as these genetic patterns were uncovered using a 
SNP panel designed for high‐throughput performance, genotyping 
additional lobster DNA samples can be done rapidly (96 samples 
in ~6 hr using a Fluidigm EP1 system) and relatively inexpensively. 
This has important benefits for future analyses of H. gammarus ge-
netic structure, as new individuals and sampling sites can be added 
to form larger spatial and temporal SNP data sets without the need 
for further cross‐calibration, which has previously proved highly 
problematic in studies of other species using microsatellite mark-
ers (Ellis et al., 2011). In addition, we envisage that this panel of 
SNPs will be useful as a traceability tool for seafood and aquacul-
ture industries for establishing the mesoscale origins of European 
lobsters.
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