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Abstract We here describe four proteins of Chlamydia
pneumoniae, which might play a role in host-pathogen
interaction. The hypothetical bacterial proteins CPn0708
and CPn0712 were detected in Chlamydia pneumoniae-
infected host cells by indirect immunofluorescence tests
with polyclonal antisera raised against the respective pro-
teins. While CPn0708 was localized within the inclusion
body, CPn0712 was identified in the inclusion membrane
and in the surrounding host cell cytosol. CPn0712 colocal-
izes with actin, indicating its possible interaction with com-
ponents of the cytoskeleton. Investigations on CPn0809 and
CPnl1020, two Chlamydia pneumoniae proteins previously
described to be secreted into the host cell cytosol, revealed
colocalization with calnexin, a marker for the ER. Neither
CPn0712, CPn0809 nor CPn1020 were able to inhibit host
cell apoptosis. Furthermore, transient expression of
CPn0712, CPn0809 and CPn1020 by the host cell itself had
no effect on subsequent infection with Chlamydia pneumo-
niae. However, microarray analysis of CPn0712-expressing
host cells revealed six host cell genes which were regulated
as in host cells infected with Chlamydia pneumoniae, indi-
cating the principal usefulness of heterologous expression
to study the effect of Chlamydia pneumoniae proteins on
host cell modulation.
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Introduction

The obligate intracellular pathogens of the genus Chla-
mydia share a unique life cycle. The infection is initiated by
metabolically dormant elementary bodies (EBs), which
intracellularly develop into metabolically active reticulate
bodies (RBs). After numerous rounds of replication, the
RBs differentiate back to EBs late in the life cycle which,
when liberated from the host cell, invade other cells for
subsequent rounds of infection [1].

The entire development cycle takes place inside a vacu-
ole, termed an inclusion body, which separates the Chla-
mydia from the endocytic pathway of the host cell. Despite
this demarcation, Chlamydia are able to take up sphingoli-
pids [19], sphingomyelin [20], cholesterol [6] or glycero-
phospholipids from the host cell [32]. Furthermore, the
bacteria export proteins into the inclusion membrane or via
the inclusion membrane into the host cell cytosol to modu-
late host cell functions and to maintain their intracellular
life style. One mechanism of protein secretion is the type
III secretion system (TTSS), which allows direct transfer of
bacterial effector proteins into the cytoplasm of the host
cell. Gene sequences with similarity to structural compo-
nents and chaperones have been detected in the genome of
Chlamydia, but in contrast to TTSSs of other bacteria, these
genes are not clustered but scattered throughout the genome
[31]. In addition, the expression of a functional TTSS in
Chlamydiae has been reported [16, 17]. The TTSS of Chla-
mydia pneumoniae is composed of 13 proteins, among
which YscN plays the role of a putative energizer [40],
whereas LcrH-2 and SycE seem to serve as chaperones.
Interaction of LcrH-2 with LerE, the putative “lid” of the
TTSS, has recently been described [30].

Several proteins that are secreted by Chlamydia pneumo-
niae are known at present. Using a heterologous system,
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IncA, IncB, IncC and three hypothetical proteins have been
shown to be type III secreted in Shigella flexneri [34].
IncA, IncB, Cpn0308 and Cpnl1027 have been localized to
the inclusion [3, 18, 25, 26], and the Chlamydia pneumo-
niae proteins Cpn0809, Cpn1020 and Cpn0797 have been
shown to be secreted into the host cell cytosol [11, 25]. Fur-
thermore, translocation of a chlamydial-secreted protease
factor [44] and of Cpn0796 into the host cell cytosol by an
autoporter mechanism has been reported [37].

So far, the function of only a few secreted proteins of
Chlamydia is known. For example, Chlamydia have been
shown to inhibit host cell apoptosis [13], and to alter tyro-
sine phosphorylation of host cell proteins [14]. Further-
more, Chlamydia are able to suppress MHC class I and II
expression by degradation of transcription factors RFXS
and USFI1 [42, 43]. In Chlamydia trachomatis, IncA has
been shown to be important for fusogenicity of inclusions
since the absence of IncA leads to a non-fusogenic pheno-
type [36]. Furthermore, CT456 (Tarp), a type IlI-secreted
protein, has been demonstrated to be associated with the
recruitment of actin which mediates the internalization of
the pathogen [7].

Nevertheless, finding further proteins that are translo-
cated into the host cell cytosol remains a challenge. In the
case of the TTSS, for example, the basal apparatus can be
identified by its homology to genes of the corresponding
system of other bacteria. In contrast, genes encoding pro-
teins that are secreted are specific for the respective bacte-
rial species and, thus, can hardly be identified on the basis
of genomic data. However, Bannantine et al. [4] were able
to deduce Inc-like proteins by screening each open reading
frame of the Chlamydia trachomatis genome for a charac-
teristic hydrophobic domain, resulting in the identification
of 46 candidate Inc proteins. Furthermore, 24 new type III-
secreted proteins were detected with a secretion assay
based on the recognition of TTSS signals in Shigella flex-
neri [35]. In addition, the genetic organization of type III
clusters might lead to the identification of translocated pro-
teins, since genes encoding these proteins are often located
closely to their respective chaperones [33].

The corresponding genes of cprn0709 and cpn0713 in the
genome of Chlamydia trachomatis are ct667 and ct663.
Both genes are hypothetical but c663 possesses homology
to the type III-chaperone (CesT) of enteropathogenic E. coli
which is needed for the translocation of of the intimin
receptor (Tir) protein and for the delivery of Map [9]. In
addition, ct667 contains a tetratricopeptide repeat domain
(TPR) shown to be important for the interaction of the Yer-
sinia chaperone LcrH with its respective substrates YopB
and YopD [12]. Consequently, and because these genes are
localized within a subcluster coding for genes of the type
IIT apparatus, they might serve as chaperones for proteins
which are translocated by this system. Therefore, we have
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chosen the adjacent Chlamydia pneumoniae genes cpn708
and cpn712, the latter is thought to be an adenylate cyclase-
like protein phosphorylated by PknD [22], for the investi-
gation of transcription, localization and putative colocaliza-
tion with host cell components. In addition, we demonstrate
the colocalization of Cpn0809 and CPnl020, two Chla-
mydia pneumoniae proteins which have previously been
shown to be released into the cytosol of the host cell [25].
Finally, we report on the use of a cDNA array to gain
insight into the putative function of these effector proteins.

Methods
Chlamydia propagation

Chlamydia pneumoniae strain AR39 was propagated in
HEp-2 and HeLa cells. Monolayers of cells in six-well
plates were infected with Chlamydia pneumoniae and cen-
trifuged at 2,000g for 45 min at 35°C. Afterwards, the
supernatant was replaced by serum-free EMEM medium
(Biochrom KG) supplemented with 1x nonessential amino
acids, 1% glutamine, 25 pg/ml gentamicin, 2.5 pg/ml
amphotericin B and with 1 pg/ml cycloheximide. Seventy-
two hours p.i. bacterial suspensions were centrifuged at
800g and supernatants were either stored at —70°C or
directly used to infect HEp-2 or HeLa cells. Multiplicity of
infection (MOI) was determined by infection of HEp-2 or
HeLa cells with different dilutions of Chlamydia pneumo-
niae AR39 followed by Giemsa staining 60 h after infec-
tion and counting of inclusion bodies per 100 cells.

Cell culture

HEp-2 and HeLa cells were cultured in EMEM medium con-
taining 10% FCS and 1x nonessential amino acids, 1% glu-
tamine, 25 pg/ml gentamicin and 2.5 pg/ml amphotericin B.

RNA extraction and reverse transcriptase-PCR assays

Total RNA from infected HEp-2 cells (MOI 1) was pre-
pared using the RNeasy Mini Kit (Qiagen) following the
instructions of the manufacturer. After RNA extraction,
samples were treated with RNase-free DNase (Promega).
To ensure that the prepared RNA contained no contaminat-
ing DNA which would adulterate the results of the RT-PCR
assays, PCR assays were performed for the 16S gene of
Chlamydia. Reverse transcriptase (RT)-PCR assays were
carried out with the OneStep RT-PCR Kit (Qiagen) as
instructed by the manufacturer. Thereafter 100 ng total
RNA was reversed transcribed for 30 min at 50°C, HotStar
Taq DNA polymerase (Roche) was initially activated for
I15min at 94°C. Sixteen cycles (/6S) or 36 cycles
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(cpn0712, cpn0708) of amplification were then carried out
according to the following protocol: cDNA was denatured
at 94°C for 1 min, primer (Table 1) annealed at 50°C
(cpn0708) or 40°C (cpn0712) for 1 min and extended at
72°C for 1 min, with a final incubation at 72°C for 10 min.
PCR products were analyzed on a 1.5% agarose gel con-
taining ethidium bromide at a final concentration of 1 pg/
ml. All PCR signals were normalized against the signal of
the 7165 gene. For this purpose, 16S signals were scanned
and the volume of the band images were quantitated (Scan-
Pack 3.0, Biometra).

Cloning and expression of Cpn0708 in E. coli DH5«
The open reading frame of cpn0708 was PCR-amplified

with specific primers harboring restriction sites for BamHI
and HindIlI, respectively (Table 1). A PCR was carried out

in a TRIO-Thermocycler (Biometra) with 10 ng of genomic
DNA of Chlamydia pneumoniae as a template. 50 pl of
PCR mixture contained 10 mM Tris—HCI pH 8.3, 50 mM
KCl, 1.5 mM MgCl,, dNTPs (each 0.2 mM), 50 pmol of
each primer and 2.5 U Taq DNA Polymerase (Roche). Ini-
tial incubation at 95°C for 3 min was followed by 40 cycles
at 95°C for 30 s, 50°C for 30 s and 72 °C for 1 min, with a
final incubation at 72°C for 5 min. The PCR product was
purified, restricted and cloned into prokaryotic expression
vector pQE30 (Qiagen). After transformation of E. coli
DHS5a, expression and purification was performed accord-
ing to the QIA expression system (Qiagen).

KLH coupling

Since expression of Cpn0712 in E. coli failed for unknown
reasons, a peptide (DLEPRQTSETNHSPK, Eurogentec)

Table 1 Oligonucleotide prim-

ers used for RT-PCR analysis Primer name

Gene

Sequence (5’ to 3")

and cloning of Chlamydia pneu-

moniae genes RT-PCR analysis

168 16S forward
16S reverse

cpn0708 708 forward
708 reverse

cpn712 712 forward
712 reverse

Cloning in pQE30

cpn0708 CPn0708F
CPn0708R

Cloning in pcDNA4/TO/myc

cpn0712 712 H1B
712 H2B

¢cpn0809 809 H1
809 H2B

cpnl020 1020H1
1020H2

Real time RT-PCR (LightCycler)

g3pdh forward
reverse

ifitl forward
reverse

ifit3 forward
reverse

eifs forward
reverse

glp2r forward
reverse

1l forward

Restriction sites for cloning in reverse
pQE30 are underlined, Kozak locd64157 forward

sequences for eukaryotic expres-

. . reverse
sion are in bold

GGA ATA CTC ATA CGG AGC AA
AGG TAA GAA CTG CTT GCA GG
TGG TTT TGC TCG TCT GCA GG
ATC TAT AAC TCA GAATTC TG
TGA ATC ATT AGA AAAATTTT
GGG ATA AGC TGG TCT ATA GG

NNN NNN GGA TCC ATG ATA GAC CCT GTA GAA
NNN NNN AAG CTT TTA ACC TAA TTG CGT TGT

CCA CCA TGG ATG GCA GTA CGA TTA ATT GTT GAT
TTT ATT GTA GTC TAT TTT ATA TTC AAC CC*

CCA CCATGG CTATTT CAT CTT CTT CAG G

ATT ATT GGT TTT ATG TGC GCC AGC

CCA CCATGC CCT CTT GTT TAT CTC AAG C

TCC TCT TAA GGA GTG GAG ATAC

TGA AGG TCG GAG TCA ACG CAT TTG GT
CAT GTG GGC CAT GCG GTC CAC CAC
GAA GCC CTG GAGTACTATG

CAA GAA TTA CAT CAT TAC AGT G
CAG GAG AAT CTG AAG CTA GTG
GCT TTT CAG CAT CAG GGA C

CTT GCC AAA GAG ATT CGT GTC

CGA TGT CGT CAT CCT TGT TG

CTG GTC CTC ATT CCT TTA TTA TTG
GCCTTC ACT TCT CCATTG G

CGC CTG GCA GGG ACCC

ACA AAA CTT AGA GAG TCC G

GTA TAT TCA GAA GAACACAGAT
CTA GAA ATGGGACTCTCAG
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representing the amino acids 133-147 of CPn0712 was cou-
pled to keyhole limpet hemocyanin (KLH) to obtain an
antigen suitable for immunization. Ten milligrams of KLH
was dissolved in ddH,O and incubated with ethyl malei-
mide solution in PBS for 30 min at RT to block free SH-
groups. After dialysis against S0 mM phosphate buffer pH
7.5, KLH was incubated with 1.25 mg of SMCC-sulfo in a
total volume of 1.5 ml. The KLH solution was passed
through a PD10 column and eluted in 1.5 ml phosphate
buffer, pH 6.8. Five milligrams of the peptide (amino acids
133-147 of CPn0712) were dissolved in 1 ml of the same
buffer and coupled to KLH by adding the peptide solution
dropwise to the KLH eluate. Finally, the conjugate was
incubated with shaking for 2 h and dialyzed against PBS.

Immunization

New Zealand white rabbits were injected subcutanously
with 100 pg of recombinant Cpn0708 or 100 pg KLH-cou-
pled Cpn0712 peptide suspended in ABM-S (Linaris),
respectively. On days 14 and 28, rabbits were boosted with
the same amounts of antigen suspended in ABM-N (Lin-
aris). Rabbits were bled on day 42 and the sera were stored
at —20°C.

Immunofluorescence microscopy for the detection
of CPn0712 and CPn0708

Chlamydia pneumoniae-infected HEp-2 cells grown on
coverslips were fixed with 4% paraformaldehyde in PBS
for 10 min at room temperature, followed by permeabiliza-
tion with 1% NP40 in PBS for 10 min. Samples were
blocked with 1% BSA and after having been washed, cells
were subjected to antibody staining. Poyclonal rabbit anti-
sera («CPn0708 and «CPn0712) were added at a dilution of
1:100 in 1% BSA in PBS for an overnight incubation. For
double immunostaining, samples were additionally incu-
bated with a murine primary antibody directed against
Chlamydia pneumoniae (Acris) at a 1:200 dilution. For
visualization, Cy2-conjugated secondary anti-rabbit anti-
body in combination with a Cy3-conjugated secondary
anti-mouse antibody, each at a dilution of 1:500, were used.
Finally, the samples were analyzed using a conventional
immunofluorescence microscope (Leica, DMIL).

Cloning of cpn0712, cpn0809 and cpnl020
in an eukaryotic expression vector

The coding region of cpn0712, cpn0809 and cpnl020 was
PCR-amplified using primers indicated in Table 1. A
Kozak sequence was introduced into each amplification
product to be cloned. A PCR was carried out using a TRIO-
Thermocycler (Biometra) with genomic DNA of Chla-
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mydia pneumoniae AR39 as a template. Initial incubation
at 95°C for 3 min was followed by 40 cycles at 95°C for
30 s, 59°C for 30 s, and 72°C for 2 min, with a final incuba-
tion at 72°C for 5 min. PCR products were purified (QIA-
quick PCR Purification Kit, Qiagen) and cloned into
eukaryotic expression vector pcDNA4/TO/myc-His (Invit-
rogen) according to the instructions of the manufacturer.

Transfection of HeLa cells and subsequent
immunodetection of expressed proteins

HeLa cells grown on sterile glass coverslips were transfec-
ted with the generated eukaryotic expression vectors using
jet PEI (Polyplus) following the manual of the manufac-
turer. Fixation and permeabilization were carried out as
described above. In some experiments, transfected cells
were treated with 10 or 100 pg/ml colchicine for 4 h before
fixation. A murine monoclonal antibody against the myc-
tag, a goat monoclonal antibody against calnexin and a
polyclonal antiserum against actin (Santa Cruz Biotechnol-
ogy) were used at a dilution of 1:200, respectively. A poly-
clonal antiserum against IncA raised in a New Zealand
White rabbit was diluted 1:50 and the reaction was subse-
quently visualized with an appropiate DTAF-conjugated
secondary antibody at a dilution of 1:1,000. Recombinant
proteins cloned in fusion with a myc-tag were visualized
with the monoclonal mouse antibody against myc in combi-
nation with a Cy2-conjugated secondary antibody (1:500),
whereas detection of calnexin and «-actin was carried out
with a Cy3-conjugated secondary antibody at a dilution of
1:500. The immunofluorescence images were obtained
using a Leica SP2 confocal immunofluorescence micro-
scope.

Apoptosis assays

HeLa cells were transfected with pcDNA4/TO/myc carry-
ing either cpn0712, cpn0809 or cpni020. Twenty-four
hours later, cells were incubated with 1 pM staurosporine
and incubated for 3.5 h. Cells were fixed and immunofluo-
rescence assays were carried out as described above. After
incubation with the secondary antibody, Hoechst 33258
(50 ng/ml) in PBS was added for 1 h to stain the nuclei of
the cells. All assays were analyzed using a conventional
immunofluorescence microscope (Leica, DMIL).

Microarrays

RNA was prepared from cpn0712-transfected HeLa cells
and HeLa cells transfected with an empty vector using the
Qiagen RNeasy Kit according to the manufacturer’s recom-
mendations and stored at —80°C. Afterwards, the samples
were DNAse [ treated in order to remove genomic DNA
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contamination. RNA quality was determined using the Agi-
lent 2100 Bioanalyzer (Agilent Technologies) microfluidic
electrophoresis. For gene expression profiling, a two-color
1 x 2 design including a dye swap using four arrays was
applied. The labeled DNA samples for microarray hybrid-
ization were prepared from 0.8 pg of total RNA according
to the Atlas SMART Fluorescent Probe Amplification Kit
(Clontech-Takara Bio Europe) protocol, except that (1) the
RNA template was hydrolyzed under alkaline conditions
before cDNA purification, and (2) the PCR amplification
process was monitored and stopped in the exponential
phase. Quantity and dye incorporation rates of the con-
verted RNA were assessed using a NanoDrop ND-100. Per
microarray, 2 ug of Cy3- and Cy5-labeled cDNA frag-
ments, respectively, were hybridized to Agilent Technolo-
gies 44K Human Whole Genome Microarrays (G4112A)
for 17 h at 65°C. Post processing, washes were carried out
according to the Agilent Technologies SSPE protocol
(v2.1), wash solution 3 being replaced by acetonitril, fol-
lowed by immediate scanning using an Agilent G2505B
scanner. Intensity data were extracted using the software
‘Automatic Imageprocessing for Microarrays’. Normaliza-
tion of the raw intensity data was achieved with a non-lin-
ear loess regression. Differentially expressed genes were
identified by an ANOVA fixed effects model. P-values
were obtained from component-wise #-tests, adjusted with
the Benjamini—Hochberg method to control the False-Dis-
covery-Rate. Normalization and statistical computation was
carried out for two independent datasets derived from a
high gain and a low gain scan, allowing replacement of sat-
urated features in the high gain scan with data from the low
gain measurement.

In order to compare the gene regulation pattern of
CPn0712 expressing HeLa cells with cells that had been
infected by Chlamydia pneumoniae, RNA of infected and
non-infected cells was prepared with the Qiagen RNeasy
kit. Subsequently, host cell genes that were regulated in
CPn0712 expressing cells were tested in a second micro-
array following the schedule mentioned above.

Real time RT-PCR

To confirm the results of the microarrays, semiquantitative
real time RT-PCRs with the LightCycler 1.5 (Roche) were
carried out. Remaining RNA samples from the microarrays
were used as templates. Total RNA was reverse transcribed
with oligo-dT primers according to the Omniscript RT Kit
(Qiagen). Subsequently, 100 ng of cDNA was used for each
of the following PCR assays, respectively. The amount of
primers in every PCR assay performed was 10 pmol.
Primer sequences are listed in Table 1. PCR runs were car-
ried out with the LightCycler FastStart DNA Master Set
using SYBR Green I for the detection of amplicons. PCR

conditions were as follows: after initial denaturation for
10 min at 95°C, amplification was performed with 40
cycles of denaturation (10 s; 95°C), annealing (10 s; 55°C)
and elongation (10 s; 72°C). Amplicons of g3pdh, a gene
that is expressed constitutively, were used to adjust the fol-
lowing PCRs based on the crossing points obtained for this
gene.

Results and discussion
Transcription of cpn0708 and cpn0712

RT-PCR assays of Chlamydia pneumoniae RNA were car-
ried out to examine the transcription of cpn0708 and
cpn0712. HEp-2 cells were infected with Chlamydia pneu-
moniae and RT-PCR assays were performed at 2, 8, 24, 48
and 72 h p.i. Signals for the 16S-RNA gene were used as an
internal standard. Using 100 ng total RNA of Chlamydia
pneumoniae-infected HEp-2 cells, we were able to detect
transcription of cpn0708 at 2h and cpn0712 at 8 h p.i.
(Fig. 1). The primers used in this assay are listed in Table 1.

Expression and localization of CPn0708 and CPn0712

The gene encoding cpn0708 was cloned in the prokaryotic
expression vector pQE30, expressed in E. coli and purified.
In contrast and for unknown reasons, CPn0712 failed to be
expressed in E. coli. Instead and to generate an antiserum
also against CPn0712, a peptide corresponding to the
amino acids 133-147 was coupled to KLH. Recombinant
CPn0708 and the KLH-conjugate were then used to gener-
ate antisera in rabbits.

To determine the expression and intracellular localiza-
tion of Cpn0708 and Cpn0712, double immunofluorescence
assays with antisera against the respective proteins and a
monoclonal antibody against Chlamydia pneumoniae were

- 2h 8h 24h 48h  72h

16S

cpn0708

cpn0712

Fig. 1 RT-PCR analysis of cpn0708 and cpn0712. Primer pairs and
length of the amplicons are listed in Table 1. RNA from non-infected
cells was used as negative control (—). RNA as a template for PCR
without previous RT reaction yielded no bands (not shown)
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carried out. HEp-2 cells were infected with Chlamydia
pneumoniae (MOI 2.3) and fixed 60 h after infection.
Whereas immunofluorescence tests with the antiserum
against Cpn0708 gave a clear and homologous staining
only within the inclusion bodies (Fig. 2a), signals for
Cpn0712 were nonuniform. We obtained an antibody reac-
tion with the inclusion membrane confirming the results by
Herrmann et al. [21] and also with the surrounding cytosol
of the infected cell, giving rise to the idea, that in certain
amounts, Cpn0712 is also present in the cystosol of the
infected cell (Fig. 2b).

Colocalization of Cpn0712, Cpn0809 and Cpn1020
with host cell components

Next, we tried to determine whether a possible colocaliza-
tion of bacterial effector proteins with host cell components
might exist. For this purpose, in addition to CPn0712, we
also expressed CPn0809 and CPnl1020, two proteins we
had previously described, in fusion with a myc-tag in HeLa
cells and performed double immunofluorescence assays
with a monoclonal antibody against myc and a polyclonal
antiserum raised against actin in order to identify a possible
colocalization with components of the host cell cytoskele-
ton. Furthermore, we used a monoclonal antibody against
calnexin as a marker for a possible colocalization with the
endoplasmatic reticulum. Thereby, Cpn0712 could be colo-
calized with actin (Fig. 3a). Even after treatment of the
Cpn0712-transfected cells with colchicine, an alkaloid that
strongly inhibits microtubule polymerization, colocaliza-
tion of CPn0712 and actin could be demonstrated. There-
fore, we have indications that CPn0712 interacts with
components of the host cell cytoskeleton (Fig. 3b).

Fig. 2 Localization of CPn0708 A
and CPn0712 in infected HEp-2
cells. The intracellular localiza-
tion of CPn0708 and CPn0712
was determined with rabbit anti-
sera raised against the respective
antigens and visualized with a
Cy2-conjugated goat anti-rabbit
antibody (green fluorescence).
Inclusion bodies were stained
with a monoclonal antibody
against Chlamydia pneumoniae
in combination with a Cy3-con-
jugated secondary antibody (red
fluorescence). a Localization of
CPn0708 within the inclusion
body only. b Localization of
CPn0712 within the inclusion
membrane and the sourrounding
cytosol of the infected cell

aCpn0708

B aCpn0712
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Furthermore, the antibody reactions for CPn0809 and
CPn1020 matched those of calnexin, indicating a colocal-
ization with the endoplasmatic reticulum (Fig. 3c, d). Since
neither a colocalization of CPn0712 with calnexin, nor col-
ocalizations of CPn0809 and CPn1020 with actin could be
detected (data not shown), we judge the above-mentioned
colocalization to be specific.

Chlamydia pneumoniae infection of host cells is not
affected by heterologous expression of CPn0712, CPn0809
or CPn1020

Alzhanov etal. [2] demonstrated that expression of
Chlamydophila caviae IncA within the host cell reduced
inclusion formation after subsequent infection with the
pathogen. In addition, within the few cells that were
infected the inclusions of Chlamydophila caviae were
aberrant suggesting that the reduction in titer is a result
of interference of IncA with the development of
Chlamydophila caviae. To test, whether heterologous
expression of CPn0712, CPn0809 and CPnl1020 by the
host cell could also affect infection and development of
Chlamydia pneumoniae we transiently transfected HeLa
cells with the corresponding bacterial genes. Twenty-
four hours after transfection, the cells were infected with
Chlamydia pneumoniae. A further 24 and 48 h later, we
compared the number of infected cells that were infected
subsequently with Chlamydia pneumoniae with the num-
ber of infected cells not transfected before by counting
100 cells of each coverslip by random views. We found
that HeLa cells are equally susceptible to Chlamydia
pneumoniae whether or not CPn0712, CPn0809 or
CPnl1020 are expressed before infection. For example,

aCpn Overlay
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Fig. 3 Colocalization of
CPn0712, CPn0809 and
CPn1020 with cellular compo-
nents. The localization of
Cpn0712, Cpn0809 and
Cpn1020 was detected with a
monoclonal antibody against the
myc-tag in combination with a
Cy2-conjugated secondary anti-
body (green fluorescence). Ac-
tin and calnexin were stained
with a polyclonal antiserum and
a monoclonal antibody, respec-
tively, and visualized with a B
Cy3-conjugated secondary anti-
body (red fluorescence). a Colo-
calization of CPn0712 with
actin. b Identical staining pattern
for CPn0712 and actin after
incubation of the transfected
cells with colchicine. ¢, d Colo-
calization of CPn0809 and
CPn1020 with calnexin

A Cpn0712

Cpn0712

Cpn0809

CPn1020

when 100 cells were counted, cells expressing CPn0712
displayed an infection rate of 55% while 53% of adjacent
but untransfected cells were infected with Chlamydia
pneumoniae. Similar results were obtained when cells
expressed CPn0809. The infection rate of transfected
cells was 47% compared to 61% of untransfected cells. In
a further experiment, we counted 86% of CPnl020-
expressing cells as infected while the infection rate of
untransfected cells was 82%.

Actin

Overlay

Actin

Overlay

Calnexin Overlay

Calnexin Overlay

In addition, we compared the size of the inclusions
between transfected and untransfected HeLa cells. An
example is shown in Fig. 4. HeLa cells were transiently
transfected with the plasmid encoding cpn0809 as men-
tioned above. Twenty-four hours after transfection, cells
were infected with Chlamydia pneumoniae and fixed 48 h
later. Thereby, no differences in the average size of the
inclusions could be detected despite expression of the
recombinant Chlamydia pneumoniae proteins.
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Fig. 4 Heterologous expression of CPn0809 by HeLa cells does not
affect the size of the inclusion body when compared with untransfected
HeLa cells. CPn0809 was labelled with a monoclonal o-myc antibody
in combination with a Cy2-conjugated a-mouse secondary antibody
(green fluorescence). Inclusions were probed with rabbit antisera
raised against IncA and visualized with DTAF-conjugated secondary
antibody (red fluorescence). Nuclei were stained with Hoechst 33258

Apoptosis is not inhibited by CPn0712, CPn0809
or CPn1020

Inhibition of apoptosis by Chlamydia is a well described
and time-dependent process of host cell modulation [28].
Thereby, the pro-apoptotic BH3-only proteins Puma, Bad,
Bmf, Noxa and tBid are widely degraded by these intracel-
lular bacteria [10, 15, 41]. To investigate whether
CPn0712, CPn0809 or CPnl020 possess anti-apoptotic
activity, we transfected HeLa cells with the respective
genes. Twenty-four hours later, we incubated the cells for a
further 3.5 h with the non-selective protein kinase inhibitor
staurosporine to induce apoptosis, which subsequently was
confirmed by the condensation of chromatin using Hoechst
staining. HeLa cells that were not treated by staurosporine
served as a negative control. Induction of apoptosis was
shown in more than 95% of the cells treated with stauro-
sporine. Since the apoptotic staining pattern caused by
staurosporine was identical in cells expressing CPn0712,
CPn0809 or CPnl020 compared to untransfected cells,
inhibition of apoptosis by these bacterial proteins is
unlikely.

Comparison of altered transcription of CPn0712-expressing
HeLa cells with Chlamydia pneumoniae-infected host cells

In recent years, cDNA arrays have become a popular

method to determine host pathogen interactions. Thus,
several microarrays have been carried out to investigate
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interactions of Chlamydia pneumoniae with different host
cells [8, 27, 38].

In order to determine a possible host cell modulation by
Chlamydia pneumoniae proteins, we transiently transfected
HeLa cells with cpn0712 as mentioned above. The efficacy
of transfection was 40%. The cDNA array revealed a more
than threefold downregulation of transcription of 180 genes
(75%) compared to 57 genes (25%) whose transcriptions
were upregulated with the same magnitude. If the cutoff
was adopted at a magnitude of two, 676 genes (63%) were
downregulated and 400 genes (37%) were upregulated. The
most highly upregulated gene was ca9 (+5.5), encoding for
carbonic anhydrase 9 protein, while the most highly down-
regulated gene was phactr (—7.9), representing the phos-
phatase and actin regulator four isoform. The altered
transcription of certain genes was confirmed by real time
RT-PCR assays with the same RNA sample used in the
assay. To exclude the possibility that different transcription
levels are due to different amounts of RNA, samples were
adjusted to the transcription level of the constitutively
expressed g3pdh gene (not shown).

In order to confirm that heterologous expression of bac-
terial proteins by HeLa cells is a suitable model to mimic
the effect of natural infection, we investigated whether the
alteration of gene transcription was similar between
CPn0712-expressing and naturally infected HeLa cells,
respectively. Fifty-five hours p.i., the RNA of infected and
uninfected cells was isolated and applied for a second
microarray using all genes that were previously shown to
be differently transcribed by CPn0712 with a magnitude of
2. Thereby, only 86 of the 1,076 genes tested were regu-
lated with a magnitude of 3. In addition, from the 86 genes
with altered transcription after infection, only 6 were tran-
scribed in a similar way to that following heterologous
expression of CPn0712. Real time PCR (LightCycler,
Roche) confirmed upregulation and downregulation of tran-
scription of these genes both after infection of HeLa cells
with Chlamydia pneumoniae and after transfection with
pcDNA4/TO/myc carrying cpn0712 (Table 2). Less is
known about the biological function of some of the genes
demonstrated to be regulated in the same way by Chla-
mydia pneumoniae or by CPn0712 alone. The genes ifit]
and ifir3, both upregulated in our assays, code for inter-
feron-induced proteins with TPRs and are closely located
on chromosome 10. Although the function of these genes in
vivo is not known, ifitl, ifit2 and ifit4 have also been dem-
onstrated to be upregulated after infection of HeLa 229
cells with Chlamydia trachomatis [24]. Furthermore, they
have been shown to respond to distinct viral infections in a
mouse model [39]. The transcription of the glucagon-like
peptide-2 receptor (glp2r) was downregulated by CPn0712.
The corresponding protein belongs to the so-called “gluca-
gon-like peptide and secretin” family of seven transmem-
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Eable 2 t'C onf}rmanon (;lf t}llle Gene HeLa cells infected HeLa cells transfected
anscription of genes wiie with Chlamydia pneumoniae with cpn0712
were either up- or downregu-
lated after (1) infection of HeLa RT-PCR Microarray RT-PCR Microarray
cells with Chlamydia pneumo-
niae, or (2) transfection with w11 -1.22 —1.60 —3.10 -2.31
cpn0712 eif5 311 247 417 ~2.19
glp2r —-3.92 —2.42 —2.10 —2.93
ifitl +1.41 +2.19 +2.10 +2.90
ifit3 +2.65 +2.86 +1.73 +2.56
loc491355 +3.24 +1.56 +3.20 +2.46

brane receptors and interacts with the glucagon-like
peptide, mainly expressed in enteroendocrine epithelial L-
cells [5]. Also downregulated was the transcription of
#ll11, an enzyme of the large family of tubulin tyrosine
ligase-like proteins, whose members catalyze the ligation of
amino acids to, for example, tubulin [23].

In contrast to the poorly described genes above, eif5
(eukaryotic initiation factor 5) which was also downregu-
lated in our assay, belongs to the proteins which mediate
initiation of translation in a complex process. Thereby,
EIF5 was shown to be a component of a multifactor com-
plex comprising other initiation factors, GTP and Met-
tRNA;, where EIF5 induces GTPase activity of a further
initiation factor, EIF2, if associated with the 40S ribosomal
subunit [29]. However, none of these genes have been
linked to Chlamydia pneumoniae infections, before.
Although these genes are regulated in the same direction
irrespective of whether cells are infected with Chlamydia
pneumoniae or express CPn0712 alone, the biological sig-
nificance of these effects remains uncertain and awaits fur-
ther investigations.
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